On groups with finite classes of isomorphic subgroups.
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§ 1. Introduction.

The set of all subgroups of a given group G can be divided into
classes in the following manner: we let two subgroups belong to the same
class if and only if they are isomorphic. In a finite group G these classes
of isomorphic subgroups possess both of the properties:

(i) there is but a finite number of subgroups in each class,')
(ii) there is but a finite number of classes.

It is readily seen that, conversely, any group G with both of the pro-
perties (i) and (ii) (in other words, with a finite number of different sub-
groups) must be finite. As a matter of fact, first of all (i) implies that G is
a torsion group, since {a}, {a*},... are different isomorphic subgroups for
an element a of infinite order. Further, (ii) implies that the orders of the
elements in G constitute a finite set of natural integers; finally, again from
(i) we conclude that the set of elements of order n is finite for any fixed n,
q.e.d.

On the other hand, it is fairly trivial that there are infinite groups with
only one of the properties (i), (ii). Our aim in this note is to characterize all
groups with property (i).

Let us remark that certain special cases of this problem have already
been discussed. Namely, it has been shown by T. SzeLE [7]") that a group
with only one subgroup in each class is isomorphic to some subgroup of
the group of all complex roots of unity’) (or, in an additive realization: a
subgroup of the additive group of all rational numbers modulo 1), and con-

1) In what follows the term *“class” is used for the longer phrase “class of isomorphic
subgroups”.

2) Numbers in brackets refer to the Bibliography given at the end of this paper.

¥) This group is known to be the direct product of quasicyclic p-groups, exactly
one for each prime p.
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versely. Further, the present author [4] has characterized all abelian groups
in which the classes of isomorphic non-trivial subgroups contain the same
finite number &k > 1 of subgroups: these are finite abelian groups of type
(p, p) and (p, p, p) for some prime p. These results are also contained in
our discussions.

In order to make the paper easier readable, we have collected in § 2
the terminologies and known facts which are not quite familiar and are needed
in what follows.") Then we proceed to consider in § 3 the stated problem
only for abelian p-groups; we shall make use of this result in § 4 when we
discuss the problem in whole generality. It will turn out that a group G
has property (i) if and only if it is a central extension of a group isomorphic
to some subgroup of the group of all complex roots of unity by a finite
group. This main result shows the interesting fact that there is no great
difference in the group structure if one assumes that each class contains a
finite number of subgroups or else but a single subgroup. The final § 5
discusses the problem of [4] without preassuming commutativity; the result
is the same as in [4].

§ 2. Preliminaries.

By an FCIS-group we shall mean a (multiplicative) group G with finite
classes of isomorphic subgroups. It is immediate that in an FCIS-group G
there is but a finite number of elements of any given order, in other words,.
G is an FO-group in the sense of R. BAER [1]. This implies that G is a
torsion group, i.e. it contains no element of infinite order.

Since any element (any subgroup) and its conjugates have the same
order (are isomorphic), it follows that in G the classes of conjugate elements
(subgroups) are finite; hence G is an FC-group.”) The number of elements
(subgroups) conjugate to a given element a (subgroup A) of G is known to
be equal to the index of the normalizer of a (A) in G; consequently, the
normalizer of any element (subgroup) has a finite index in G.

By a p-group is meant a group in which the orders of the elements
are powers of one and the same prime p. Any G contains a maximal p-sub-
group called a Sylow p-group of G. If G is an FCIS-group, then its Sylow
p-subgroups have but a finite number of conjugates, and therefore, by the
generalized Sylow theorems,”) the Sylow p-subgroups of G are conjugate to
each other for each prime p. If for some p there is but one Sylow p-sub-
group then it is a normal subgroup of G.

4) For the basic concepts we refer to Kurosu [5], Sreiser [6] or Zassennauvs [8].
5) An FC-group is defined to be a group with finite classes of conjugate elements.
For its fundamentai properties we refer e.g. to Erpds [3].

‘) Sec e.g. Kurosu [3], § H4.
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A (commutative) p-group Q is called quasicyclic (or of type p”) if it
has a generating system a,, a,, ... with the defining relations

ai=e, awu=a, ((=12...)

where e is the group identity. By an important and well-known theorem of
R. BAER, a quasicyclic group is a direct factor of any abelian group con-
taining it. For each n, Q contains a unique subgroup of order p"; this is
cyclic and may be generated by a,. If an abelian p-group contains but a
finite number of elements of order p then it is the direct product of a finite
number of cyclic and /'or quasicyclic p-groups. If g, ..., g are prime powers,
then the direct product of the cyclic groups of order g,,...,q:, respectively,
is called an (abelian) group of type (g,...,q:).

O(a) will denote the order of the group element a. The same notation:
‘O(A) will be applied to denote the order of a group A. For a subset S of
a group G, {S} will denote the subgroup generated by S.

The centralizer of a subset S of G is the set of all x in G with
xa==ax for all a€S. The center C of G is the centralizer of G. If DEC
and G/D~F, then G will be called a central extension of D by F.

Finally, we mention a theorem due to A. DicmAN [2] and R. BAER [1]
implying that in a torsion FC-group (and therefore in an FCIS-group) G any
finite set of elements may be imbedded in a finite normal subgroup of G.

§ 3. The case of abelian p-groups.

We begin our discussions with the simplest case when the group dealt
with is an abelian p-group; this result will be needed in what follows.

Lemma 1. An abelian p-group G is an FCIS-group if and only if it
is either a finite abelian p-group or the direct product of such a group by a
quasicyclic group.

Assume G is an abelian p-group with finite classes of isomorphic sub-
groups. G contains but a finite number of elements of order p, so that it is
a direct product of a finite number of cyclic and quasicyclic p-groups. What
remains to be proved is that there is not more than one quasicyclic compo-
nent. Suppose A and B are two distinct quasicyclic components with the
generators a,, a.,... resp. b, b,, ... connected by the defining relations

ai' =e, airlJ.—l =an, b’l == b{:l = b, (ﬂ i lr 2’ .. ')‘

Then the subgroup A, generated by the elements a, ..., @, @.:161, @20, . ..
is again a quasicyclic subgroup of G such that the subgroups A,, A,, ... are

all different, for clearly we have AnA, = {a.}. Therefore G has the stated
structure, indeed.
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Conversely, let G have the structure in question. That G can not con-
tain infinitely many distinct isomorphic subgroups of finife order, follows at
once from the fact that G is an FO-group. In order to prove the same fact
for infinite subgroups too, observe that any infinite subgroup F of G must
again be the direct product of a finite abelian p-group and a quasicyclic
group; further G contains only one quasicyclic group (this is the uniquely
determined maximal complete subgroup of G). Since the finite direct com-
ponents of isomorphic infinite subgroups must again be isomorphic, we infer
that there is but a finite number of possibilities for choosing isomorphic
distinct infinite subgroups, and this is what we intended to show.

Here we point out to the fact that if we assume that the p-group P
contains no two different subgroups isomorphic to each other, then P is
necessarily commutative, for, given two elements a and &, we have either
O(a)| O(b) or O(b)| O(a) and hence either {a} < |b} or {b} < |a}. Therefore
Lemma 1 implies at once:

Lemma 2. A p-group P contains no two distinct isomorphic subgroups
if and only if it is a cyclic or a quasicyclic p-group.

The main result of SzeLe’s paper (mentioned in § 1) follows imme-
diately from Lemma 2. In fact, if G is a group with no two different iso-
morphic subgroups, then G is a torsion group and for each prime p there
is exactly one Sylow p-group of G, whence G is the direct product of
p-groups. The application of Lemma 2 to the p-components of G leads us to
the conclusion that G is isomorphic to some subgroup of the group of all
complex roots of unity. The converse is almost trivial.

§ 4. The main result.

Let now G be an arbitrary FCIS-group and consider the center C of G.
C is the direct product of its p-components C, where C, — as a commuta-
tive p-group of the FCIS-property — is a group described by Lemma 1.
First of all we intend to show

Lemma 3.) The factorgroup G/'C of an FO-group G with respect to
its center C contains but a finite number of cosets whose order is a power of
a fixed prime p.

In fact, let @ be an element of a possibly least order in a coset [a] of
G/ C of order p'. Then O(a)=p* with s = r, for if we had O(a)= p*n with
n>1 and (n,p)=—1, then by solving the equation nu- p*r=1 for rational

") The statement of this lemma is due to Baer [1]. The proof given here, although
different from Baer’'s proof, owes something to [1].
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integers u, v, we should get
a=a"a"" =a'a” with a”€C, 0(@a")=p*< 0(a),

in contradiction to the choice of @ in [a@). — Let®p’ be the maximum of the
orders of the elements in the finite direct factor of C,. If C, itself is finite
then obviously O(a) = p** and if C, is infinite then a*"*" is either e or ==e
and in this latter case it belongs to the quasicyclic direct factor of C,
whence @' = ¢, (ac ') =e for some c€C,, which contradicts the
choice of a in the coset [a] = [ac™']. Thus we may conclude that in G/C the
set of cosets of order = p~ is finite. But there must exist an integer m for
which G /C does not contain cosets of order = p*, for”in the contrary case
from what has been shown it follows the existence of a sequence of elements
@, @,, ... not in C such that their orders are powers of p and ai€C, a1 =a.
(mod C) for n==1,2,... The normalizer N of some element not commuting
with (¢ C) contains C and is of finite index in G, hence there exist elements
a; and a; (i <j) such that a;==a; (mod N). Therefore !’ = a;(mod N) and,
the order of a; being a power of p, we arrive at a,€N, so that a,€N, a
contradiction. And this completes the proof of our Lemma 3.

What we have now verified implies that the set £, consisting of all
elements in G whose order is some power of a fixed p is contained in a
finite number of cosets modulo C. Hence the centralizer Z, of £, is the meet
of the normalizers of a finite number of elements of £,, and since the meet
of a finite number of subgroups of finite index is again of finite index, we
obtain the finiteness of the index of Z, in G. This leads us to the conclusion
that Z, contains almost all (i. e. all except for a finite number of) the Sylow
g-subgroups of G. This is a fortiori true if Z, is the centralizer of some
subset of Z,.

Next let us consider the p-subgroups of G and assume that there is an
infinite set of different primes p,, p,, ... for which G contains at least two
distinct isomorphic p-groups, say, A,. and B,. Denote by Z;. the centralizer
of the union A, UB,,. Now we omit the primes p.(+ p,) for which A,
and B,, do not belong to 2 — in view of the preceding paragraph these
are finite in number, — and then repeat this process instead of p, for the
next remaining prime of the sequence p., ps,..., and so on. Considering that
if A, and B, belong to Z;, then A, and B, belong to Z, the result of
the latter process is an infinite subsequence g¢,,¢q.,... of p,, p,,... having
the ‘property that for all =& the groups A,, and B, lie in the centralizer of
A, UB, . Consequently, the groups A,, B, are permutable with A, and Bg;
for different primes ¢; and g;, and therefore selecting for each ¢g: one of A,
and B,,, we obtain a direct product in G. All of these direct products are
different but isomorphic, so that we get a contradiction to the FCIS-property
of G; this shows that for almost all primes p, the group G does not con-
tain distinct isomorphic p-subgroups. In particular, for almost all primes p
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there is but one Sylow p-group with no two different isomorphic subgroups;
this unique Sylow p-subgroup is a normal subgroup of G and is, by Lemma 2,
a cyclic or a quasicyclic p-group. Let us denote by D the direct product of
these Sylow p-groups.

We consider the primes which occur as orders of elements in G but
not in D. The set of these primes is finite: p,,..., p.. The cross-cut of the
centralizers Z,,,...,Z, of the sets &, ,..., &, , respectively, contains the
Sylow p-groups of G for almost all primes p, hence contains almost all
p-components of D. Furthermore it is clear that D lies in the centralizer of
any of its elements. Consequently, the factorgroup G C contains p-subgroups
only for a finite number of primes p, and in view of Lemma 3 it results that
G/C is finite. C contains but a finite number of p-components C, which are
proper direct products of cyclic groups and possibly a quasicyclic group;
thus if we omit from C a finite number of cyclic p-groups in the obvious
manner, we get a subgroup C* of C which is isomorphic to a group con-
sisting of some complex roots of unity and C* is still of finite index in G.
This establishes the necessity part of the following theorem.

Theorem 1. G is an FCIS-group if and only if it is a central exten-
sion of a group isomorphic to some subgroup of the multiplicative group of all
complex roots of unity, by a finite group.

In order to prove even the sufficiency of the condition contained in this
theorem, first of all we show that a group G which is a central extension
of a group C* isomorphic to some group of complex roots of unity by a
finite group, may be represented as a direct product:

G=FXxH

where FE C*, H contains elements of order p but for a finite number of
primes p, and the orders of the elements in F are relatively prime to those
in H. Take a representative system modulo C*: g,,...,2:, and then form
the subgroup G*={g,,...,&}. G* is a finite group, for evidently G is
now an FC-group, and theretore the p-components of C* for all the primes
p which occur as orders of elements in G°, generate together with G* a
group H. The remaining p-components of C* generate a group F. Obviously,
FnH-=e; F and H are normal subgroups of G. On account of the fact that
the orders of the elements in F and A are by construction relatively prime,
we must have G = F < H satisfying the requirements; q.e.d.

Now, if 7 is some subgroup of G, then 7= (FnT) < (HnT) holds
since G is a torsion group, and F, H do not contain elements of the same
order. C* and hence F does not contain distinct isomorphic subgroups, and
thus 7, >~ 7, implies not only FNn7,~Fn 7, but also Fn7,=FnT,. There-
fore it will suffice to verify that in H there are no infinitely many distinct
isomorphic subgroups 7.
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Hypothesis implies that A contains but a finite number of quasicyclic
p-groups: A,,..., A, (=C*) where p,,...,p, are different primes. The direct
product A=A, % ...x< A, is of finite index in H, thus a representative
system modulo A generates a finite subgroup B of H such that { A, B} — H.
Let O(B)=n and A, the subgroup generated by those elements of A which
are of order = n. Then B,= {B, A,} is again a finite subgroup of H; let r
be the number of all subgroups of B,. Now, if T is any subgroup of H,
then consider the powers pi" which occur as orders of elements in 7. If k;
is not bounded for some p;, then for this prime A, exists and is surely
.contained in 7. For the primes p; of bounded exponents k;, we take the least
upper bound m; and then consider a cyclic subgroup A,"" of order p;* in 7. For
the sake of uniformity we may set A, — A,"” if m; = ~. Then

T'={A, .., A°)
is a subgroup in 7 such that 7 may be written in the form
TF={T, B for some B'< B,.

Now if 7 and § are isomorphic subgroups of H, then the corresponding
groups 7" and S’ are generated by isomorphic A", Since at most n different
groups A"’ may exist for fixed p; and m;, we obtain that H contains at
most n°r different subgroups isomorphic to 7. This completes the proof of
Theorem 1.

The last part of our proof implies the interesting

Corollary. /n an FCIS-group the number of subgroups in the classes
of isomorphic subgroups is bounded.")

§ 5. The case if the classes contain the same number of subgroups.

If G is an FCIS-group then the classes containing G and {e] respec-
tively, are exhausted by these trivial subgroups of G. Leaving these trivial
cases out of consideration, it may happen that all other classes (i. e. the
classes of the non-trivial isomorphic subgroups) consist of the same number
k> 1 of subgroups. The problem of determining all groups with this special
property has been discussed in [4] for abelian groups only; now we solve
this problem without preassuming commutativity.”)

Suppose that in G the classes of non-trivial isomorphic subgroups
contain the same number k> 1 of subgroups. Then G is a torsion group
and there is a prime p for which G contains elements of order p. The set
of these elements is finite, and G being an FC-group, this finite set genera-
tes a finite subgroup F of G. It is quite evident that G contains no sub-

¥) Therefore Theorem 1 describes at the same time the structure of all groups in
which the classes contain a bounded number of subgroups.
“) In the proof we need almost nothing from the discussions above.
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group isomorphic to but different from F. Hence by k£ >1 we obtain F= G,
i.e. G is a finite group.

Iif G is not a p-group, then let us consider the Sylow p-groups of G.
Their number is equal to k and is == 1 (mod p) for each prime p dividing the order
n of G. But k is the index of the normalizer of any Sylow p-group and there-
fore k divides n what is incompatible with the last congruence. This inference
shows that G is a p-group. — Let the order of G be denoted by n = p’;
we may assume s > 1, for the trivial case s—1 (in which G has only trivial
subgroups) may be excluded.

By a known theorem,") in the p-group G the number of subgroups of
a given order p" is =1 (mod p) where r<s. If r=1, we get k=1 (mod p).
Applying this result to r = 2, and taking into account that there are exactly two
types of groups of order p*: the abelian groups of type (p*) and (p, p), respecti-
vely, we conclude that, by the FCIS-property of G, in G only one type can
exist. G as a finite p-group has a non-trivial center C which must contain
a subgroup of order p. This group, together with any other group of order
p (such a subgroup necessarily exists in (i, because of k > 1), generates an
abelian group of type (p, p). Therefore G contains no cyclic group of order
= p’, i. e. all of its elements + e are of order p.

If n—p°, we obtain the group of type (p, p).

If n=p’, then the number of subgroups of order p is equal to

W i (B SR
If any two of them generate an abelian subgroup of type (p,p), then the
number of subgroups of order p° is

ip“+}27+1] . lp_;I}— p‘-'~{—p-}-1

(p-+1 is the number of different subgroups of order p in the group of type
(p, p)). This is equal to k, and therefore in G any two subgroups of order
p must generate a subgroup of order p°. This fails to happen in the non-
commutative p-group of order p’ (p = 3) all of whose elements are of order
p. Indeed, such a group is generated by two elements @, & connected by the
defining relations a” = b" = (a 'b 'ab)" —e, b'aba ' —a 'b 'ab, ba'b'a=
—a ‘b 'ab. It follows that G is an abelian group of type (p, p, p). On the other
hand, such a group has the properties required.

Finally, we show that n = p' is impossible. To this end we consider
the subgroups of order p' in G such groups surely exist in G.

If G contains no non-commutative subgroup of order p’, then all of its
subgroups of order p* are abelian of type (p, p,p). k — determined as the

10) See e. g. Seeiser [6] or Zassenuaus [8].
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number of subgroups of order p — is equal to {;-__—: . Let N denote a sub-

P =P cub-

group of the center C of G with O(N)=p. N is contained in

groups of type (p, p). Taking into account that the total number of subgroups

of order p* must be equal to k--:-};—j, we obtain that

Pt PP
P=1 pP—p
is the number of subgroups of type (p, p) not containing N. Together with N

each of these subgroups generates an abelian group of type (p,p,p); their
number equals

pxl

AP =p (s 1rY
CF=1 (e =p)
Thus the number of subgroups of type (p,p,p) containing N is divisible by
p. But this number must be equal to the number of all subgroups of type
(p,p) in the factorgroup G/N and this number leaves the remainder 1 when
divided by p.

On the other hand, if G contains a non-commutative group of order
p’,") then it can not contain abelian subgroups of type (p, p, p). The center
C of G is now of order p, for if C contained a group of type (p,p) then
this group and any subgroup not contained in it which is of order p, would
generate a group of type (p, p,p) in G. A similar argument Jeads us to the
result that any subgroup of type (p, p) must contain C. Consequently, the number

:px-::.

g

. s-1___
of subgroups of type (p, p) is ;’:_ﬁ - — ll , and this is surely different
P

p—1 of subgroups of order p in G.

The last two paragraphs complete the proof of the impossibility of
n= p'. Hence we arrive at the following result.

from the number

Theorem 2.) In a group G the classes of non-trivial isomorphic sub-
groups contain the same number k> 1 of subgroups if and only"if G is a
finite abelian group of type (p, p) or (p, p, p).

1) This second alternative is only in case p —= 3 possible.
12) The case when the set of classes of non-trivial isomorphic subgroups is void is
tacitly excluded.
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