# Moore-automata in which the sign-equivalence is a Moore-congruence 

By I. BABCSÁNYI ${ }^{1}$ (Budapest) and A. NAGY ${ }^{2}$ (Budapest)


#### Abstract

In [3], we investigated Mealy-automata in which the output-equivalence is a congruence. In present paper we prove similar results for Moore-automata. We give a construction for strongly Moore-simple Moore-automata and, using this result, we construct all Moore-automata in which the sign equivalence is a Moore-congruence. These automata are exactly the Moore-automata which have strongly Moore-simple state-homomorphic image.


## 1. Preliminaries

A Mealy-automaton $\underline{A}=(A, X, Y, \delta, \lambda)$ is called a Moore-automaton if there is a single-valued mapping $\mu: A \rightarrow Y$ such that

$$
\lambda(a, x)=\mu(\delta(a, x))
$$

for every $a \in A, x \in X$. Thus, for a Moore-automaton, we use the notation $\underline{A}=(A, X, Y, \delta, \mu)$. The function $\mu$ is said to be the sign function of $\underline{A}$.

Conversely, for every quintuple $\underline{A}=(A, X, Y, \delta, \mu)$ with nonempty sets $A, X, Y$ and functions $\delta: A \times X \rightarrow A, \mu: A \rightarrow Y$ we can associate a Mealyautomaton $(A, X, Y, \delta, \lambda)$, where $\lambda$ is defined by

$$
\lambda(a, x)=\mu(\delta(a, x)) \quad(a \in A, x \in X)
$$

It is evident that this Mealy-automaton is a Moore-automaton with the sign function $\mu$. Moreover, $\lambda$ is determined by restriction of $\mu$ to the subset

$$
\delta(A, X)=\{\delta(a, x) ; a \in A, x \in X\}
$$

[^0]of $A$. Thus two sign functions define the same output function $\lambda$ if their restrictions to $\delta(A, X)$ are equal.

In this paper we suppose that the transition function $\delta$ and the output function $\lambda$ are extended as in [3].

Let $\underline{A}=(A, X, Y, \delta, \mu)$ and $\underline{A}^{\prime}=\left(A^{\prime}, X, Y, \delta^{\prime}, \mu^{\prime}\right)$ be Moore-automata. We say that a mapping $\alpha: A \longrightarrow A^{\prime}$ is a state-homomorphism of $\underline{A}$ into $\underline{A}^{\prime}$ if

$$
\alpha(\delta(a, x))=\delta^{\prime}(\alpha(a), x), \quad \mu(a)=\mu^{\prime}(\alpha(a))
$$

for all $a \in A$ and $x \in X$. If $\alpha$ is surjective then $\underline{A}^{\prime}$ is called a statehomomorphic image of $\underline{A}$. If $\alpha$ is bijective then $\bar{\alpha}$ is called a stateisomorphism and the automata $\underline{A}$ and $\underline{A}^{\prime}$ are said to be state-isomorphic.

An equivalence relation $\tau$ of a state set $A$ of a Moore-automaton $\underline{A}=(A, X, Y, \delta, \mu)$ is called a congruence on $\underline{A}$ if

$$
(a, b) \in \tau \Longrightarrow(a p, b p) \in \tau \quad \text { and } \quad \mu(a p)=\mu(b p)
$$

for all $a, b \in A$ and $p \in X^{+}$.
Let $\rho_{\max }$ denote the relation on the state set $A$ of a Moore-automaton $\underline{A}=(A, X, Y, \delta, \mu)$ defined by

$$
(a, b) \in \rho_{\max } \Longleftrightarrow \mu(a p)=\mu(b p) \quad \text { for all } p \in X^{+} \quad([3])
$$

We note that $\rho_{\max }$ is the greatest congruence of $\underline{A}$.
An equivalence relation $\tau$ of a state set $A$ of a Moore-automaton $\underline{A}=(A, X, Y, \delta, \mu)$ is called a Moore-congruence on $\underline{A}$ if

$$
(a, b) \in \tau \Longrightarrow(a p, b p) \in \tau \quad \text { and } \quad \mu(a)=\mu(b)
$$

for all $a, b \in A$ and $p \in X^{+}$. It is trivial that every Moore-congruence of a Moore-automaton $\underline{A}$ is a congruence of $\underline{A}$.

Let $\pi_{\text {max }}$ denote the relation on the state set $A$ of a Moore-automaton $\underline{A}=(A, X, Y, \delta, \mu)$ defined by

$$
(a, b) \in \pi_{\max } \Longleftrightarrow \mu(a p)=\mu(b p) \quad \text { for all } p \in X^{*} \quad([2])
$$

We note that $\pi_{\text {max }}$ is the greatest Moore-congruence of $\underline{A}$.
Denoting the identity relation of a Moore-automaton $\underline{A}$ by $\iota$, we say that $\underline{A}$ is Moore-simple if $\pi_{\max }=\iota$. As known a Mealy-automaton is called simple if $\rho_{\max }=\iota$. As $\pi_{\max } \subseteq \rho_{\max }$, every Moore-automaton which is simple is also Moore-simple. It is easy to construct an example which shows that the converse is not true, in general.

It can be proved that $\pi_{\max }$ is the greatest Moore-congruence of $\underline{A}$ and $\underline{A} / \pi_{\text {max }}$ is Moore-simple.

On a Moore-automaton $\underline{A}=(A, X, Y, \delta, \mu)$ define the following two equivalence relations

$$
\begin{gathered}
\pi=\{(a, b) \in A \times A: \mu(a)=\mu(b)\} \\
\rho=\{(a, b) \in A \times A:(\forall x \in X) \mu(\delta(a, x))=\mu(\delta(b, x))\} .
\end{gathered}
$$

$\pi$ is called the sign equivalence and $\rho$ is said to be the output equivalence of $\underline{A}$.

It is easy to see that $\pi_{\text {max }}=\rho_{\max } \cap \pi \subseteq \rho \cap \pi$.
For notations and notions not defined here, we refer to [3], [4], and [5].

## 2. Some remarks on Moore-automata with $\rho=\rho_{\max }$

In [3], we described Mealy-automata in which $\rho=\rho_{\max }$. In this paper we deal with Moore-automata in which $\pi=\pi_{\max }$. The following lemma shows that the Moore-automata with $\pi=\pi_{\max }$ form a subclass of the Mealy-automata with property $\rho=\rho_{\max }$.

Lemma 1. If $\pi=\pi_{\max }$ in a Moore-automaton then $\rho=\rho_{\max }$.
Proof. Let $\underline{A}=(A, X, Y, \delta, \mu)$ be a Moore-automaton with the property that $\pi=\pi_{\text {max }}$. If $(a, b) \in \rho$ then $(\delta(a, x), \delta(b, x)) \in \pi$ for all $x \in X$. In this case $\mu(a x q)=\mu(b x q)$, for all $x \in X$ and $q \in X^{*}$, which means that $(a, b) \in \rho_{\max }$.

Corollary 1. $\underline{A}=(A, X, Y, \delta, \mu)$ is a Moore-automaton with $\pi=\rho=\iota$ if and only if $\mu$ is injective and

$$
((\forall x \in X) \delta(a, x)=\delta(b, x)) \Longrightarrow a=b
$$

We note that $\rho=\rho_{\text {max }}$ implies $\pi=\pi_{\text {max }}$ if and only if $\pi \subseteq \rho$. Next we give two examples for Moore-automata in which $\rho=\rho_{\max }$ and, in the first example, $\pi \neq \pi_{\max }$, in the second example, $\pi=\pi_{\max }$. We remark that they determine the same Mealy-automaton, because their output-functions are equal.

Example 1. Let the Moore-automaton $\underline{A}=(A, X, Y, \delta, \mu)$ be defined by the following transition-output table with $A=\{1,2,3,4,5\}, X=\{x\}$, $Y=\left\{y_{1}, y_{2}, y_{3}\right\}:$

$$
\begin{array}{c|ccccc} 
& y_{1} & y_{1} & y_{2} & y_{2} & y_{3} \\
\hline & 1 & 2 & 3 & 4 & 5 \\
\hline x & 1 & 1 & 1 & 3 & 1
\end{array}
$$

It is easy to see that the $\pi$-classes are $\{1,2\},\{3,4\},\{5\}$, the $\pi_{\text {max }}-$ classes are $\{1,2\},\{3\},\{4\},\{5\}$, the $\rho_{\max ^{-}}$-classes are $\{1,2,3,5\},\{4\}$ and $\rho=\rho_{\max }$. This example shows that the converse of Lemma 1 is not true.

Example 2. Let the Moore-automaton $\underline{A}=(A, X, Y, \delta, \mu)$ be defined by the following transition-output table with $A=\{1,2,3,4,5\}, X=\{x\}$, $Y=\left\{y_{1}, y_{2}, y_{3}\right\}$ :

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 |  | 4 | 5 |
| $x$ | 1 | 1 | 1 |  | 3 | 1 |

It is easy to check that the $\pi$-classes are $\{1,2\},\{3,5\},\{4\}, \pi_{\max }=\pi$, the $\rho_{\text {max }}$-classes are $\{1,2,3,5\},\{4\}$ and $\rho=\rho_{\max }$.

The next construction plays a basic role in our investigations.
Construction I. Let $\underline{A}=(A, X, Y, \delta, \mu)$ be a Moore-automaton and $x_{0} \notin X$ be a symbol. For an arbitrary state $a$ of $\underline{A}$, define the mapping $\alpha_{a}$ of $X \cup\left\{x_{0}\right\}$ into $Y$ as follows:

$$
\alpha_{a}(x)= \begin{cases}\mu(\delta(a, x)) & \text { if } x \in X \\ \mu(a) & \text { if } x=x_{0}\end{cases}
$$

Let $\mathcal{A}=\left\{\alpha_{a} ; a \in A\right\}$ and, for every $a \in A$ and $x \in X$, let

$$
\delta^{\prime}\left(\alpha_{a}, x\right)=\alpha_{\delta(a, x)}, \quad \mu^{\prime}\left(\alpha_{a}\right)=\mu(a), \quad \lambda^{\prime}\left(\alpha_{a}, x\right)=\mu^{\prime}\left(\delta^{\prime}\left(\alpha_{a}, x\right)\right)
$$

Consider the following quintuple: $\underline{\mathcal{A}}=\left(\mathcal{A}, X, Y, \delta^{\prime}, \mu^{\prime}\right)$.
Lemma 2. For a Moore-automaton $\underline{A}=(A, X, Y, \delta, \mu)$ the following conditions are equivalent:
(i) The quintuple $\underline{\mathcal{A}}=\left(\mathcal{A}, X, Y, \delta^{\prime}, \mu^{\prime}\right)$ defined in Construction $I$ is a Moore-automaton;
(ii) $\rho \cap \pi=\pi_{\max }$ in $\underline{A}$;
(iii) $\rho \cap \pi \subseteq \rho_{\max }$ in $\underline{A}$;
(iv) The quintuple $\underline{\mathcal{A}}=\left(\mathcal{A}, X, Y, \delta^{\prime}, \mu^{\prime}\right)$ is isomorphic to the (Moore-simple) factor automaton $\underline{A} / \pi_{\max }$.

Proof. It is easy to see that the quintuple $\mathcal{A}=\left(\mathcal{A}, X, Y, \delta^{\prime}, \mu^{\prime}\right)$ is a Moore-automaton if and only if $\delta^{\prime}$ is well-defined, that is, for every $a, b \in A$, $\alpha_{a}=\alpha_{b}$ if and only if $\pi_{\max }[a]=\pi_{\text {max }}[b]$.
$(i) \Longrightarrow(i i)$ : Assume that $\delta^{\prime}$ is well-defined. Let $a, b \in A$ be arbitrary elements with $(a, b) \in \rho \cap \pi$. Then $\alpha_{a}=\alpha_{b}$ and so $(a, b) \in \pi_{\text {max }}$. Thus $\rho \cap \pi \subseteq \pi_{\text {max }}$. It is trivial that $\pi_{\max } \subseteq \rho \cap \pi$.
$(i i) \Longrightarrow(i):$ If $\pi_{\max }=\rho \cap \pi$ then $\alpha_{a}=\alpha_{b}$ implies $\alpha_{\delta(a, x)}=\alpha_{\delta(b, x)}$ for every $a, b \in A$ and $x \in X$. It means that $\delta^{\prime}$ is well-defined.
$(i i) \Longleftrightarrow(i i i)$ : It is trivial.
$(i) \Longrightarrow(i v)$ : If $\delta^{\prime}$ is well-defined then the mappping $\alpha_{a} \rightarrow \pi_{\max }[a]$ is a state-isomorphism of $\underline{\mathcal{A}}$ onto $\underline{A} / \pi_{\max }$.
$(i v) \Longrightarrow(i)$ : It is evident.
Corollary 2. If $\rho=\rho_{\max }$ in a Moore-automaton $\underline{A}=(A, X, Y, \delta, \mu)$ then the quintuple $\underline{\mathcal{A}}$ defined in Construction $I$ is a Moore-automaton.

Proof. As $\pi_{\max }=\rho_{\max } \cap \pi$, the condition $\rho=\rho_{\max }$ implies that $\pi_{\max }=\rho \cap \pi$. Hence, Lemma 2 proves our assertion.

As the following example shows the converse of Corollary 2 is not true.
Example 3. Let the Moore-automaton $\underline{A}=(A, X, Y, \delta, \mu)$ be defined by the following transition-output table with $A=\{1,2,3,4,5\}, X=\{x\}$, $Y=\left\{y_{1}, y_{2}\right\}:$

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 |  | 5 |
| $x$ | 2 | 2 | 4 | 4 |  |  |

It can be easily verified that the $\pi$-classes are $\{1,2,3\},\{4,5\}$, the $\rho$ classes are $\{1,2,5\},\{3,4\}$, the $\pi_{\text {max }}$-classes are $\{1,2\},\{3\},\{4\},\{5\}$, the $\rho_{\max }$-classes are $\{1,2\},\{3,4\},\{5\}$. Evidently, $\rho \cap \pi=\pi_{\max }$ but $\rho \neq \rho_{\max }$.

## 3. Strongly Moore-simple Moore-automata

Definition. A Moore-automaton will be called strongly Moore-simple if $\pi=\iota$, that is, the sign function is injective.

Theorem 1. For a Moore-automaton $\underline{A}=(A, X, Y, \delta, \mu)$ the following conditions are equivalent:
(i) The quintuple $\mathcal{A}=\left(\mathcal{A}, X, Y, \delta^{\prime}, \mu^{\prime}\right)$, where $\mathcal{A}, \delta^{\prime}$, $\mu^{\prime}$ are defined in Construction I is a Moore-automaton and $\mu^{\prime}$ is injective;
(ii) $\pi=\pi_{\text {max }}$ in $\underline{A}$;
(iii) $\underline{A} / \pi_{\max }$ is strongly Moore-simple.

Proof. $(i) \Longrightarrow(i i)$ : Assume that $\mathcal{\mathcal { A }}$ is a Moore-automaton such that $\mu^{\prime}$ is injective. Then, for arbitrary elements $a, b \in A$ with $(a, b) \in \pi$, we have

$$
\mu^{\prime}\left(\alpha_{a}\right)=\mu(a)=\mu(b)=\mu^{\prime}\left(\alpha_{b}\right)
$$

from which we get $\alpha_{a}=\alpha_{b}$. It means that $\mu(\delta(a, x))=\mu(\delta(b, x))$, that is, $(\delta(a, x), \delta(b, x)) \in \pi$ for every $x \in X$. From this it follows that $\pi$ is a Moore-congruence of $\underline{A}$. Hence $\pi=\pi_{\max }$.
$(i i) \Longrightarrow(i)$ : Assume that $\pi=\pi_{\max }$ is satisfied in a Moore-automaton A. We show that $\mu^{\prime}, \delta^{\prime}$ are well-defined and $\mu^{\prime}$ is injective. Assume $\alpha_{a}=\alpha_{b}$ for some $a, b \in A$. Then $\mu(a)=\alpha_{a}\left(x_{0}\right)=\alpha_{b}\left(x_{0}\right)=\mu(b)$. Thus $\mu^{\prime}\left(\alpha_{a}\right)=\mu^{\prime}\left(\alpha_{b}\right)$, that is, $\mu^{\prime}$ is well-defined. As $\pi$ is a congruence, $\mu(a)=$ $\mu(b)$ implies $\mu(\delta(a, x))=\mu(\delta(b, x))$ and $\mu(\delta(\delta(a, x), z))=\mu(\delta(\delta(b, x), z))$ for every $x, z \in X$. Consequently $\alpha_{\delta(a, x)}=\alpha_{\delta(b, x)}$, that is $\delta^{\prime}$ is well-defined. If $\mu^{\prime}\left(\alpha_{a}\right)=\mu^{\prime}\left(\alpha_{b}\right)$, for some $a, b \in A$ then $\mu(a)=\mu(b)$ which means that $(a, b) \in \pi=\pi_{\text {max }}$. From this it follows that, for every $x \in X$,

$$
\alpha_{a}(x)=\mu(\delta(a, x))=\mu(\delta(b, x))=\alpha_{b}(x),
$$

because $\pi$ is a congruence. Moreover, $\alpha_{a}\left(x_{0}\right)=\mu(a)=\mu(b)=\alpha_{b}\left(x_{0}\right)$. Thus $\alpha_{a}=\alpha_{b}$. Consequently, $\mu^{\prime}$ is injective and so (i) is satisfied.
(ii) $\Longleftrightarrow$ (iii): It is evident.

Next, we give a construction for strongly Moore-simple Moore-automata.

Construction II. Let $M$ be a non-empty subset of the set $Y^{X \cup\left\{x_{0}\right\}}$ of all mappings of $X \cup\left\{x_{0}\right\}$ into $Y$ such that $\alpha=\beta$ if and only if $\alpha\left(x_{0}\right)=\beta\left(x_{0}\right)$ for every $\alpha, \beta \in M$, where $X$ and $Y$ are arbitrary nonempty sets and $x_{0} \notin X$ is a symbol. Consider the Moore-automaton $\underline{M}=\left(M, X, Y, \delta^{*}, \mu^{*}\right)$, where $\delta^{*}$ is arbitrary and $\mu^{*}$ is defined as follows:

$$
\mu^{*}(\alpha)=\alpha\left(x_{0}\right), \quad \alpha \in M
$$

For non-empty sets $X$ and $Y$, denote $\mathcal{M}[X, Y]$ the set of all Mooreautomata defined in Construction II. It is evident that $\mathcal{A} \in \mathcal{M}[X, Y]$ supposing that $\pi=\pi_{\max }$ in the Moore-automaton $\underline{A}=(A, X, Y, \delta, \mu)$.

Theorem 2. A Moore-automaton is strongly Moore-simple if and only if it is state-isomorphic to a Moore-automaton $\underline{M}=\left(M, X, Y, \delta^{*}, \mu^{*}\right)$ defined in Construction II for some $X, Y, \delta^{*}$ and $\mu^{*}$.

Proof. It is trivial that Moore-automata defined in Construction II are strongly Moore-simple.

Conversely, let $\underline{A}=(A, X, Y, \delta, \mu)$ be an arbitrary strongly Mooresimple Moore-automaton. For this Moore-automaton consider $\mathcal{A}$ defined in Construction I. By Lemma $2, \underline{A}$ is isomorphic to $\underline{\mathcal{A}} \in \mathcal{M}[X, Y]$.

For a Moore-automaton $\underline{M}=\left(M, X, Y, \delta^{*}, \mu^{*}\right) \in \mathcal{M}[X, Y]$ consider the automaton $\left(\mu^{*}(M), X, \tilde{\delta}\right)$ without outputs, where $\tilde{\delta}$ is defined by

$$
\tilde{\delta}\left(\mu^{*}(\alpha), x\right)=\mu^{*}\left(\delta^{*}(\alpha, x)\right), \quad \alpha \in M, x \in X
$$

Lemma 3. $\underline{M}_{1}=\left(M_{1}, X, Y, \delta_{1}^{*}, \mu_{1}^{*}\right), \underline{M}_{2}=\left(M_{2}, X, Y, \delta_{2}^{*}, \mu_{2}^{*}\right) \in \mathcal{M}[X, Y]$ are state-isomorphic if and only if $\left(\mu_{1}^{*}\left(M_{1}\right), X, \tilde{\delta_{1}}\right)=\left(\mu_{2}^{*}\left(M_{2}\right), X, \tilde{\delta_{2}}\right)$.

Proof. Assume that $\underline{M}_{1}, \underline{M}_{2} \in \mathcal{M}[X, Y]$ are state-isomorphic. Let $\varphi$ be a state-isomorphism of $\underline{M}_{1}$ onto $\underline{M}_{2}$. Then, for every $\alpha \in M_{1}$, $\mu_{1}^{*}(\alpha)=\mu_{2}^{*}(\varphi(\alpha))$ which means that $\mu_{1}^{*}\left(M_{1}\right)=\mu_{2}^{*}\left(M_{2}\right)$. Furthermore

$$
\begin{aligned}
\tilde{\delta}_{1}\left(\mu_{1}^{*}(\alpha), x\right) & =\mu_{1}^{*}\left(\delta_{1}^{*}(\alpha, x)\right)=\mu_{2}^{*}\left(\varphi\left(\delta_{2}^{*}(\alpha, x)\right)\right) \\
& =\mu_{2}^{*}\left(\delta_{2}^{*}(\varphi(\alpha), x)\right)=\tilde{\delta}_{2}\left(\mu_{2}^{*}(\varphi(\alpha)), x\right)
\end{aligned}
$$

for all $\alpha \in M_{1}$ and $x \in X$. It is easy to see that $\tilde{\delta}_{1}=\tilde{\delta}_{2}$.
Conversely, assume that $\left(\mu_{1}^{*}\left(M_{1}\right), X, \tilde{\delta_{1}}\right)=\left(\mu_{2}^{*}\left(M_{2}\right), X, \tilde{\delta_{2}}\right)$ for some $\underline{M}_{1}, \underline{M}_{2} \in \mathcal{M}[X, Y]$. It can be proved that $\left(\mu_{2}^{*}\right)^{-1} \mu_{1}^{*}$ is a state isomorphism of $\underline{M}_{1}$ onto $\underline{M}_{2}$.

By the help of Lemma 3 we can give the number of all non-isomorphic automata of $\mathcal{M}[X, Y]$ in that case when $X$ and $Y$ are finite.

Corollary 3. If $X$ and $Y$ are finite sets then $\mathcal{M}[X, Y]$ contains

$$
\sum_{k=1}^{|Y|}\binom{|Y|}{k} k^{k|X|}
$$

non-isomorphic Moore-automata.
Proof. Let $X$ and $Y$ be arbitrary finite non-empty sets. By Lemma 3, the number of all non-isomorphic Moore-automata belonging to $\mathcal{M}[X, Y]$ equals the number of all automata $(B, X, \delta)$ defined by arbitrary $B \subseteq Y$ and $\delta: B \times X \rightarrow B$.

In [3] we construct all Moore-automata which are strongly simple Mealy-automata whose output function does not depend on the input signs ([1]). Theorem 2 of this paper gives all strongly Moore-simple Mooreautomata. The next theorem shows that these two classes of Mooreautomata are the same.

Theorem 3. A Moore-automaton is strongly Moore-simple if and only if it is a strongly simple Mealy-automaton whose output function does not depend on the input signs.

Proof. Let $\underline{M}=(M, X, Y, \delta, \lambda)$ be a strongly simple Mealy-automaton (defined in Construction 2 of [3]) whose output function does not depend on the input signs, that is, $M$ can be considered as a Moore-automaton with the sign function $\lambda$. Then the elements of $M$ are constant mappings of $X$ into $Y$. Let $x_{0} \notin X$ be a symbol and $M^{\prime}$ the set of all mappings $\alpha^{\prime}: X \cup\left\{x_{0}\right\} \rightarrow Y$ defined by $\alpha^{\prime}\left(x^{\prime}\right)=\alpha(x)$ for every $x^{\prime} \in$
$X \cup\left\{x_{0}\right\}, x \in X$. Consider the Moore-automaton $\underline{M}^{\prime}=\left(M^{\prime}, X, Y, \delta^{\prime}, \mu^{\prime}\right)$, where $\delta^{\prime}\left(\alpha^{\prime}, x\right)=(\delta(\alpha, x))^{\prime}$ and $\mu^{\prime}\left(\alpha^{\prime}\right)=\lambda(\alpha)$. Evidently, $\varphi: \alpha \rightarrow \alpha^{\prime}$ is a state-isomorphism of $\underline{M}$ onto $\underline{M}^{\prime}$. Conversely, assume that $\underline{M}^{\prime}=$ ( $\left.M^{\prime}, X, Y, \delta^{\prime}, \mu^{\prime}\right)$ is a strongly Moore-simple Moore automaton defined in Construction II for some $X, Y$ and $x_{0}$. Consider the Mealy-automaton $\underline{M}=(M, X, Y, \delta, \lambda)$, where

$$
M=\left\{\alpha: X \rightarrow Y ;(\forall x \in X) \alpha(x)=\alpha\left(x_{0}\right)\right\}
$$

$\delta(\alpha, x)=\beta$ if and only if $\delta^{\prime}\left(\alpha^{\prime}, x\right)=\beta^{\prime}$ and $\lambda(\alpha, x)=\alpha^{\prime}\left(x_{0}\right)$ for every $\alpha \in M, x \in X$. It is easy to see that $\underline{M}$ is a strongly simple Mealyautomaton whose output function does not depend on the input signs (see Construction 2 of [3]). We remember that then $\underline{M}$ can be considered as a Moore-automaton with sign function $\lambda$. Let $\phi$ be a mapping of $M^{\prime}$ onto $M$ defined by $\phi\left(\alpha^{\prime}\right)=\alpha$. It is evident that $\phi$ is a state-isomorphism of $\underline{M}^{\prime}$ onto $\underline{M}$.

## 4. Moore-automata with $\pi=\pi_{\max }$

Construction III. Let $\underline{M}=\left(M, X, Y, \delta^{*}, \mu^{*}\right)$ be a strongly Mooresimple Moore-automaton (defined in Construction II). Consider a family of sets $B_{m}, m \in M$ such that $B_{m} \cap B_{m^{\prime}}=\emptyset$ if $m \neq m^{\prime}$. For all $x \in X$ and $m \in M$, let $\varphi_{m, x}$ be a mapping of $B_{m}$ into $B_{\delta^{*}(m, x)}$. Let $B=\bigcup_{m \in M} B_{m}$. Define the functions $\delta^{\circ}: B \times X \rightarrow B$ and $\mu^{\circ}: B \rightarrow Y$ as follows. For arbitrary $b \in B_{m}$, let

$$
\delta^{\circ}(b, x)=\varphi_{m, x}(b) \quad \text { and } \quad \mu^{\circ}(b)=m\left(x_{0}\right) .
$$

It can be easily verified that $\delta^{\circ}$ and $\mu^{\circ}$ are well-defined and so $\underline{B}=$ $\left(B, X, Y, \delta^{\circ}, \mu^{\circ}\right)$ is a Moore-automaton.

The mapping $\varphi_{m, x}: B_{m} \rightarrow B_{\delta^{*}(m, x)}(m \in M, x \in X)$ can be extended by the following way. For all $m \in M, p \in X^{*}$ and $x \in X$, let

$$
\varphi_{m, p x}=\varphi_{m p, x} \circ \varphi_{m, p},
$$

where $m p$ here denotes the last letter of $\delta^{*}(m, p)$. It is clear that $\varphi_{m, p}(a)=$ $a p$ for all $a \in B_{m}$ and $p \in X^{*}$, where $a p$ denotes the last letter of $\delta^{\circ}(a, p)$.

Theorem 4. A Moore-automaton has the property that $\pi=\pi_{\max }$ if and only if it can be given by Construction III.

Proof. Let $B$ be a Moore-automaton defined in Construction III. We prove that $\pi=\pi_{\max }$. Assume $(a, b) \in \pi$ for some $a, b \in B$. Then
$a, b \in B_{m}$ for some $m \in M$. For arbitrary $p \in X^{*}$ and $x \in X$,

$$
\begin{gathered}
\mu^{\circ}(a p x)=\mu^{\circ}\left(\delta^{\circ}(a p, x)\right)=\mu^{\circ}\left(\varphi_{m p, x} \circ \varphi_{m p}(a)\right)=\mu^{\circ}\left(\varphi_{m, p x}(a)\right) \\
=\mu^{\circ}\left(\varphi_{m, p x}(b)\right)=\mu^{\circ}\left(\varphi_{m p, x} \circ \varphi_{m p}(b)\right)=\mu^{\circ}\left(\delta^{\circ}(a p, x)\right)=\mu^{\circ}(b p x) .
\end{gathered}
$$

Thus $(a, b) \in \pi_{\text {max }}$ which implies $\pi=\pi_{\text {max }}$.
Conversely, assume that $\pi=\pi_{\text {max }}$ in a Moore-automaton $\underline{A}=(A, X$, $Y, \delta, \mu)$. By Theorem 1 and Lemma $2, \mathcal{A}=\left(\mathcal{A}, X, Y, \delta^{\prime}, \mu^{\prime}\right)$ is a Mooreautomaton which is state-isomorphic to the strongly Moore-simple Mooreautomaton $\underline{A} / \pi_{\max }$. Using Construction III for $\underline{M}=\underline{\mathcal{A}}$, consider the Moore-automaton $\underline{B}=\left(B, X, Y, \delta^{\circ}, \mu^{\circ}\right)$ such that $B_{\alpha_{a}}=\pi_{\max }[a]$ and $\varphi_{\alpha_{a}, x}$ defined by $\varphi_{\alpha_{a}, x}(b)=\delta(b, x)$ for arbitrary $a \in A, b \in B_{\alpha_{a}}, x \in X$. It is easy to see that $A=B, \delta=\delta^{\circ}$ and $\mu=\mu^{\circ}$. Thus $\underline{A}=\underline{B}$.

## References

[1] A. ÁdÁm, On the question of description of the behaviour of finite automata, Studia Sci. Math. Hungar. 13 (1978), 105-124.
[2] I. Babcsányi, A. Nagy and F. Wettl, Indistinguishable state pairs in strongly connected Moore-automata, PU.M.A. Ser. A 2 (1991), 15-24.
[3] I. Babcsányi and A. Nagy, Mealy-automata in which the output-equivalence is a congruence, Acta Cybernetica 11 (1994), 121-126.
[4] F. Gécseg and I. PeÁk, Algebraic Theory of Automata, Akadémiai Kiadó, Budapest, 1972.
[5] G. SzÁsz, Introduction to Lattice Theory, Academic Press, New York-London, 1963.
I. BABCSÁNYI AND A. NAGY

DEPARTMENT OF MATHEMATICS
TRANSPORT ENGINEERING FACULTY
TECHNICAL UNIVERSITY OF BUDAPEST
H-1111 BUDAPEST, MÜEGYETEM RKP. 9.
HUNGARY
(Received January 31, 1995; revised March 28, 1995)


[^0]:    ${ }^{1}$ Supported by the Hungarian National Foundation for Scientific Research (OTKA) grant No. 7608.
    ${ }^{2}$ Supported by the Hungarian National Foundation for Scientific Research (OTKA) grant No. 1903.

