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Infinite rings without infinite proper subrings.

To Professor Laszld Kalmar on his 50th birthday.

By ISTVAN KOVACS in Debrecen.

§ 1. Introduction.

It is known that an infinite abelian group every proper subgroup of
which is finite is isomorphic to PRUFER’s quasicyclic group C(p=) [6].)*)
The corresponding problem for non-commutative groups has not been solved
hitherto. In the present note I give the solution of the analogous problem for
rings (Theorem 2). It turns out that all infinite rings every proper subring of
which is finite are given by certain subfields of the algebraic closure P, of
the prime field P, of prime characteristic p and by the zero-rings®) with
additive group C(p®). In particular any such ring is commutative and coun-
table.

We get, moreover, the following result (Theorem 1): Every proper left
ideal of an infinite ring R is finite if and only if R is a skew field or a
zero-ring with additive group C(p®). [Of course the same result holds also
for the case of right ideals.] The rings with additive group C(p®) from certain
point of view looking trivial, the latter can be considered as a characteriza-
tion of all infinite skew fields, just as the following theorem yields a cha-
racterization of all skew fields ([4]): a ring containing no proper left ideal
other than O is necessarily a skew field or a zero-ring with p elements (p a
prime). We make use of this theorem in the following section.

1) Numbers in brackets refer to the Bibliography at the end of this note.

2) Prorer’s quasicyclic group C(p®)is isomorphic to the additive group modulo 1
of all rational numbers with p-power denominators where p denotes a fixed prime number,

8) A ring R is called a zero-ring if ab—0 holds for any elements a, b of R. — We
remark that the only ring with C(p®) as additive group is the zero-ring.
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§ 2. The infinite rings every proper left ideal of which is finite.

In this section we prove the following

Theorem 1. Let R be an arbitrary infinite ring. Then every proper left
ideal of R is finite if and only if R is a skew field or a zero-ring with addi-
tive group C(p=).

PrOOF. Let R be an infinite ring every proper left ideal of which is
finite. If L is an arbitrary proper left ideal of R, then any element a€R
produces an endomorphism

X—ax (xeL)

of the additive group L'of L. So we have an antihomorphism of the ring R into
the endomorphism ring of L™. Since L is finite, also the endomorphism ring
of L™ is finite. Therefore the kerneljof the antihomomorphism in question (being
infinite) is equal to R. This means that RL =0, i. e, all elements of L are
right annihilators of R.

Now we form the union U of all proper left ideals in R. Thus U is a
left ideal of R for which

)] RU==0

holds. If U= R, then R is a zero-ring, so that any proper additive subgroup
of R must be finite. Hence, by [6], R is a zero-ring with additive group
C(p®).

We suppose in the sequel that U is a proper (i. e. a finite) left ideal
of R and we shall prove that in this case R is a skew field or, what is the
same, that U =0 (cf. the end of § 1).

First we remark that, by definition of U, R contains no proper left ideal
containing U other than U. Therefore the set of all right annihilators of R is
exactly U since this set is a two-sided ideal of R containing U (see (1)) and
R. R—=0 conradicts our hypothesis that the union U of all proper left ideals
in R is itself a proper left ideal of R. So we have obtained that U is a two-
sided ideal in R such that the (infinite) factor ring R/U contains no proper
left ideal other than 0. Hence R/'U is a skew field. Let ¢ be an element of R
such that the residue class e U is just the unit element of the skew field
R/U. Then Re is an infinite left ideal of R, i. e. Re= R and

(2) Ue=U.

On the other hand, since (1) implies U*= 0, we observe that each element
of the factor ring R U (i. e. each residue class of R modulo U) produces by
right multiplication, a well defined endomorphism of the additive group of U.
So we get a homomorphic representation of R/U by endomorphisms of the
additive group of U. But R/U is an infinite skew field, U is finite, conse-
quently this representation must be trivial: Ua=0 for any a€R. In parti-
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cular Ue =0 which gives together with (2) U-=0, completing so the proof
of Theorem 1.

§ 3. The infinite rings every proper subring of which is finite.

We denote by P, the algebraic closure of the prime field P, of prime
characteristic p. Let ¢ be an arbitrary prime number (also the case g=p is
allowed). The field P, contains exactly one subfield GF(p") with p** ele-
ments (k==0, 1, 2,...). We denote by P,(¢*) the union of all subfields G F(p),
GF(p?), GF(p"), .... Obviously P,(¢g*) is an infinite field all proper subrings
of which are given by the finite fields GF(p") (k=0,1,2,...) and by O.-
Now we have the following

Theorem 2. Every proper subring of an infinite ring R is finite if
and only if R is a field of type P,(q®) or a zero-ring with additive group
C(p®).

ProoF. Let R be an infinite ring every proper subring of which is finite.
By Theorem 1. we have only to show that if R is a skew field, then R is
isomorphic to a field P,(¢%).

First we observe that the skew field R has a characteristic p > 0, since the
rational number field has infinite proper subrings. We get, moreover, that
every element of R is algebraic over the prime field P, of R. In fact, if xc¢ R
would be transcendental over P,, then the polynomial ring P,[x] would be
an infinite proper subring of R. Thus, by a theorem of JACOBSON,') R is
commutative, i. e., R is a subfield of the algebraic closure P, of P,.

For an arbitrary subfield R of P, we denote by S(R) the set of all
positive integers m such that R contains a subfield GF(p™) with p” elements.
Then the subfield R of P, is uniquely determined by the set S(R), and for
a given set S of positive integers there exists a subfield R of P, with S(R) — S
if and only if S contains for each m € S all (positive) divisors of m and for each pair
méeS, m' €S the least common multiple of m, m” ([3], § 16). Now we have an
infinite subfield R of P,. Therefore also the set S(R) is infinite. Suppose that
S(R) contains an infinity of distinct prime numbers ¢, ¢s, ¢4, .... Then the
subfield R of R belonging to the set S(R’) which one obtains from S(R) by
deleting all element divisible by g, is an infinite proper subring of R. Since
this is impossible we have obtained that S(R) contains only a finite number
G5 -+, qa Of distinct primes. But then the infinite set S(R) contains for at
least one ¢, say ¢ —gq,, elements divisible by ¢* with arbitrarily large values
of k. This means that the infinite subfield R of P, with

S(R”) i {Q) ‘?3, q';» soe :

1) See Theorem 2 on p. 701 in [2]. For a simple elementary proof of this theorem
see [1].
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is a subfield of R,i.e. R—=R" — P,(q*), completing so the proof of Theo-
rem 2.

REMARKS. Theorem 2 implies the following result: if R is a ring every
proper subring of which possesses at most N elements (where N is a positive
integer, fixed for a given R), then R is finite. This answers the analogue of
a group-theoretic problem of G. GRONWALD.

Theorem 2 implies also the following theorem of T. SzeLe [5]: If a
ring R satisfies both chain conditions for subrings, then R is finite. As a matter
of fact, suppose there exists an infinite ring R satisfying both chain conditions
for subrings. Then a suitable infinite subring R of R contains no infinite
proper subring. But this contradicts our Theorem 2 since no ring covered
by Theorem 2 satisfies the ascending chain condition for subrings.

ADDED IN PROOF (March 8, 1955): Professor A. G. Kuros$ has ikindly
directed my attention to the fact that our Theorem 2 follows also from a
more general result of V. I. SNEJDMYULLER [Matf. Sbornik N. S. 27 (69)
(1950), 219—228|. — It may be supposed, however, that the present proof
retains some interest, being short and straighforward.
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