On the complete direct sum of countable abelian groups.

By JERZY ŁOŚ in Torun.

A group G is called decomposable into a discrete direct sum of groups H_p , $p \in P$, if it is isomorphic to the discrete direct sum $\sum_{p \in P} H_p$.

The purpose of this paper is to show that a complete direct sum $\sum_{t \in T}^* G_t$ of countable abelian torsion free groups G_t is decomposable into a discrete direct sum of countable groups H_p if and only if almost all groups G_t , with exception of a finite number of them, are divisible groups. This theorem is a generalization of the known result of A. P. MISHINA [2].

 Terms and notations. All groups are additively written abelian groups.

 $\{G_t\}_{t\in T}$ being a family of groups, we denote by $S^*=\sum_{t\in T}^* G_t$ the complete direct sum (c.d.s.) of the groups G_t , i.e. the group of all functions x defined on T and such that $x(t)=x_t\in G_t$ for every t in T. By $S=\sum_{t\in T}G_t$ we denote the subgroup of S^* which consists of all these functions $x\in S^*$ for which the set $\Theta(x)=\mathop{\mathbb{E}}\limits_{t\in T}[x_t\ne 0]$ is finite. S is called the discrete direct sum (d.d.s.) of the groups G_t . If T is a finite set, we have $S^*=S$; in this case S is called simply the direct sum of G_t . For the direct sum of two groups G_t and G_t we write $G_t + G_t$. If $G_t = G_t + G_t$ then G_t and G_t are called direct summands in G_t .

Let x be in S^* and X a subset of T, then by x|X we denote the (uniquely determined) element y in S^* , for which $y_t = x_t$ with t in X and $y_t = 0$ with t in T - X.

Let G be an abelian group and g an element in G. The element g is called *divisible* in G by an integer n, if there exists an x in G with nx = g. If every g in G is divisible in G by every integer n, then G is called a *divisible* group. If G has no (non-zero) divisible subgroups, then G is called a *reduced* group.

If X and Y are subsets of the set T, then by the *symmetric difference* of X and Y we understand the set $X - Y = X \cap (T - Y) + (T - X) \cap Y$. If K is a field of sets and I an ideal in K, then by K/I we denote the family of partition classes of K corresponding to the relation $X - Y \in I$.

- 2. Lemmas. The following lemmas are well known:
- (2.1) (BAER [1]) Every abelian group G is decomposable into a direct sum $G = G_1 + G_2$, where G_1 is a divisible group and G_2 a reduced group.
- (2. 2) (SZELE [3]) Every divisible abelian group is decomposable into a d.d.s. of countable groups.
- (2.3) Every d.d.s. and every c.d.s. of divisible groups is a divisible group.
 - (2.4) Every d.d.s. and every c.d.s. of reduced groups is a reduced group.
 - (2.5) A subgroup of a reduced group is a reduced group.
- (2. 6) If $G = G_1 + G_2$, G_2 is a reduced group, and G_0 is a divisible subgroup of G, then G_0 is a subgroup of G_1 .
- (2.7) If $\{G_{\xi}\}_{\xi \in \Xi}$ is a family of divisible subgroups of a group G, then the group G_0 generated by the union of all G_{ξ} 's is a divisible group.
 - (2.8) If $G = G_1 + G_2$ and G_0 is a subgroup of G_1 , then $G/G_0 = G_1/G_0 + G_2$.
- (2.9) If $S = \sum_{t \in T} G_t$ and S_0 is a countable subgroup of S, then there exists a countable subset T_0 of T such that S_0 is a subgroup of $\sum_{t \in T} G_t$.
- (2. 10) Let $S^* = \sum_{t \in T} G_t$ and $S = \sum_{t \in T} G_t$. For x and y in S^* , if $\Theta(x) = \Theta(y)$ is infinite, then x + S = y + S.

3. A theorem on S*/S.

Theorem 1. If G_n are (non-zero) abelian torsion free groups and $S^* = \sum_{n=1}^{\infty} G_n$, $S = \sum_{n=1}^{\infty} G_n$, then there exists in S^*/S a divisible subgroup of the power of continuum (2^{\aleph_0}) .

PROOF. For every n, let g_n denote a non-zero element in G_n and for integers k, l, n with $l \le n$, let g(n, k, l) denote an element y in S^* such that $y_m = 0$ for m < n, and $y_m = \frac{m!k}{l}g_m$ for $m \ge n$. Evidently the elements g(n, k, l) + S form a divisible subgroup of S^*/S . We shall denote this subgroup by R.

Let now K be the field of all subsets of the set of natural numbers and I the ideal of finite sets in K. We have $\overline{K} = 2^{\aleph_0}$, $\overline{I} = \aleph_0$, therefore $\overline{K/I} = 2^{\aleph_0}$. By the axiom of choice, there exists a family of sets of natural numbers $\{X_{\xi}\}_{\xi \in \mathcal{Z}}$ of the power of continuum and such that $\overline{X_{\xi_1} \perp X_{\xi_2}} = \aleph_0$, for $\xi_1 \neq \xi_1$.

We set now $x^{(\xi)} = g(1, 1, 1) | X_{\xi}$. We have evidently $\Theta(x^{(\xi)}) = X_{\xi}$. Therefore $\overline{\Theta(x^{(\xi_1)})} = \Theta(x^{(\xi_2)}) = \mathbb{N}_0$ and by (2.10) all $x^{(\xi)} + S$ are different for different ξ in Ξ . For every ξ in Ξ let R_{ξ} be the group of all elements $y | X_{\xi}$ with

y in R. R_{ξ} as homomorphic image of R is a divisible group and evidently contains $x^{(\xi)} + S$. By (2.7) there exists a divisible subgroup of S^*/S which contains all the elements $x^{(\xi)} + S$ and therefore is of the power of continuum.

4. The main theorems.

Theorem 2. If T is an infinite set and G_t for t in T are reduced abelian torsion free countable groups then the c.d.s. $S^* = \sum_{t \in T}^* G_t$ is not decomposable into a d.d.s. of countable groups.

PROOF. Let T_0 be a countable subset of T, $S_0^* = \sum_{t \in T_0}^* G_t$, $S_0 = \sum_{t \in T_0} G_t$, $S_1^* = \sum_{t \in T - T_0}^* G_t$. We have $S^* = S_0^* + S_1^*$ and S_0 is a subgroup of S_0^* . Therefore by (2.8) $S^*/S_0 = S_0^*/S_0 + S_1^*$ and by Theorem 1, there exists in S^*/S_0 a divisible subgroup R of the power of continuum. Suppose now S^* is decomposable into the d. d. s. of countable groups H_p : $S^* = \sum_{p \in P} H_p$. Then by $\overline{S_0} = \Re_0$ and (2.9) there exists a countable subset P_0 of P, such that S_0 is a subgroup of $\sum_{p \in P_0} H_p$. Therefore $S^*/S_0 = (\sum_{p \in P_0} H_p)/S_0 + \sum_{p \in P - P_0} H_p$. In view of (2.4) and (2.5) $\sum_{p \in P - P_0} H_p$ is a reduced group and in view of (2.6) R is a subgroup of $(\sum_{p \in P_0} H_p)/S$, contrary to the fact that $\sum_{p \in P_0} H_p$ is a countable group and R is of the power of continum.

Theorem 3. A c.d.s. of countable abelian torsion free groups is decomposable into a d.d.s. of countable groups if and only if almost all summands, whit exception of a finite number of them, are divisible groups.

This follows from (2.3), (2.2), (2.1) and Theorem 2.

- 5. Remarks. It is evident, that the proof of Theorem 1 may be reconstructed also for arbitrary abelian groups under the assumption that
- (5.1) for every n there exists in G_n an element g_n of order greater that n!.

If in the family of groups $\{G_t\}_{t\in T}$ there may be found a sequence of different groups G_{t_1}, G_{t_2}, \ldots , such that (5. 1) is fulfilled, then $\{G_t\}_{t\in T}$ is called a family of essentially unbounded order.

We have the following theorems:

Theorem 4. If $\{G_t\}_{t\in T}$ is a family of abelian groups of essentially unbounded order, $S^* = \sum_{t\in T}^* G_t$ and $S = \sum_{t\in T} G_t$, then in S^*/S there is contained a divisible subgroup of the power of continuum.

Theorem 5. If $\{G_t\}_{t\in T}$ is a family of reduced countable (or finite) abelian groups with essentially unbounded order, then the c.d.s. $S^* = \sum_{t\in T} G_t$ is not decomposable into a d.d.s. of countable (or finite) groups.

Bibliography.

- R. Baer, The subgroup of the elements of finite order of an abelian group. Ann. of Math., (Princeton), 37 (1936), 766-781.
- [2] А. П. Мишина, О полных суммах абелевых групп без кручения первого ранга. Укр. Мат. Журн. 2, 4 (1950), 64—70.
- [3] T. Szele, Ein Analogon der Körpertheorie für Abelsche Gruppen. J. f. d. reine u. angew. Math. 188 (1950), 167—180.

(Received February 19, 1955.)