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Modules and semi-simple rings. l.
By A. KERTESZ in Debrecen.

§ 1. Introduction.

Consider an arbitrary additive abelian group G the elements of which
we denote by a,b,...,¢,h. The elements a,,...,a, of the group G are
called independent if any relation ma,+--- 4 nma, =0 implies ma, —=---
cor=n,da,=0 (n,...,n, are rational integers). An arbitrary set S of ele-
ments of G is independent if every finite subset of S is independent. An
independent system of elements of G which is at the same time a generator
system of G is called a basis of G. It is a consequence of a result in [4]')
that for an abelian group G the following conditions are equivalent:

«) G is a direct sum of (cyclic) groups of prime order;

) the order of each element (==0) of G is a (finite and) square-free
number;

v,) every maximal independent system of elements in G is a basis of G;

d,) any subgroup of G is a direct summand of G.

In the present paper we extend this result to the case of arbitrary uni-
fary modules. It turns out that the exact analogues of the above four condi-
tions are equivalent also in this general case (Theorem 1). By a unitary
module we mean a module furnished with an operator domain which is a
ring containing a unit element 1 such that 1 acts as the identity operator on
the module. As the ordinary abelian groups G satisfying condition «,) are
usually called elementary abelian groups, it would be natural to call the
modules described by our Theorem 1 elementary modules. We follow, howe-
ver, a terminology already introduced for modules admitting a representation
as a direct sum of minimal submodules, and we call these modules comple-
tely reducible modules.

As an application we get a simple proof of the most important special
case of a significant theorem of O. GOLDMAN which characterizes the semi-
simple rings with descending chain condition as operator domains for modu-
les [3]. [In what follows, for the sake of brevity, we omit the term “with

1) The numbers in brackets refer to the Bibliography at the end of this paper.
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descending chain condition”, i.e., we use the notation “semi-simple ring” in
accordance with the classical terminology.] This theorem asserts that a ring
R with unit element is semi-simple if and only if every unitary R-module is
completely reducible. Besides making possible a short and simple proof of
this theorem, our Theorem 1 enlarges its content, supplying namely four
characterizations of semi-simple rings (Theorem 2). Two of these characteri-
zations, namely those based on ) and y) in Theorem 2, seem to be new
while the other two characterizations were obtained in [1] and [3]. — As imme-
diate corollaries we get four corresponding pure ring-theoretic characteriza-
tions of semi-simple rings. One of these coincides with the classical result:
a ring with unit element is semi-simple if and only if it is a direct sum of
minimal left ideals.

In a subsequent paper we extend our investigations to the case of
arbitrary modules (instead of unitary modules) and, at the same time, we
give a simplified proof of the general theorem of O. GOLDMAN [3] which
characterizes the semi-simple rings as operator domains among all rings (and
not only among the rings with a unit element).

§ 2. Characterizations of completely reducible unitary modules.

In this section by a module we mean always a unitary module, provi-
ded that the contrary is not explicitly stated.

Let R be an arbitrary ring with unit element 1, and G a left R-module.
By a submodule resp. a homomorphism of G we mean always an R-sub-
module resp. an R-homomorphism. We denote by O(g) the order of an
element g of the module G, i.e. the set of all elements r€ R with rg—=0.
Obviously O(g) is a left ideal in R. We call an arbitrary set g,, 2., ... of
non-zero elements in G independent if for every finite subset of this set a
relation

ng+-+rngn=0
always implies
rg == r.g.—0.

Since the independence so defined is a property of finite character, by virtue
of ZorN’s lemma an arbitrary set of elements in G contains a maximal inde-
pendent subsystem. If G contains an independent subset S of elements which
is at the same time a generator system of G then § is called a basis of G.
The sign +- is used to denote (besides the group operation) also the direct sum.

An R-module G is said to be completely reducible if G is the direct
sum of minimal R-modules. An R-module A is called minimal (in another
terminology : irreducible or simple) if A contains no submodules other than
A and 0. For an arbitrary but fixed ring R with unit element we have a
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complete survey of all minimal R-modules and consequently of all comple-
tely reducible R-modules. Namely, an R-module A is minimal if and only if
A is isomorphic to a factor module R M where M is an arbitrary maximal
left ideal of R. Moreover, we have for arbitrary elements a==0,6==0 of a
minimal R-module A
A~RO(a)~R O(b)
where O(a) and O(b) are maximal left ideals in 2, but in general O(a) == O(b).
(If R is commutative, then O(a)= O(b).)
Now we are going to prove the following

Theorem 1. For an arbitrary unitary R-module G the following con-
ditions are equivalent :

«) G is completely reducible ;

3) the order of each element (==0) of G is the intersection of a finite
number of maximal left ideals in R;

7) every maximal independent system of elements in G is a basis of G;
0) any submodule of G is a direct summand of G.)

REMARK. In view of further applications the fact that condition d) implies
«) will be proved for arbitrary modules G, i.e. not only for unitary modules.

PROOF OF THEOREM 1. «) implies ). Suppose that G is a direct sum
of minimal R-modules A, :

(1) —='A,.
Let g
g=a,+:-+a,, (0==a, €A,).
Since O(a,)= M; is a maximal left idel of R, we have
(2) Oog)=Mn...nM,=D,

i.e. O(g) is the intersection of a finite number of maximal left ideals of R.

@) implies y). Suppose that the order of each element g¢==0 of G can
be represented in the form (2) where M,,..., M, are maximal left ideals
in R. We have to show that for an arbitrary maximal independent system
by, b, ... of elements in G

3) ge2{b).

Here {b,} denotes the cyclic submodule of G generated by b,. Obviously,
it is sufficient to prove that

(4) gEBI+"'+BH

2) In the special case when R is the ring of the rational integers, this theorem evi-
dently vyields the charecterization of elementary abelian groups.
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where B,,..., B, are minimal submodules of G. We have namely, by the
maximality of the system b,,6,, ...,

B;n 2> {b,}=0, Bin2 {b,}=B;
and thus
Bi+---+B.S 2 {b,}.

Hence (4) in fact implies (3). ’
Now, in order to prove (4), consider the representation of O(g) in form
(2) and suppose that none of the M; ’s can be cancelled in (2). Then there

exist elements u,,...,u, in R such that
5 !H.'G.M';ﬂ...ﬂM{|ﬂMf+lﬂ...ﬂi”,,
() | u. & M, Tt Rt
By virtue of (5) and the maximality of the left ideals M; it is possible to
determine successively elements
v € Ml: vy € M:; vony Un EM,
for which the relations

1(=v)=un+2u

v == vyt 2ylly

(6) . U, - Vs 1 23l
l Un-1 = Un+Znllx

hold. Then we have by (6) and (5):
3:';EMlﬂMgﬂ...ﬂM.-

(7) ‘.!f,-EM.'H,...,l'.'EM-; (!:1’2’.””!).
Now it follows from (6)
l f_—'2:ul+ Al o -I-Z,.u,, + I"u
and so _
(8) g:'_' zl ulg+ el +znui|;,r
(because (2) and (7) imply »r.g=0). By proving that the cyclic modules
{z;u;g} are minimal modules (i==1,..., n) we shall complete the proof of (4).

M; being a maximal left ideal in R, the minimality of the cyclic module
{ziu;g) follows immediatelly from the fact that
9) O(ziu;g) =M, (i=1...,n)
which can be proved as follows. We have to show that x € M; is equivalent
(to x€0(ziu;g), xziu,g =0 i.e.) to xz;u; € 0(g)= D (see (2)).

Suppose that for the element x € R we have xz;u; € D. Then xz;u; € M;,
and multiplying each of the equations (6) from the left by x, we obtain

by (7) from the i-th equation xu; € M;. Proceeding further upwards, by
virtue of (5) we successively obtain from our equations the relations xv; 2€ M,, ...
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<., X1y ==X € M;. — Conversely, let x € M;. Then (proceeding this time down-
wards) we successively obtain from our equations by virtue of (7) and (5)
the relations xv, € M;, xv5, € M;, ..., Xvi.1 € M;; the i-th equation therefore
yields (because of »; € M;) the relation

Xvi —Xvi=X2;U; € M;.
This relation implies, together with (5), xz;u; € D, and this completes the
proof.

v) implies d). We show that if in the unitary R-module G any maximal
independent system of elements constitutes a basis, then any submodule of G
is a direct summand. As a matter of fact, let H be an arbitrary submodule
of the module G. We consider in A/ a maximal independent system of ele-

ments ...,a,,..., and we complete this system by adjoining elements
«v, by, ... s0 as to obtain a maximal independent system S of elements
of G. By our hypothesis, the system S serves as a basis for G, i.e.
(10) G=2{a,}+ 2 {bu}.
We are going to prove our assertion by showing that this implies
H=2{a,}.

In order to show this, it evidently suffices to establish the relation H< > {a, ).

Let & be an arbitrary element of H. In the representation of & givenyby (10)
the component belonging to 2, {b.} must vanish, for otherwise this compo-

nent would be an element of H, the adjunction of which to the system
«vuy @y, ... would yield another larger independent system of elements of H.
This is impossible, since we have chosen the system..., a,,... to be a
maximal independent system of elements in H.

d) implies «). We are going to prove that if any submodule of the
R-module G is a direct summand, then G is completely reducible.”) 1t is suf-
ficient to show that in an R-module G with property 0) any submodule
generated by one element (any cyclic submodule) contains a minimal R-module.
Let us consider indeed the submodule H of G generated by all the minimal
submodules of G. We know that in this case H is completely reducible.
Moreover, by our hypotheses H is a direct summand of G: G=H-+K.
H contains here all the minimal submodules of G, and thus K=0, i. e.
G=H.

Let G be an R-module with property d). In order to prove that any
cyclic submodule of G contains a minimal R-module, we first remark that
each submodule B of G has again the property d). Now let B, be a sub-

%) We empbhasize that our proof of this assertion is valid for an arbifrary R-module
G, i. e. not only for unitary modules.
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module of B. Then, as B, is a submodule of G, the module G has a direct
decomposition

(11) G=B,+B,

with some submodule B, of G. Since B, is a submodule of B, (11) implies
the existence of a direct decomposition

B =B+ B:
for some submodule B; of B.

Let now g be an arbitrary non-zero element of G. If the cyclic sub-
module {g} (i.e. the smallest submodule of G which contains g) would not
contain a minimal R-module, then (by virtue of our above remark) we could
represent {g} as a direct sum of an infinity of submodules, by successively
splitting of direct summands. This is however impossible, since such a
module cannot be finitely generated. This completes the proof of Theorem 1.

§ 3. Semi-simple rings as operator domains.

In this section we determine all rings R with unit element, for which
any unitary R-module is completely reducible. It will turn out that this pro-
perty is characteristic of the semi-simple rings. By a semi-simple ring we
mean such a ring taken in the classical sense, i.e. a ring containing no
non-zero nilpotent left ideal and satisfying the descending chain condition
for left ideals. According to the well-known WEDDERBURN-ARTIN structure
theorem such a ring is isomorphic to a direct sum of a finite number of
rings, each of which is isomorphic to the complete ring of linear transforma-
tions in a suitable finite dimensional vector space over a skew field. By ano-
ther characterization a ring R is semi-simple if and only if every left ideal
of R contains a right unit element (see [2]). In our proof we make use of
this second characterization of semi-simple rings.

Now we are going to prove the following

Theorem 2. A ring R with unit element is semi-simple if and only if
for every unitary R-module G some of the following four equivalent condi-
tions is satisfied :

«) G is completely reducible ;

3) the order of each element (<=0) of G is the intersection of a finite
number of maximal left ideals in R;

y) every maximal independent system of elements in G is a basis of G;
o) any submodule of G is a direct summand of G.

As by Theorem 1 conditions «)—d) are equivalent for a unitary R-mo-
dule G, our theorem results from the following two assertions:
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(i) if the ring R is semi-simple, then any unitary R-module has pro-
perty v);

(ii) if R is a ring with unit element for which any unitary R-module
has property o), then R is semi-simple.

PrROOF OF (i). Let R be a semi-simple ring, G an arbitrary unitary
R-module und S a maximal independent system of elements ..., a,,... of G.
We have to show that for an arbitrary element g of G

gEH=§{a.-},

i.e. G=H. The elements r € R for which rg € H holds, form a left ideal
L in R. By our hypothesis, the left ideal L possesses a right unit element e,
and so eg € H. Consider now the element

g =g—eg.

If reL then rg’'—=rg—(re)g—=rg—rg—0 holds, if, however, r¢L, then
rg’ § H. Thus Rg'nH=0, and so the element g’ is independent of the sys-
tem S. The maximality of S implies g’=0, i.e.

g—egEH.

This shows that G = H and thus § is in fact a basis of G.

PROOF OF (ii). Let R be a ring with unit element, for which any unitary
R-module has property d). Then, in particular, the additive group R* of R
as a left R-module also has the property that any of its submodules (i. e.
any left ideal of R) is a direct summand. Starting with this we shall show
that any left ideal of R has a right unit element, i.e. R is a semi-simple

ring. Let L be an arbitrary left ideal of R. Then, by condition d), R has a
left ideal K for which

(12) R*=L+K.

For the unit element of R, we obtain from (12) a representation
1 =e,+e, (e, €L, ;€ K).

Now, if g is an arbitrary element of L, then

g=g1=ge+e)=ge+ge,=ge,
and this shows that e, is a right unit element in the left ideal L. This com-
pletes the proof of Theorem 2.
From Theorems 1 and 2 it is easy to obtain the following.

Theorem 3. A ring R with unit element is semi-simple if and only if
it satisfies any of the following four equivalent conditions :
«,) R is a direct sum of its minimal left ideals ;
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3,) the left annihilator of each element (=0) of R is the intersection of
a finite number of maximal left ideals of R;

7:) every maximal independent system over R is a basis (over R) of R*;

0,) for any left ideal L of R there exists a left ideal K of R, for which
R=L+K.

ProoOF. Putting G= R* in Theorem 1, we immediately see that pro-
perties «,)—d,) are equivalent. By Theorem 2 any semi-simple ring R has
the property «,. Finally, if the ring R with unit element has property 9,),
then, by the proof of theorem 2., any left ideal of R has a right unit ele-
ment, and thus the ring R is semi-simple, qu. e.d.
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