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Groups covered by finitely many cosets.

By B. H. NEUMANN in Manchester.

Dedicated to H. Hopf on his 60th birthday, November 19, 1954.

§ 1. Introduction.

REINHOLD BAER') has drawn my attention to the following simple cha-
racterization of a group whose centre has finite index in it:

The centre of the group G has finite index in G if, and only if, G can
be covered by (in other words, is the set union of) finitely many abelian sub-
groups.

If a subgroup H has finite index in G, then G is covered by the sub-
groups of the form {H, g}, where g ranges over a set of representatives
modulo H. If H is the centre of G, then all these subgroups are abelian.
Conversely, if G is covered by subgroups A,,..., A,, then G is also covered
by those A; whose index in G is finite: this was proved, slightly more gene-
rally, namely for coverings by arbitrary cosets of subgroups instead of the
subgroups themselves, in a recent paper [4,(4.4)]. We may then assume
that A,,..., A, all have finite index in G; it follows that their intersection
also has finite index in G. If the A, are all abelian, then this intersection is
contained in the centre of G; for every element g of G occurs in at least
one of the A; and thus commutes with its elements, and so a fortiori with
those of the intersection of all the A;. BAER’s criterion then is an immediate
consequence.

It is natural to ask how the number n of abelian subgroups needed for
such a covering and the index < of the centre are connected, that is to say,
whether one can give a bound for one in terms of the other. It is easy to
see that given Z, one can always choose n smaller:

et

== ')

with equality only if S==1. More interesting is the question of bounds for &
in terms of n. Such bounds can indeed be found, though it is only for very
small values of n that I have been able to determine the exact bounds. In

1) in lift.
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§ 2 we show the existence of such bounds, and as a first rough estimate
we obtain an expression of the order n*". This is improved to something of
the order ¢ in § 3, and the constant ¢ here can be depressed by more
elaborate arguments (§ 4). Most of these arguments are not presented in detail.

The method deals with a more general situation than that of BAER’s
criterion, namely the covering of a group by finitely many cosets of sub-
groups. For the case of a covering by the subgroups themselves a further
slight improvement of the bounds is possible (§ 5). Finally we discuss in § 6
some of the questions — largely unsolved — that suggest themselves in this
context. One simple result (Theorem 6.3) characterizes those groups that can
be covered by finitely many cyclic groups.

§ 2. Existence and first estimates of bounds.

We begin by examining the general situation that the group G is covered
by finitely many cosets of subgroups. Let then
Ci=Ag: (i=1,2,...,n)
be cosets of subgroups A,,..., A, of G. It should be noted that we have
sacrificed no generality in writing them as right cosets; for a left coset of a
subgroup A is also a right coset of a conjugate of A:

EA=gAg-g.
The subgroups A:; need not be distinct. We define the index |G: C:| of a
coset as the index |G: A;| of the corresponding®) subgroup. We assume that
the C: cover G,

(2. 1) G= _L"Jl o)

and that this covering is “irredundant” or “minimal”, that is to say, no coset
C; can be omitted from it. Then it follows from the result [4, (4.4)] quoted
in § 1 that all the C; have finite index. We show that there is a bound for
these indices, depending only on n. The case n=1 is trivial, and we assume
n>1 throughout. We denote the index of the cosets briefly by «;; thus
¢;=|G:C;| =|G: Ai.
Let D, denote the intersection of the first & subgroups A;; thus
DI' A]i'D'_'- AlnA;!""’

k
Dr’.‘ = n Af-
=1

2) Every coset determines a unique subgroup of which it is a right coset. We shall
simply speak of the subgroup of a coset in this sense; and when cosets of (not neces-
sarily normal) subgroups occur, they are always to be understood as right cosets of these
subgroups.
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Put
0= |G: Dy|.

Then 9d,,0.,...,0, are also finite, and in fact

2.2 d = Il[r

It may be noted in passing that a bound for all ¢; implies a bound for 9,,

and conversely. D, is the least subgroup that occurs, and every A;, orinter-

section of several A;, and every coset of such an A; or of such an intersec-

tion of several A;, is a union of cosets of D,. In fact if B is a subgroup of

G containing D,, and if |G: B|=#, then every coset of B is the union of
; 0,

precisely 3 cosets of D,.

Now consider the union

where 1=Fk<n. This is not the whole of G, because the covering (2. 1) was
assumed minimal; but as it is a union of cosets of D,, there is at least one
whole coset D,g not covered by this union. This must then be covered by
the remaining C;:

2.3) Dig< | C..

i=k+1

We now think of D,g and each C: as divided up into cosets of D,. There

are g’— such cosets in D,g and % of them in C;. The inclusion (2. 3) then
E ..

gives the inequality

g . % .ds.
.40 ' EA T
substituting from (2. 2), we obtain

k »n

ol gl
@4 He=+7%

Here 1=k<n; but we can add a further such inequality, namely what is
formally (2.41) for k=0:7)
(2.42) 1= Z 1

1=1 .

To see this we only have to think of the two sides of the equation
G=G
=1

%) This is equivalent to [4, (4. 51)].
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divided into cosets of D, and counted: we get

(2.43) s>

= I‘:l.[ @ »
the inequality sign taking account of the fact that one and the same coset of
D, may occur in several C;; and (2. 42) follows. We combine (2.41) and
(2. 42) in the form
. 1 k-1
(2.5) o=  (k=1,...,0)

= ¢ = e

We can now use (2.5) for an immediate rough estimate of the bounds.
To this end we assume the C; numbered according to increasing indices:

GQEAS Sy,
Then
1 R i B 1
(2.6) T == e,
and
w1 o a—kFl
=T .

Thus (2.5) gives

or
k-1
a=@n—k+1) /] «,
i=l
and this in turn gives®)
@, =n,
«,=(n—1)e, = (n—1)n,
a;=(n—2)e, ;= (n—2) (n—1)1,
@ =1.2.38.4% ... .g2*>

By (2.2) then
S ST TP
and we thus have our first crude bounds:
Lemma 2.7. If
G= U C

=1

é) The first of these inequalities is essentially [4, Lemma 4. 1].
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is a minimal covering of the group G by cosets, then their indices are boun-
ded by

G:Cij= 1T 7,
and the index of the intersection D, of the corresponding subgroups A; is
bounded by

|G: D.|= ll:" :

§ 3. The inequalities.

The bounds we have obtained are capable of considerable improve-
ment; for we have not used the inequalities (2.5) to their full extent. This
we now proceed to do.

We put }i—_:- x; and write briefly

x:(xhx'h-' 'r-xu);
then we consider the inequalities

(3.10) l=zx=x52=x,20,
" k-1
(3. 1k) r;k(x)z_;x, [[x

where k=1,2,...,n. If x,, x,,..., X, satisfy these inequalities, x is called a
solution vector. We want to find those solution vectors which make either

x. or J[x: as small as possible. Putting
1

E—inf x,, a=inf [ [ xi,
1
the infimum being taken over all solution vectors, we call the solution vector

x optimal if either x, — & (when we also call it &-optimal) or [/ xi= -t (when
1

we also call it :z-optimal). It is easily seen that optimal solution vectors
exist, that is to say, that the infima are actually attained; for the solution
vectors form a compact subset of euclidean n-space.

If one of the coordinates of a solution vector were zero, say x; =0, then

by (3. 10) also Xy == - == x,==0. Thus ]]x.—O and ¢ (x) = — I[x,- 0;
hence at least one of x;,...,x.; also vamshes Taking k mmlmal we see
that k=1,x,=x,=---=Xx,=0, and this contradicts (3.11). Hence the

coordinates of a solution vector are all positive. It follows, incidentally, that
E and :t are positive.
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Now consider a solution vector x for which

() = 2 xi—1>0.
1
Put

X ==

then x"= (xi,...,x’) is clearly again a solution vector, and x; <x,,

]l,xi < [l/ X;.
Hence '
3.2) if x is an optimal vector then ¢,(x)=0.
We therefore restrict our attention to vectors x for which ¢,(x) = 0, that is
(3.3 Z xi=1.
1

For these vectors then

k-1 k-1

() =1— xi— [l x (k=2,...,n);
1 1

this depends only on the first A4—1 coordinates of x.
If n=1, there is only a single solution, namely x,—1; if n=2, the

only solution vector satisfying (3. 3) is x, = x.'.=%. We now assume n > 2.

Consider a solution vector x with two equal coordinates,

Xic-1 == Xi;.»
where 1 < k= n. Then

" k-1
“T‘ Xi = X = Xy = IITx
Here equality is possible only if simultaneously k= n (because x, > 0) and
k—1=1 (because x; < 1), that is n=2; but we have assumed n >2. Thus
we see that
(3 4) l‘f Xi-1 =Xy, then ¢ (X) > 0.

Assume next that x is a solution vector for which

@1 (X) = gu(X) =+ =gn1(x) =0

q’m (X) > O.

but

Denote by p the number of suffixes i/ > m for which x;=x,.. Thus p =0, and

X == Xasl e s xm-—i' > xm-i-p-i—l
or
X == Xms1 == === X,
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according as m+p<n or m-p==n. Then we know from (3.4) that also
¢x(x)>0form—+1=k=m-+|p. Weput x,.1=X,.14¢ Xisp = Xns,—& and
x;=2x; for is=m—1, m+p, and determine &> 0 so that x" = (x{, x,..., X))
is also a solution vector. This is indeed possible; for when 1 =k =m—1,
then ¢ (x") = ¢i(x)=0; and when k> m+-p, then

‘h(x):fh.(x)-i-][x, ‘}K— ;c“——f— x. |X.—, >0
because X,.-1 = X.:,. But when m = k = m--p, we have seen that ¢.(x) > 0;
hence also ¢.(x) =0 for any x’ sufficiently near to x. But x/ = x. and
| R £ / £
This shows at once that x can not have been :r-optimal, and thus
(3.5) if the vector x* = (x;,x:,...,Xxy) is cv-optimal, then
P(X*) = o(x") =+ = qu(x") =

It is not difficult to see that the same is true of 5-optimal vectors. We note
from what we have just seen that the set of solution vectors x” which satisfy

(I’;(x') —r (x') S == Pm-1 (x') =0
(X)) < @ (“)
Xn 5 X

is not empty. It clearly contains vectors that minimize ¢, (x"), and for these
then ¢, (x")=0. We can then replace m by m-1, and so continue until,
after a finite number of steps, we have arrived at the vector x* with
@ (X*) = @o(x*) =+ -+ =, (x*)=0. The last coordinate has not increased in
this process; it follows that x =& One verifies easily that this vector x* is
in fact the only one which attains &; but we do not require this fact.

To calculate the vector x*, we have first for £ > 1,
k-1

k-1
pr(x) =1 —2_ x; — 11] x; =0,
1
that is
L..‘: l;_ 3
1=  F £

* 1 o 1
x’.’ 1= 55 — P

1-%~]17x,‘- l—l-flfx.-'"-

If we put x} = -‘;1';. then this gives

k-2
aa=1+]1]e,
1
for k=2.....% Thus
gl o= ai=7],..;
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and generally, defining u,,u,,... by

=1, iy =tti +u;,
we get ] :
a=u+1,es=w-+1,...,ak . 1=u.1+1.

Finally «), is obtained from ¢,(x*) =0, that is from

for

n-1 n-1
xa=1—2'xi=[[x
1

1
because ¢, 1(x*)=0, and then

IF"
at= ]t =c 1 (ah-1—1) = W1+ D tta1 = 1.
1

Also

i

" 1
Ilai=a [lai=a’=u.
1 1
To sum up, we have proved the following theorem.

Theorem 3.6. If n positive real numbers «,, .. .,«, satisfy

=R = =0,
and

N 5 O S

and their product is bounded by
I =i,
1

where ;=1 and U, = u; + u;.

To compare this with the bounds found in § 2, one should remark that
there is a constant ¢ (approximately equal to 1.5979) such that u, = [¢>"].
For n=4 we now have «, = 42, whereas Lemma 2.7 gives only «, = 4608.

Corollary 3.7. Let 4, denote the least upper bound of the index
|G: N A:il, where G ranges over the groups that can be irredundantly covered
1
by n cosets, and A,,..., A, are the corresponding subgroups. Then

2
4, = u,.
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§ 4. Improved bounds.

Returning to the group G and its irredundant covering by n cosets
C:— Aig:, wefind another1mmed1ate1mpr0vement of the bound for d,= G:D,|

(where again Dg—ﬂA) for we can show that

Dy=D,;.
We only have to apply (2.3) to k=n—1:
Du-—ngCu

for suitable g € G; it follows that the corresponding subgroups are similarly

included :
Du IgAll ]

Di=D.1nA,=D,.;.

Denoting again the least upper bound of d,, for irredundant coverings of a
group by n cosets, by 4,, one can then show that

| 4,=9,
10 | 40 =2 for n=4.

The proof is similar to that in § 3, but rather more laborious, and we omit it.

Another improvement of the results stems from the fact that if the index
of the intersection of two subgroups is the product of their indices, then
every coset of the one meets every coset of the other in at least one (in fact
precisely one) coset of the intersection. Let A, A" be two subgroups of finite
index in G, and let D be their intersection. Put

IG:A|=¢, |G:A'|=¢, |G:D|=0

and then

and assume
0=cudc'.

Then AA"= (@, that is to say, every element of G is of the form aa’, with
acA, deA. If C=Ag, C'=A'g’ are cosets of A, A", respectively, then we

can write
go' '=ad, acA, adcA.

Then a'g-—a'g’'€¢AgnA’g’, and the whole coset of D is in the inter-

section : *)
Da'g=Da'g’SCnC".

X 2 J ; : Jd
Now C is the union of = « cosets of D, and C’ is the union of?:rc

cosets of D. Hence CuC’ is the union of at most

—+——I—u +ae—1=d —{—u(]——]

%) The coset is in fact identical with the intersection.
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cosets of D. If we think of the contribution that C* makes to the covering
of G if C is already present, we find that it is smaller by the fraction

% than without C; the fraction -(—1: representing that part of C* which covers
what C had already covered.
Conversely, if CuC’ is the union of :—T—{—:—) cosets of D, then C and

C’ must be disjoint, and d<ee’. But d is a multiple of «’; hence
O0=(c—1)e'=cc {]—-—-— )

Thus if C and C’ do not overlap, then the index of the intersection D falls
short of the product of the indices of A and A’, and again by the fraction

—5; at least. Moreover this effect persists if we form intersections with further
subgroups. If B is a subgroup of A, if |G: B|—4#, and if |G: A’n B|=¢’, then

b =pd ( 1— !-J
i «

provided C and C’ are disjoint. The elementary verification of this is omitted.

To apply this to our problem, we use again the notation of § 2, and
we single out one coset, let us say C,; then we divide the remaining cosets
into those which are, and those which are not, disjoint from C,. Denote by
I and J the corresponding sets of suffixes: Thus i€/ if, and only if,2=i=n
and

CnGCi=4,
and j€J/ if, and only if, 2=j=n and
CinC;=3=0
Then (2.2) can be improved to
(4. 21) 0 =e,- ]](' '1——] ]7({,,
,er ,er

and (2.40) can similarly be unproved to

() ﬁ ~ ()
: b Gt
(4' 22) f),l, i A ﬂ + J =k (' 1 l
ier JGF

To combine these we put

Si=e; ll-—-— --) fi=ea;
.

when i€/, j€J, and we obtain, in analogy to (2.41),

(*.3) Lits(i-431
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for k=1,...,n—1. The analogue of (2.42) comes from treating (2. 43) simi-
larly ; thus
i f,,, - (). e \ f)
e @, +,;_;; a; " )

and this gives

or
(4. 4) IR

These inequalities are most powerful if we choose «, as small as possible.
Hence we again number our cosets so that ¢, =«; (i>1), and we may then
further arrange them so that
=== p.
Note that then @, = e,—1 only, not necessarily 3, = «,.
With the notation
1 1
a8 B
the inequalities (4.3), (4.4) can be put into a form corresponding to
(3. 10)—(3. In), namely

(4. 50) 1=60=y, --y =-o=Y=0,
(4.51) & > =1,
(4.5K) =6 uy

where k=2,3,...,n (but (4. :)2) can be omitted as superfluous). The “op-
timal” solution here is one that minimizes - o [ [ y:. A discussion of this

system of inequalities is beyond the scope of thls paper; suffice it to state
that using the fact that ¢, must be an integer, one can sharpen (4.1) to

J,_ﬁ’
\ 4, = 36, .
(4.6) ) 4, = 320,
=30, , (n=6),
where #3=10, 15=110,...., 0 =134, or v,=[c?"""] with ¢,=1.3419

approximately. The bound for 4, is now sharp; for the S; can be covered
by three cosets, one of each of the subgroups of order 2, and their inter-
section is trivial, that is, it has index 6. Thus

(4.7) 4,=6.
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The bound for 4, (n=6) can be further improved, using the fact that
@, «,, ... are integers, to
4, =4w? (n = 6),

— n-1

24w, or w,=[c""] with ¢,=1.3070

where w,=8, w,=172,...,w,

=W
approximately.

§ 5. Coverings by subgroups.

If the cosets with which G is covered are subgroups, that is if C: and
A; coincide (i==1,...,n), then we can go a little further; for every pair of
them have non-empty intersection. This means, in the notation of § 4, that
I is empty, and that 8, —«; for all j. The only difference that this makes is
to the inequalities (4. 50). which can then be sharpened to

6 =19, = = = =

(5-1) ml:.}i: i '..yu ".'_0-
By an argument akin to that in § 3 but more laborious, and which again
we do not present, one can then obtain the following theorem :

Theorem 5.2. If . denotes the least upper bound of the index

iG: O A:|, where G ranges over the groups that can be irredundantly covered

by n subgroups, and A,,..., A, are such subgroups. then
45 =4,
47 =21,
45 = 256,
de=4u , (n=6)

whe{,e u, has the same meaning as in Theorem 3.6, that is u,—1, Ui —
=u; +u;. 7
The bound for n=3 is sharp, that is
a5 = 4;
for the four-group (the elementary abelian group of order 4) is covered by
its three subgroups of order 2, and their intersection is trivial, and thus has
index 4. Applying this to the question asked in the introduction, we note
that if a group can be covered by 3 abelian subgroups, then the index of
its centre is at most 4; and it can be 4, as seen from the example of the
quaternion group, which can be covered by its 3 cyclic subgroups of order 4.
No further improvement can be expected from the inequalities we have

considered. A further refinement of the method, now to be described, is too
elaborate for use beyond very small values of n.
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We denote by Z the set of integers 1,2,...,n, and for every non-empty

subset S of Z we put

A.‘u‘ P n A." »
sES

P 1 o W ot
e
We denote the cardinal of § by |S|. Every As consists of ¢,xs cosets of A.
A well-known counting principle ) then gives:
(5.3) 2 (—=1)Txg=1.
=4
Moreover we may postulate that
‘é(— )xs<1
unless 7= Z, which expresses the irredundancy of the covering. Furthermore
the ay are positive integers; if SS 7 then e« divides «r; and
Csyr =T,
We also remark thatif SS€ 7 and ¢s= ey, then sy = apy for all US Z;
for then A¢= Ay and thus AsnA; = ArnAp. Finally we have already seen
that when |Y|=n—1 then Ay= Ay, and thus also ¢y — «y.

The question then is to find systems of numbers « that satisfy all these
conditions; in particular one wants to find a system which maximizes «.
When one has such a system, one also has to find out whether there is a
corresponding group and covering by subgroups, or even by abelian subgroups.

To take an example we examine the case n—4. We shall simplify the
notation by writing «,, instead of «{; 2}, and so on. Then (5.3) becomes

xl+x!+x.'-:+xq_xl'.'_xl:i_xu_xz'._x-ﬂ_xm+3xl-:.:‘ 5 1:
where we have already used that
Xi2s = X194 = Xy == Xogy == Xyom»
Also we know (cf. (4.51)) that x,+x,+x,= 1. Next we notice that «; is
always a proper multiple of «; and ¢;; otherwise, if e.g. «; - «;, then all
the terms not involving j would already add up to 1. One can then verify
that the only sets of numbers with all the properties we have enumerated are
the following :
@ G Qs @ Qp @ Wy Co (Cay gy oy

i 8 4 8 8 8
ii.
1ii.
v.

W
wWwN N
Wwkn
W w s s
R

4
8 8 8 8 8 8
6 6 6 6 6 -6
9 9 9 9

®) Expressing the fact that to count the elements of the union of finitely many
finite sets one may count the elements of the sets separately and add, then subtract the
number of elements counted at least twice, but add again the number of elements counted
at least three times, and so on.
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There are in fact groups corresponding to these four solutions: For the first
two one can take the elementary abelian group of order 8, for the third the
S, and for the last the elementary abelian group of order 9. The corresponding
coverings are easily constructed. Thus one obtains the sharp bound

(5. 4) 44=09,

The same bound applies to coverings by abelian subgroups and the index of
the centre: the non-abelian group of exponent 3 and order 27 can be covered
by its 4 subgroups of order 9, and their intersection is the centre, whose
index is 9.

§ 6. Some further questions.

We now turn to some other questions suggested by BAER’s criterion
(cf. § 1). Let the group G again be irredundantly covered by finitely many
subgroups A,,...,A,, and denote their intersection by D; if A,,..., A,
possess a certain property, what can be said about D in relation to G, or
about G itself?

Relaxing the assumption that the A; are abelian, we assume them to be
Engel groups”™), that is to say we assume that to every x, y € A; there is an
integer & such that their k-fold commutator is the unit element:

(6.1) [...[[x,y]iz']_,._.;,hy]—- 1.

If k can be chosen independently of x and y, then we may speak of an
Engel group of Engel class = k. Thus an abelian group is an Engel group
of Engel class 1, and more generally a nilpotent group of nilpotent class ¢
is an Engel group of Engel class = c.

In this context one has two kinds of generalizations of the centre of a
group G: the set X, of all those x € G which satisfy (6. 1) for every y€ G,
and the set V. of all those y € G which satisfy (6.1) for every x € G; and
one can put

Ralill. - Yalb¥i
k=1 k=1

Clearly X, and V¥, coincide with the centre of G; but little seems to be
known about X, and VY in general. It would be interesting to know under
what conditions they are groups, and what are their interrelations. )

If all the A; are Engel groups, then clearly DS XnV; and if the A; have
Engel class =k, then even DS X;nVY,. Thus we see that if G is covered
by finitely many Engel groups, then X and Y contain a subgroup of finite

) The name appears to be due to Gruexsera [3], . v. for further references.
*) The elements of V¥ are the “weakly central elements” of Scuenxkman [5].
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index in G. The converse is also true: in fact we need only assume that X
contains a subgroup of finite index in G; we may assume, without loss of
generality, that the subgroup is normal in G; let us denote it by H. Then G
is covered by the finitely many subgroups of the form A — {H, g}, where g
ranges over some set of representatives of G modulo H. Now the subgroups A
are Engel groups; forif x, y € A, then[x, y] = h € H,and [...[[h, ], 3],...,¥] =1
when the commutator is sufficiently long, because H< X: thus (6.1) is
satisfied for all x, y€ A. The same argument shows that if X, contains a
subgroup of finite index in G, then G can be covered by finitely many Engel
groups of Engel class = k1. We also see incidentally that every normal
subgroup of G contained in X is also contained in ¥, and every normal
subgroup of G contained in X, is also contained in Y.

There are some properties that carry over from the subgroups A; of a
finite covering of G to G itself. Thus if the A; are finite then, trivially, G is
finite, and if the A; are finitely generated, then, trivially, G is finitely generated.
Again if the classes of conjugate elements in the A; are finite"), then the
same is true of G: for if g is an arbitrary element of G, then it lies in some
A;, and its centralizer in A; has finite index in A;; but A; has finite index
in G, and thus also the centralizer of g in G (which contains the centralizer
of g in A;) has finite index in G, and consequently the class of g in G is
finite. If, moreover, the classes of conjugates of the A; are boundedly finite,
then the classes of conjugates in G are boundedly finite, and it is not difficult
to derive from the results of the present paper a bound for the cardinals of
the classes in G from the corresponding bounds for the A; and the number
of A; in the covering.

Using the fact, proved elsewhere [4, Theorem 3. 1], that the classes of
conjugates in a group H are boundedly finite if, and only if, the derived
group H" of H is finite, we can then reformulate our last result:

Theorem 6.2. If the group G is covered by finitely many subgroups
whose derived groups are finite, then the derived group of G is finite.

Finally we consider the case that the subgroups A; are not only abelian
but cyclic. If H is a subgroup of G, and if H is not trivial, then H contains
an element k==1. This lies in some A; and there generates a subgroup of
finite index, because every non-trivial subgroup of a cyclic group has finite
index in it. As also A; has finite index in @G, the subgroup {&} of H, and
thus a fortiori H itself, has finite index in G. Thus every non-trivial subgroup
of G has finite index in G, and by a theorem of FEDOROV ) G is finite or cyclic.
Conversely a finite group can be covered by the finitely many cyclic subgroups

9) Such groups are called FC-groups. For their properties see Erpos [1] and the
literature there quoted.
1) Feporov [2]; ¢f. also Erpds [1].
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it contains, and an infinite cyclic group is trivially covered by a single cyclic
group. Thus we have shown the following theorem :

Theorem 6.3. The group G can be covered by finitely many cyclic
groups if, and only if, G is finite or cyclic.

References.

[1] J. Erods: The theory of groups with finite classes of conjugate elements. Acta Math.
Acad. Sci. Hungar. 5 (1954), 45—58.

[2] Yu. G. Feporov: On infinite groups of which all non-trivial subgroups have finite index.
Uspehi Mat. Nauk (N.S.) 6 no. 1 (41), (1951), 187—189.

[3] K. W. Gruensera : Two theorems on Engel groups. Proc. Cambridge Philos. Soc. 49
(1953), 377—380.

[4] B. H. Neumann: Groups covered by permutable subsets. /. London Math. Soc. 29
(1954), 236—248.

[5] Evcene Schenkman: A generalization of the central elements of a group. Pacific J. Math.
3 (1933), 501—304.

(Received October 11, 1954.)



