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The general theory of linear equation systems
over semi-simple rings.

To Professor Laszlé Kalmar on his 50th birthday.

By A. KERTESZ in Debrecen.

§ 1. Introduction.

This paper contains an essential generalization of the classical theory
of finite systems of linear equations over a skew field S. According to this
well-known classical theory all solutions of such an equation system (with a
finite number of unknowns and equations) can be obtained in case of com-
patibility by a system of solving formulae of the form
) Xa=Ca |'d-€_\:,:dné fs.  (Cordus €8)
where ¢, is a left-linear combination over S of the constant terms on the right-
hand sides of the given equation system, and the {’s are parameters') with
values freely chosen from S. Recently S. GacsALyr [3] and T. SzeLe [5] have
extended this classical method of solution to the case of a system of linear
equations with an arbitrary cardinal number of unknowns and equations over
a skew field. The main result of the present paper says that this ,classical
theory” can be generalized to the case in which the basic ring R (of coeffi-
cients) is not a skew field but an arbitrary semi-simple ring (with minimum
condition), and conversely: a ring R is necessarily semi-simple if all solu-
tions of any compatible system of linear equations (with an arbitrary cardinal
number of unknowns and equations) over R can be obtained by a system of
solving formulae of type (1). This means that the semi-simple rings form the
largest category of rings for which the classical theory of linear equations
holds. We emphasize that in this paper by a semi-simple ring we mean
always such a ring taken in the classical sense, i. e., a ring containing no
non-zero nilpotent left ideal and satisfying the descending chain condition
for left ideals. According to the well-known WEDDERBURN-ARTIN structure
theorem such a ring is isomorphic to a direct sum of a finite number of

1) In this case the set of parameters f; (6 €D a given set of indices) is finite. —
See e. g. [6], p. 106. — Numbers in brackets refer to the Bibliography at the end of this

paper.



80 A. Kertész

rings, each of which is isomorphic to the complete ring of linear transfor-
mations in a suitable finite-dimensional vector space over a skew field. By
another characterization a ring R is semi-simple if and only if every left ideal
of R contains a right unit element (see [2]). So our result can also be con-
sidered as a new characterization of the classical semi-simple rings, namely
in terms of solvability of equation systems. This result is treated in § 3.

§ 2. is devoted to the definition of linear equation systems of the most
general type over an arbitrary ring R. According to this ,coordinate-free”
definition a compatible system of linear equations over a ring R is a well-
defined R-homomorphism of a submodule of some free R-module into R
(regarded as an R-module). § 4. contains some final remarks.

The main result of the present paper was announced in [4].

§ 2. Definition of linear equation systems over an arbitrary ring.

We consider an arbitrary set of equations over an arbitrary ring R of
the form

(2) Je=0b; (%€B, bsER)

where each f is a linear form

(3) Jo=apXa,+ -+ + Qg Xa, (ap€R)

in some finite subset of a given set ..., X, ... (¢€A) of unknowns, A and B
being arbitrary sets of indices. We seek all solutions

(4) Xa=Ta€R (ecA)

of this system of equations in R. Obviously, the following is a trivial neces-
sary condition of the solvability of the system: every relation for a finite
number of linear forms fz, obtained by repeated additions and left-handed
multiplications by elements of R, should be satisfied also by the correspon-
_ding constants bz on the right-hand sides of our equation system; that is
every (identical) relation of the form

Slf:‘h—{‘ LR '{'s'—fﬂ;_{_nlfﬂ' -+— ees _}_n'fm=0

slbﬁ|+‘.'_}_S"bﬁr'—i_ngbﬁ‘_i"“'_]"n,bﬁ'- 0-2)

This requirement we call the condition of compatibility. In what follows we
consider only compatible systems of linear equations, the non-compatible
systems being uninteresting for the present investigations.

implies

Let
(5) R(m)— > Rx.
acA
) Here sy,...,s; denote elements of R and ii,,..., n; rational integers. The latter

are superfluous when R is a ring with unit element.
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the free R-module spanned by the set x. («¢€A) as indeterminates,’) i. e.
R(m) is the direct sum of the monogenic free R-modules Rx., «€A, the
mapping r— rxa (réR) being one-to-one. The elements of R(m) are called
linear forms over R in the indeterminates x,. Now a given compatible system
(2) of linear equations over R yields a well-defined R-homomorphism ¢ of
the submodule M of R(m) generated by all linear forms f; (8€B) into R
(regarded as an R-module) such that (fs)* = bs.*) Conversely: a given R-ho-
momorphism ¢ of a submodule M of R(m) into R yields always compatible
systems (2) of linear equations over R; in any of these systems the left-hand
sides f; form a generating system of M and &g (fz)*. If two compatible
system (2) of linear equations spring in such a way from the same R-homo-
morphism ¢ of the same submodule M of R(m), then we call these systems
equivalent. Obviously two compatible systems (2) of linear equations over R
are equivalent if and only if each equation of the one system can be obtai-
ned as a left-linear combination (with elements of R and with rational inte-
gers) of some equations of the other system and conversely. Also it is clear
that the solutions of two equivalent compatible systems of linear equations
coincide. As so equivalent equation systems can be considered as essentially
the same systems we are led to the following

Definition 1. A compatible system (M, ¢)] of linear equations over an
arbitrary ring R is a well-defined R-homomorphism ¢ of a submodule M of
some free R-module R(m) into R.

(4) gives a solution of the equation system [M,¢] if and only if the
mapping of R(m) into R induced by the substitution (4) coincides with ¢
on M.

G. PoLLAK has kindly called my attention to the fact that in case of a
ring R with unit element the solvability of the linear equation system [M, ¢] is
equivalent fo the extensibility of the mapping ¢ to an R-homomorphism ¢ of
the whole module R(m) into R, these extensions ¢ being in one-to-one corres-
pondence with the solutions (4) of the equation system. As a matter of fact, if
(4) is a solution of the equation system [M, ¢], then the mapping of R(m)
into R induced by the substitution (4) yields already the desired extension
of ¢. (No assumption about the ring R must be made here.) The converse
statement we prove under the weaker assumption that R contains a right
unit element e. Let [M, ¢] be a compatible equation system and ¢ an exten-
sion of ¢ to an R-homomorphism of R(m) into R. In particular let

%) We denote by m the cardinality of the index set A, i. e, the rank of the free
R-module R(m). — We suggest by the notation R(m) that this free module is uniquely
determined by R and m.

1) The compatibility of the system (2) assures that the mapping ¢ defined by the
system (2) will be single-valued.

L6
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(ex.)? =r. (¢ € A). Then by
Joe = ap1Xa, + - - |- QpXa, — apr(€Xa,) + - -+ + ap(€Xa,)
we have
(fo)r=apra,+ -+ +apiTay-
On the other hand by the definition of ¢

(f3)? = (fp)" = bp
This shows that x,=r, is a solution of the system [M, ¢].

In the above proof the existence of the right unit element ¢ of R is
essential. We have namely the following example: let R be the ring of even
integers, R(m) the free R-module Rx; of rank m= 1, M= R(m)— Rx,, and
(rx,)" =r (r € R). For this mapping ¢ we can take ¢ = ¢, however the cor-
responding system of linear equations 2x, — 2 (consisting of a single equa-
tion only) has no solution in R. — It may also be proved that, if R is a
ring such that every compatible system [M,¢] of linear equations over R
possesses a solution in R provided ¢ can be extended to an R-homomor-
phism of R(m) into R, then the ring R has a right unit element.

Finally we remark that a definition of general linear equation systems
is given also by BourBaki in [1](p.51). The two conceptions are essentially
different: the systems of solutions in the two cases are related to each other
as a vector space to its conjugate space. Consequently in BOURBAKI's treat-
ment the left-hand side (3) of an equation (2) may contain an infinity of
coefficients == 0, in a solution (4), however, necessarily r, =0 for all but a
finite number of «’s. This fact implies in particular the ,insolvability” of such
a simple infinite system of equations as

Xie=s Yy 00w Ty i

Therefore we mean our above definition of a linear equation system to be
more practical from a certain point of view.

§ 3. Systems of linear equations over semi-simple rings.

Let R be an arbitrary ring. If [M, ¢] is a compatible system of linear
equations over R, then M” (the image of the module M under the homomor-
phism ¢) is a left ideal in R. Now we adopt the following

Definition 2. We say that an arbitrary ring R admits the classical
theory of linear equations provided the following two requirements are satis-
fied : '

1) Every compatible system [M, q] of linear equations over R possesses
a solution x.—r.€M* («€ A).
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2) All solutions in R of an arbitrary homogeneous®) system of linear-
equations over R can be obtained by a system of left-linear combinations over
R of a set of parameters with values freely chosen from R; in full details:
one can find a set of parameters t; (0 € D) and for each unknown x. (« € A)
a linear form

aloiylyy...)= /_\:d,,.jf.s (des € R)

den

over R in the parameters ts, d.; being zero with exception of a finite number of ’s
such that for any value-system t;€ R we get by Xo—gu(..., 15, ...) (¢€A)
a solution of the equation system considered, and every solution can be obtai-
ned so with a suitable value-system t; € R.

One can see immediately that this definition is in consonance with the
requirement that all solutions of a compatible system (2) of linear equations
over R may be obtained by a system of ,classic” formulae of the form (1).

Now we can formulate the main result of the present paper. This says
that a ring admits the classical theory of linear equations if and only if it is
semi-simple. As a matter of fact we shall prove more, namely the following
two theorems:

Theorem 1. A ring R is semi-simple if and only if every compatible
system [M, ¢) of linear equations over R possesses a solution X.=r.cM(e€A).

Theorem 2. If R is a semi-simple ring, then R admits the classical
theory of linear equations. In particular, any compatible system of linear equa-
tions over R possesses a solution in R.

PROOF. Let R be an arbitrary ring such that every compatible system
[M, ¢] of linear equations over R possesses a solution X, =r.€M? (€ A).
We show that then R is semi-simple. Let L be an arbitrary left ideal in R-
We have to show that L contains a right unit element e (see [2]). For this
purpose consider the linear equation system [M,q] defined in the following
way. Let R(m) be the free R-module Rx, of rank m= 1, and moreover, let
M= Lx,, (Ix,)* =1 (I€L). In others words we consider the system consis-
ting of all equations of the form

1y =1

where [ runs over all elements of L. By hypothesis this compatible system of
linear equations possesses a solution X, —e€ M? — L which shows that L has
a right unit element ¢, i. e. R is a semi-simple ring.

The proof of the remaining part of Theorem 1 as well as the proof of
Theorem 2 is based on the following

3) The system [M, ¢] is homogeneous if M¥ = (.
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LEMMA. If R is a semi-simple ring, then for every submodule M of the
free R-module R(m) a direct representation

(6) R(m)=M-+N
holds where N is a direct sum of monogenic submodules, namely:
U] N=2 tsixs} - (€ R)

D being a subset of the index set A.)

In order to prove this lemma let R be a semi-simple ring with unit
element
l=e+4+e-+ e
where the e;’s are pair-wise orthogonal idempotent elements of R such that
Re; is a minimal left ideal of R(i=1,2,...,h).") By ZORN’s lemma we select
a maximal subset X of the set of all elements e x.(¢€A,i=1,..,h) such
that for the submodule {X| generated by the set X

Mn{X}=0.
We prove the validity of (6) with N {X}. For this purpose we have only
to show that e;x;€ M-+ { X} for any A€ A and j=1,...,h. Now by the maxi-
mality of the set X we have
{eixi} n (M +{ X})+0.
But since |e;x;} is a minimal submodule of R(m), this implies
lejx) S (M+{X}),

i. e. e, €M+ {X}. So we have proved (6) with N={X}. As { X} is gene-
rated by a system of minimal submodules {e.x.}, it is a direct sum of a
subset of these submodules. Hence the representation (7) follows and, in
addition, we have that each s; is a sum of some e;’s. [Namely it holds e. g.
le, x5} + 1e.xs) = (e, +e.) x5}.] The proof of the Lemma is thus complete.
Now in order to complete the proof of Theorem 1 let [M, ¢] be acom-
patible system of linear equations over the semi-simple ring R. We have to
show that this equation system possesses a solution x.-—r.€M”. But this is
equivalent to the statement that the mapping ¢ can be extended to an R-
homomorphism ¢ of R(m) into M”. Now on basis of (6) this extension is
immediate: for an arbitrary element g¢ R(m) we have by (6) the unique re-
presentation
g=m-n (meM,neN)

and we define g” — mreM”.

%) For an element g £ R(m) we denote with {g} the monogenic submodule Rg of R(m).

) The unit element 1 of R obviously acts as an identical operator on R(m). — We
may assume in this case that the indeterminates x«(« € A) are elements of R(m), since by
replacing x« by 1x. all elements of R(m) remain unaltered.
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Now we are going to prove Theorem 2. Owing to Theorem 1 we have
only to show that the requirement 2) of Definition 2 is satisfied by a semi-
simple ring R. Let [M,¢] be an arbitrary homogeneous system of linear
equations over R, i. e.

(8) M? =0.

In order to get all solutions of this system we construct all possible exten-
sions ¢ of ¢. By (6), (7) and (8) each such extension ¢ is determined by
the system of elements

9) (ss xd) —1#ER (0 € D)

and, on the other hand, an arbitrary system of prescribed elements
t, € R (0 € D) induces by (9), (7), (6), (8) a well defined extension ¢ of ¢.
Since, moreover, by (6) and (7) we have in particular for the elements
X € R(m) a representation

(10) Xa = Mg +ﬁ?§ s (S5X5) (m. € M)

and as for the solution (4) of our equation system induced by the extended
homomorphism ¢ (oving to (10), (9), (8))

Fo== (-xa); — dei rd
deb

holds: we have obtained for all solutions of the homogeneous system under
consideration exactly the solving formulas in 2) of Def:mtton 2. This com-
pletes the proof of Theorem 2.

§ 4. Concluding remarks.

We make some further remarks on the obtained theory of linear equa-
tions over a semi-simple ring R. According to the classical theory of linear
equations over a skew field the cardinality of the unknowns in a compatible
system is equal to the sum of the rank of the system (i. e. the cardinality
of a maximal independent subsystem of equations of the system) and of the
cardinality of the parameters to be “freely chosen” in the classical solving
formulae (1). (See [5].) This rule admits sharp generalization for the case of
semi-simple rings which can be deduced from our relation (6). In order to
get this generalization we have to introduce the concept of absolute rank of
a submodule of R(m): If R is a semi-simple ring, then any submodule M
of a free R-module R(m) (of ordinary rank m) splits into a direct sum of
minimal R modules the cardinality of which is invariantly defined by M. We
call this cardinal number the absolute rank of M. If the ring R itself (consi-
dered as a free R-module of ordinary rank 1) has the absolute rank 4 —i.e.
R is a direct sum of & minimal left ideals, — then in particular the free
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module R(m) has an absolute rank Am. Now we define the rank of a com-
patible linear equation system [M, ¢] as the absolute rank of the submodule
M of R(m). Taking into account that in the representation (7) of N each s;
is a sum of some ¢; ’s, and that the absolute rank of N is equal to the
number of direct summands {e;x;} in the canonical representation of N which
one can obtain by replacing of {ssx,} in (7) by {e.x;} + {e;xs}) + {esxs} (if say,
Ss— e,+e,-+¢), we get by (6) the following generalization of the above
rule: If [M, ¢] is an arbitrary compatible system of linear equations with m
unknowns over a semi-simple ring R (R being a direct sum of /& minimal
left ideals), then the sum of the rank of the system and of the cardinality of
the parameters to be “freely cosen” in the classical solving formulae which
arise from a canonical representation of N in (7) is equal to Am.

Finally we mention the following immediate corollaries of our above
theorems.

COROLLARY 1. A compatible system [M,q] of linear equations over a
semi-simple ring R admits exactly one solution in R if and only if M — R(m)
i. e. the linear forms fz on the left hand-sides of the system generate the
whole free R-module which is spanned by all unknowns as indeterminates.

COROLLARY 2. An arbitrary (not necessarily compatible) system (2) of
linear equations over a semi-simple ring R admits a solution in R if and only
if any finite subsystem has a solution in R.

COROLLARY 3. Every system of linear equations over a semi-simple ring
contains a maximal solvable subsystem.
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