Symmetric matrices, quadratic forms and linear constraints.

By S. N. AFRIAT in Cambridge.

The condition for a quadratic form $\mathbf{x}'A\mathbf{x}$ to be positive definite subject to restrictive linear conditions $U'\mathbf{x} = \mathbf{0}^1$) is fundamental for the investigation of maxima and minima of functions which are restricted by relations between their variables and for a variety of other questions. However, the existing proofs for establishing these criteria do not achieve all the directness which is possible, and which is desirable for such a result. The object here is to give a new derivation; and, following Debreu, it is founded on a consideration of the pencil $A + \lambda UU'$.

Theorem 1. If A is a real symmetric matrix of order n, and δ_r its leading principal minor of order r, and if $\delta_r \neq 0$ (r = 1, ..., n), then there exists an upper triangular matrix T, with unit elements on the diagonal, such that T'AT = D, where D is the diagonal matrix with r th element $d_r = \delta_r/\delta_{r-1}$.

Take as hypothesis the validity of this theorem for matrices of order n. We shall deduce it for matrices of order n+1. Then, since it is true in the case of order one, its proof by induction will be complete. Thus, let $\begin{pmatrix} A & \mathbf{a} \\ \mathbf{a}' & a \end{pmatrix}$ be the considered matrix of order n+1, where A is of order n. By hypothesis we can find the triangular matrix T with T'AT = D as required. Then, since $\begin{vmatrix} A & \mathbf{a} \\ \mathbf{a}' & a \end{vmatrix}/|A| = a - \mathbf{a}'A^{-1}\mathbf{a}$, by the Cauchy determinant expansion, the extension to order n+1 is directly shown by the relation

$$\begin{pmatrix} T' & \mathbf{0} \\ (-A^{-1}\mathbf{a})' & 1 \end{pmatrix} \begin{pmatrix} A & \mathbf{a} \\ \mathbf{a}' & a \end{pmatrix} \begin{pmatrix} T & -A^{-1}\mathbf{a} \\ \mathbf{0}' & 1 \end{pmatrix} = \begin{pmatrix} D & \mathbf{0} \\ \mathbf{0}' & a - \mathbf{a}'A^{-1}\mathbf{a} \end{pmatrix}.$$

Theorem 2. The quadratic form $\mathbf{x}' A \mathbf{x}$ is positive definite if and only if $\delta_r > 0$ (r = 1, ..., n).

¹) This condition was first stated and proved by H. B. Mann [1]. The author has given another proof in [2]; and a further one is suggested by G. Debreu in [3]. Here A, U denote matrices of order $n \times n$, $n \times m$ and x denotes a vector of order n.

²⁾ cf. Turing [6].

306 S. N. Afriat

If $\mathbf{x}'A\mathbf{x}$ is positive definite, then $\delta_r \neq 0$ $(r=1,\ldots,n)$; otherwise there would exist a vector $\mathbf{x} \neq 0$ such that $A\mathbf{x} = \mathbf{0}$, and $\mathbf{x}'A\mathbf{x} = 0$. Hence, by Theorem 1, there exists a regular matrix T such that T'AT = D, which is positive definite with A, is diagonal, with elements $d_r = \delta_r/\delta_{r-1}$, which are all positive; and thus $\delta_r > 0$ $(r = 1, \ldots, n)$. Conversely, if $\delta_r > 0$ $(r = 1, \ldots, n)$, then there exists, by Theorem 1, a regular matrix T such that T'AT = D is the diagonal matrix with elements $d_r = \delta_r/\delta_{r-1}$. But all these elements are positive, so that D and hence A is positive definite.³)

Theorem 3. If $\mathbf{x}' A \mathbf{x}$ is definite subject to $U \mathbf{x} = \mathbf{0}$, and if λ_0 is the least root of the equation $|A - \lambda UU'| = 0$, then $\mathbf{x}' (A - \lambda^* UU') \mathbf{x}$ is positive definite for all $\lambda^* < \lambda_0$.

The stationary values of $\lambda_{\mathbf{x}} = \mathbf{x}' A \mathbf{x} / \mathbf{x}' U U' \mathbf{x}$ are attained where $(A - \lambda_{\mathbf{x}} U U') \mathbf{x} = \mathbf{0}$, as appears by methods of the calculus. It follows that the minimum value λ_0 of $\lambda_{\mathbf{x}}$ is the least root of $|A - \lambda U U'| = 0$. Now for any $\lambda^* < \lambda$ we have

$$\mathbf{x}'(A-\lambda^*UU')\mathbf{x} = \mathbf{x}'(A-\lambda_0UU')\mathbf{x} + (\lambda_0-\lambda^*)\mathbf{x}'UU'\mathbf{x} \ge 0,$$

where $\mathbf{x}'(A-\lambda_0 UU')\mathbf{x}$ and $(\lambda_0-\lambda^*)\mathbf{x}'UU'\mathbf{x}$ are non-negative definite. Since any non-negative quantities whose sum is zero are each zero, the equality here is attained only where $\mathbf{x}'(A-\lambda_0 UU')\mathbf{x}=0$ and $(\lambda_0-\lambda^*)\mathbf{x}'UU'\mathbf{x}=0$, or equivalently where $\mathbf{x}'A\mathbf{x}=0$ and $U'\mathbf{x}=0$. Thus it appears that if $\mathbf{x}'A\mathbf{x}\neq0$ whenever $U'\mathbf{x}=0$ and $\mathbf{x}\neq0$, which is the case when $\mathbf{x}'A\mathbf{x}$ subject to $U'\mathbf{x}=0$ is definite, either positive or negative, then $\mathbf{x}'(A-\lambda^*UU')\mathbf{x}$ is positive definite.

Theorem 4. A necessary and sufficient condition that $\mathbf{x}' A \mathbf{x}$ be positive definite subject to $U' \mathbf{x} = \mathbf{0}$ is that $\mathbf{x}' (A + \lambda U U') \mathbf{x}$ be positive definite for large λ .

The necessity follows from Theorem 3, by which $\mathbf{x}'(A + \lambda UU')\mathbf{x}$ is positive definite for $\lambda > |\lambda_0|$, and the sufficiency is obvious.

The linear constraints given by $U'\mathbf{x} = \mathbf{0}$ are supposed independent so that U has all its m columns independent. Accordingly U also has some m of its rows independent, and without loss in generality these can be supposed leading; so if U_r denotes the submatrix of U formed from its leading r rows then $|U_m| \neq 0$.

Let A_r denote the leading principal square submatrix of A of order r.

Theorem 5. A necessary and sufficient condition that $\mathbf{x}' A \mathbf{x}$ be positive definite subject to $U' \mathbf{x} = \mathbf{0}$ is that

$$\triangle_r = (-1)^r \left| \begin{array}{cc} 0 & U_r' \\ U_r & A_r \end{array} \right| > 0 \qquad (r = m+1, \ldots, n),$$

provided $|U_m| \neq 0$.

³⁾ cf. Goddard [5].

Call $\mathbf{x}'A\mathbf{x}$ positive definite subject to $U'\mathbf{x} = \mathbf{0}$ the condition P, and $\triangle_r > 0$ (r = m+1, ..., n) the condition \triangle . By Theorem 4, P is equivalent to $\mathbf{x}'(A + \lambda UU')\mathbf{x}$ positive definite for large λ , and by Theorem 2 this is equivalent to $|A_r + \lambda U_r U_r'| > 0$ (r = 1, ..., n) for large λ . But, again by Theorem 2, $|A_r + \lambda U_r U_r'| > 0$ (r = 1, ..., m) is equivalent to $\mathbf{x}'_m (A_m + \lambda U_m U_m') \mathbf{x}_m$ positive definite, which is in any case true for large λ , since $\mathbf{x}'_m U_m U_m' \mathbf{x}_m$ is positive definite, with $|U_m| \neq 0$. Thus P is equivalent to $|A_r + \lambda U_r U_r'| > 0$ (r = m+1, ..., n) for large λ . But, for r = m+1, ..., n,

$$|A_r + \lambda U_r U_r'| = \sum_{s=0}^r \lambda^s \text{ trace } A_r^{[s]} (U_r U_r')^{(s)} =$$

$$= \sum_{s=0}^r \lambda^s \text{ trace } U_r^{(s)} A_r^{[s]} U_r^{(s)} =$$

$$= o(\lambda^r) + \lambda^r (-1)^r \begin{vmatrix} 0 & U_r' \\ U_r & A_r \end{vmatrix} \qquad (\lambda \to \infty),$$

by the BINET—CAUCHY theorem, and by a double LAPLACE expansion of the bordered determinant relative to the bordering rows and columns.⁴) Thus on the hypothesis $\triangle_r \neq 0$ (r = m+1, ..., n) we have P equivalent to \triangle . But this hypothesis is explicitly contained in \triangle . Moreover it is implied by P. For should we have $\triangle_r = 0$ for some r = m+1, ..., n, the equations

$$U_r'\mathbf{x}_r = \mathbf{0}$$
$$U_r\mathbf{y}_m + A_r\mathbf{x}_r = \mathbf{0}$$

would have a non-null solution where \mathbf{x}_r , \mathbf{y}_m denote vectors of order r, m respectively; and this would be such that $\mathbf{x}_r \neq \mathbf{0}$ since $U_r \mathbf{y}_m = \mathbf{0}$ implies $\mathbf{y}_m = \mathbf{0}$, for r > m; and also such that $\mathbf{x}_r' A \mathbf{x}_r = \mathbf{0}$ and $U_r' \mathbf{x}_r = \mathbf{0}$, in contradiction to P. Thus P and \triangle are shown to be equivalent, on the hypothesis that either hold; and thus they are equivalent.

It appears thus that the quadratic forms $\mathbf{x}' A \mathbf{x}$ which are positive definite subject to $U' \mathbf{x} = \mathbf{0}$ form the open region defined by the open inequalities $\triangle_r > 0$ (r > m), whose closure, which consists of the quadratic forms $\mathbf{x}' A \mathbf{x}$ wich are non-negative definite subject to $U' \mathbf{x} = \mathbf{0}$, is accordingly defined by the closed inequalities $\triangle_r \ge 0$ (r > m).

Since $\mathbf{x}'(-A)\mathbf{x}$ is positive when $\mathbf{x}'A\mathbf{x}$ is negative, the condition for $\mathbf{x}'A\mathbf{x}$ to be negative definite subject to $U'\mathbf{x}=0$ is obtained when A is replaced by -A in Theorem 5, that is to say as $(-1)^r \triangle_r > 0$ (r > m).

⁴⁾ See AITKEN [4], pp. 102, 83 and 93 respectively in connection with the successive steps here.

Bibliography.

- H. B. Mann, Quadratic forms with linear constraints, Amer. Math. Monthly, 50 (1943), 430—433.
- [2] S. N. Afriat, The quadratic form positive definite on a linear manifold, *Proc. of the Cambridge Philosophical Soc*, 47 (1951), Part I, 1—6.
- [3] G. Debreu, Definite and semidefinite quadratic forms, Econometrica, 20 (1952), 295-300.
 - [4] A. C. AITKEN, Determinants and Matrices, London, 1951.
- [5] L. S. Goddard, On positive definite quadratic forms, Publ. Math. Debrecen, 2 (1951), 46-47.
- [6] A. M. Turing, Rounding-off errors in matrix processes, *The Quarterly Journal of Mechanics and Applied Mathematics*, 1 (1948), 287—308.

(Received May 10, 1955.)