On a finiteness criterion for modules.

By T. SZELE in Debrecen.

To my dear Father on his 70th birthday.

A very deep unsolved problem’) in group theory queries: Is a group
finite, if it satisfies both the ascending and the descending chain condition)
for subgroups?

The answer is affirmative in case of abelian groups. In what follows
we investigate the corresponding problem for modules and rings. We obtain
a necessary and sufficient condition for an arbitrary ring R with unit element
to possess the property that any unitary R-module”) is finite provided it
satisfies both chain conditions for submodules:

Theorem 1. For an arbitrary ring R with unit element the following
requirements are equivalent :

«) if a unitary R-module G satisfies both chain conditions, then G is
finite ;

@) every maximal left ideal of R has a finite index in R;

v) every minimal R-module is finite;

d) any maximal submodule of a unitary R-module G has a finite index
in G.

For commutative rings R condition @) is obviously equivalent to the
requirement that R must have no homomorphic image which is an infinite
field. There exists a great variety of rings satisfying this condition. Important

1) See [3]. — Numbers in brackets refer to the Bibliography at the end of this article.

?) The ascending chain condition for subgroups of a group G requires that each
(strictly) ascending sequence of subgroups of G contains only a finite number of terms.
The descending chain condition is defined in a similar way.

7) We always consider left R-modules. An R-module G is said to be unitary if the
unit element of R acts as the identity operator on G. By a minimal module (called also
irreducible or simple module) we mean a module + 0 which contains no proper submodule
other than 0.
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examples are the ring of integers in an algebraic number field and the ring
of p-adic integers.

We show, moreover, that the corresponding problem for rings has an
affirmative answer:

Theorem 2. If a ring R satisfies both chain conditions for subrings,
then R is finite.

We remark that an analogous statement for rings with both chain con-
ditions for left ideals cannot be true as the example of an infinite field shows.
It can also be verified by trivial examples that neither the ascending chain
condition for subrings nor the descending chain condition for subrings alone
implies the finiteness of a ring.') However one has the following

Theorem 3. If a skew field S satisfies the ascending chain condition
for subrings, then S is finite.

PROOF OF THEOREM 1. «) implies ). Indeed, if M is a maximal left
ideal in R, then the factor module R'M (regarded as a left R-module) is
minimal and thus satisfies both chain conditions. Then, however, «) implies
the finiteness of R M.

3) implies 7). Let A be an arbitrary minimal R-module. We may sup-
pose A to be a unitary module since, in the contrary case, A is a ftrivial
module containing a prime number of elements. Now we have A = Ra for
an arbitrary element a==0 of R and thus X
(1) A=RM
where the left ideal M of R consists of all elements x € R with xa—0. We
infer from the minimality of A that M is a maximal left ideal in R. So (1)
and ) imply the finiteness of A.

v) implies 0), since the factor module G B is minimal provided B is
a maximal submodule of G.

o) implies «). Let G be an infinite unitary R-module possessing pro-
perty d). We show that then G cannot satisfy both chain conditions simul-
taneously. If there exists a submodule D==0 in G which contains no (in D)
maximal submodule, then it is obvious that D — and a fortiori G — does
not satisfy the ascending chain condition. Thus we can suppose that any
submodule ==0 of G contains a maximal submodule. Then there exists a
strictly descending chain
(2) : GC=0,0G,0G,c:--
of submodules in G such that G, is maximal in G,., (n=1,2,3,...). Hence,

i) Such examples yield the ring of rational integers resp. the zero-ring with Prirer's
quasicyclic group of type (p*) as additive group, the latter being defined as the additive
group modulo 1 of all rational numbers with p-power denominators for a fixed prime p.
(A ring R is called a zero-ring if the product of any two elements in R is 0.)
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by d), G, has a finite index in G,.; and so the chain (2) is infinite. Thus
we have obtained that G does not satisfy the descending chain condition
which completes the proof of Theorem 1.

ProoOF OF THEOREM 3. Let S be a skew field satisfying the ascending
chain condition for subrings. Then § is of characteristic p >0, since the
rational number field does not satisfy the ascending chain condition for
subrings. Now we show that the skew field S is absolutely algebraic, i. e.,
every element of S is algebraic over the prime field P, (with p elements) of S.
‘This will complete the proof since then, by an important theorem of JACOBSON’),
S is commutative, i. e., S is a subfield of the algebraic closure of the prime
field P, and, as such, it satisfies the ascending chain condition for subrings
(or even for subfields) only in the case S is finite.

In order to prove that the skew field S is absolutely algebraic, we sup-
pose that S contains an element x transcendental over the prime field P,.
Then we get that the simple extension field P,(x) which is isomorphic to the
field of rational functions in x over the base field P,, does not satisfy the
ascending chain condition for subrings. As a matter of fact, let g,(x), g.(x), ...
be an infinite set of distinct irreducible polynomials in x over P, with lea-
ding coefficient 1, and let R, be the subring of P,(x) consisting of all rational
functions with denominators of the form

&)™ g (x)™ ... g ()™ im0 i=12 ...k
Thus R.c R, ... is an infinite ascending chain of subrings in S, in con-
tradiction to our assumption. This completes the proof of Theorem 3.

PROOF OF THEOREM 2. Let R be an arbitrary ring satisfying both chain
conditions for subrings. Then, in particular, R satisfies the descending chain
condition for left ideals, i. e, R is an Artinian ring. By a well-known
theorem the radical U of R — which can be defined in this case as the
union of all nilpotent left ideals of R — is a nilpotent twosided ideal in R
of exponent, say n, i.e., n is the least natural number such that U" = 0.
Since the factor ring R/U contains no non-zero nilpotent left ideal and
satisfies the descending chain condition for left ideals, R U is isomorphic,
by the classical WEDDERBURN-ARTIN structure theorem, to a direct sum of a
finite number r of complete matrix rings over skew fields S; (i=1,2,...,7).
Therefore in order to prove the finiteness of R U it is sufficient to show
that each of these basic skew fields S: is finite. But the ring R/U contains
a subring isomorphic to S;. On the other hand, the ring R/U, as a homo-
morphic image of R, satisfies both chain conditions for subrings, and thus
also §; satisfies these conditions. So the finiteness of S: follows from
Theorem 3.

5) See Theorem 2 on p. 701 in [2]. For a very simple and throughly elementary
proof of this theorem see [1].
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We complete the proof of Theorem 2 by showing that the radical U of
R is a finite ring. Since U satisfies both chain conditions for subrings,
in the case n—2 (i. e, if U is a zero-ring) this follows from the fact
that an abelian group is finite if it satisfies both chain conditions for sub-
groups. In the sequel we use induction with respect to the exponent n of U.
Let U be a nilpotent ring with exponent n satisfying both chain conditions
for subrings, and suppose that the finiteness of such a ring with an expo-
nent less than n is already proved. Then the ring U" ' as well as the factor

ring U/U"" are finite rings since both are nilpotent rings with exponents.
less than n and satisfying the chain conditions. But this implies the finite-
ness of U. Thus also Theorem 2 is proved.

ADDED IN PROOF (March 8, 1955): Professor A. G. KuroS has kindly
directed my attention to the fact that Theorem 2 is already proved in a paper
of V. l. SNEJDMYULLER [Mat. Sbornik N. S. 27 (69) (1950), 219—228].
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