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Symmetric matrices, quadratic forms and linear constraints.
By S. N. AFRIAT in Cambridge.

The condition for a quadratic form x’Ax to be positive definite subject
to restrictive linear conditions U'x=0") is fundamental for the investigation
of maxima and minima of functions which are restricted by relations between
their variables and for a variety of other questions. However, the existing
proofs for establishing these criteria do not achieve all the directness which
is possible, and which is desirable for such a result. The object here is to
give a new derivation; and, following DEBREU, it is founded on a conside-
ration of the pencil A+AUU".

Theorem 1. If A is a real symmetric matrix of order n, and 9, its
leading principal minor of order r, and if 06,50 (r=1,..., n), then there
exists an upper triangular matrix T, with unit elements on the diagonal, such
that T'AT = D, where D is the diagonal matrix with r th element d, = 0,/0,_,.%)

Take as hypothesis the validity of this theorem for matrices of order n.
We shall deduce it for matrices of order n-1. Then, since it is true in the

case of order one, its proof by induction will be complete. Thus, let (:, 3)

be the considered matrix of order n+ 1, where A is of order n* By hypo-
thesis we can find the ftriangular matrix 7 with 7"A7 = D as required.

Then, since

:’ 3‘-‘ |A|=—a—a’A 'a, by the Cauchy determinant expansion,

the extension to order n-1 is directly shown by the relation

T i 0)( ]T—A a) (D 0
((—A ‘ay 1) la’ a [ 1 ) \0 a—a'A'a)

Theorem 2. The quadratic form X AX is positive definite if and only
i &,50{r=1,...,n)

1) This condition was first stated and proved by H. B. Max~ [1]. The author has
given another proof in |2]; and a further one is suggested by G. Desrev in [3]. Here A, U
denote matrices of order n > n, n>m and x denotes a vector of order n.

2) cf. Turina [6]).
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If x’Ax is positive definite, then d, 40 (r=1,..., n); otherwise there
would exist a vector x=+=0 such that Ax=0, and x"4x=0. Hence, by
Theorem 1, there exists a regular matrix 7 such that 7°A7T — D, which is
positive definite with A, is diagonal, with elements d,=-d,/d,.,, which are

all positive ; and thusd, >0 (r=1,..., n). Conversely, if 4, >0 (r=1,...,n),
then there exists, by Theorem 1, a regular matrix 7 such that 7’A7 =D is
the diagonal matrix with elements d, = d,/d, . But all these elements are

positive, so that D and hence A is positive definite.”)

Theorem 3. /f X' AX is definite subject to Ux =0, and if 4, is the least
root of the equation | A—iUU’| =0, then xX'(A—2i*UU’)x is positive definite
for all i* < 4,. '

The stationary values of Ax=X"AXX'UU’x are attained where
(A—ixUU)x =0, as appears by methods of the calculus. It follows that
the minimum value 4, of A is the least root of |[A—AUU’|=0. Now for
any 4° < i we have

X(A=2'UU)Xx=xX'(A—4LUU )X+ (4L—i)XUUXx =0,

where Xx"(A—4,UU")x and (4,—A")x'UU’x are non-negative definite. Since
any non-negative quantities whose sum is zero are each zero, the equality
here is attained only where x'(A—A4,UU")x=0 and (4,—A4" )X’ UU'x—0,
or equivalently where X’ Ax =0 and U'x=0. Thus it appears that if x’ Ax=-0
whenever U’'x=0 and x-=-0, which is the case when X"Ax subject to
U’'x =0 is definite, either positive or negative, then x"(A—2"UU’)x is posi-
tive definite.

Theorem 4. A necessary and sufficient condition that x'Ax be positive
definite subject to U'x =0 is that xX'(A-+AUU")x be positive definite for
large i.

The necessity follows from Theorem 3, by which x"(A4+AUU')x is
positive definite for 4 > 4,/, and the sufficiency is obvious.

The linear constraints given by U’x=0 are supposed independent so
that U has all its m columns independent. Accordingly U also has some m
of its rows independent, and without loss in generality these can be supp-
osed leading; so if U, denotes the submatrix of U formed from its leading
r rows then |U..| ==0.

Let A, denote the leading principal square submatrix of A of order r.

Theorem 5. A necessary and sufficient condition that X’ Ax be positive
definite subject to U'x —0 is that
el

De=(—1) U,.Arl"\o (r=m+1,...,n),

provided |U,.|+ 0.

3) cf. Gopparp [5].
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Call x"Ax positive definite subject to U’'x =0 the condition P, and
/>0 (r==m-+1,...,n) the condition /.. By Theorem 4, P is equivalent
to X (A+AUU")x positive definite for large 4, and by Theorem 2 this is
equivalent to |A,+AU.U/|>0 (r=1,...,n) for large 4. But, again by
Theorem 2, |A, + AU, U;| >0 (r=1,...,m) is equivalent to x;,.(A,. + 4 U, U,)Xn
positive definite, which is in any case true for large 4, since x;, U, U, X, is
positive definite, with |U,|==0. Thus P is equivalent to |A, 4+ AU, U/ >0
(r=m+1,...,n) for large 4. But, for r=m+1,...,n,

|Ar+4U, Us| =2 4" trace AU, U)"=
=0
:Z’:“ trace U:"er!'.ﬂ] U,I.H):-.:

s={)

—o(I) + 4 (—1)

0 U;
U, A,

by the BINET—CAUCHY theorem, and by a double LAPLACE expansion of the
bordered determinant relative to the bordering rows and columns.') Thus on
the hypothesis /\,==0 (r==m-1,...,n) we have P equivalent to /.. But

(h— =),

this hypothesis is explicitly contained in /.. Moreover it is implied by P.
For should we have /.,=0 for some r==m-+-1,...,n, the equations
b’; XI' = 0
Ury:n '+' Arxr‘ — 0

would have a non-null solution where x,, y.. denote vectors of order r,m
respectively; and this would be such that x,==0 since U,y,, =0 implies
Yu=0, for r > m; and also such that x;Ax,=0 and U;x,=0, in contra-
diction to P. Thus P and /. are shown to be equivalent, on the hypothesis
that either hold; and thus they are equivalent.

It appears thus that the quadratic forms x"Ax which are positive definite
subject to U’'x=0 form the open region defined by the open inequalities
/>0 (r>m), whose closure, which consists of the quadratic forms x'AX
wich are non-negative definite subject to U’'x =0, is accordingly defined by
the closed inequalities /, =0 (r > m).

Since x’(—A)x is positive when x’Ax is negative, the condition for
X'Ax to be negative definite subject to U’'x-0 is obtained when A is
replaced by —A in Theorem 5, that is to say as (—1)" /.,>0 (r >m).

1) See Arrken [4], pp. 102, 83 and 93 respectively in connection with the successive
steps here.
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