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Moore-automata in which the sign-equivalence
is a Moore-congruence

By I. BABCSÁNYI1 (Budapest) and A. NAGY2 (Budapest)

Abstract. In [3], we investigated Mealy-automata in which the output-equivalen-
ce is a congruence. In present paper we prove similar results for Moore-automata. We
give a construction for strongly Moore-simple Moore-automata and, using this result,
we construct all Moore-automata in which the sign equivalence is a Moore-congruence.
These automata are exactly the Moore-automata which have strongly Moore-simple
state-homomorphic image.

1. Preliminaries

A Mealy-automaton A = (A, X, Y, δ, λ) is called a Moore-automaton
if there is a single-valued mapping µ : A → Y such that

λ(a, x) = µ(δ(a, x))

for every a ∈ A, x ∈ X. Thus, for a Moore-automaton, we use the notation
A = (A,X, Y, δ, µ). The function µ is said to be the sign function of A.

Conversely, for every quintuple A = (A,X, Y, δ, µ) with nonempty sets
A,X, Y and functions δ : A×X → A, µ : A → Y we can associate a Mealy-
automaton (A,X, Y, δ, λ), where λ is defined by

λ(a, x) = µ(δ(a, x)) (a ∈ A, x ∈ X).

It is evident that this Mealy-automaton is a Moore-automaton with the
sign function µ. Moreover, λ is determined by restriction of µ to the subset

δ(A, X) = {δ(a, x); a ∈ A, x ∈ X}
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of A. Thus two sign functions define the same output function λ if their
restrictions to δ(A,X) are equal.

In this paper we suppose that the transition function δ and the output
function λ are extended as in [3].

Let A = (A,X, Y, δ, µ) and A′ = (A′, X, Y, δ′, µ′) be Moore-automata.
We say that a mapping α : A −→ A′ is a state-homomorphism of A into
A′ if

α(δ(a, x)) = δ′(α(a), x), µ(a) = µ′(α(a))

for all a ∈ A and x ∈ X. If α is surjective then A′ is called a state-
homomorphic image of A. If α is bijective then α is called a state-
isomorphism and the automata A and A′ are said to be state-isomorphic.

An equivalence relation τ of a state set A of a Moore-automaton
A = (A,X, Y, δ, µ) is called a congruence on A if

(a, b) ∈ τ =⇒ (ap, bp) ∈ τ and µ(ap) = µ(bp)

for all a, b ∈ A and p ∈ X+.

Let ρmax denote the relation on the state set A of a Moore-automaton
A = (A,X, Y, δ, µ) defined by

(a, b) ∈ ρmax ⇐⇒ µ(ap) = µ(bp) for all p ∈ X+ ([3]).

We note that ρmax is the greatest congruence of A.

An equivalence relation τ of a state set A of a Moore-automaton
A = (A,X, Y, δ, µ) is called a Moore-congruence on A if

(a, b) ∈ τ =⇒ (ap, bp) ∈ τ and µ(a) = µ(b)

for all a, b ∈ A and p ∈ X+. It is trivial that every Moore-congruence of a
Moore-automaton A is a congruence of A.

Let πmax denote the relation on the state set A of a Moore-automaton
A = (A,X, Y, δ, µ) defined by

(a, b) ∈ πmax ⇐⇒ µ(ap) = µ(bp) for all p ∈ X∗ ([2]).

We note that πmax is the greatest Moore-congruence of A.

Denoting the identity relation of a Moore-automaton A by ι, we say
that A is Moore-simple if πmax = ι. As known a Mealy-automaton is
called simple if ρmax = ι. As πmax ⊆ ρmax, every Moore-automaton which
is simple is also Moore-simple. It is easy to construct an example which
shows that the converse is not true, in general.
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It can be proved that πmax is the greatest Moore-congruence of A and
A/πmax is Moore-simple.

On a Moore-automaton A = (A, X, Y, δ, µ) define the following two
equivalence relations

π = {(a, b) ∈ A×A : µ(a) = µ(b)},
ρ = {(a, b) ∈ A×A : (∀x ∈ X) µ(δ(a, x)) = µ(δ(b, x))}.

π is called the sign equivalence and ρ is said to be the output equivalence
of A.

It is easy to see that πmax = ρmax ∩ π ⊆ ρ ∩ π.

For notations and notions not defined here, we refer to [3], [4], and [5].

2. Some remarks on Moore-automata with ρ = ρmax

In [3], we described Mealy-automata in which ρ = ρmax. In this paper
we deal with Moore-automata in which π = πmax. The following lemma
shows that the Moore-automata with π = πmax form a subclass of the
Mealy-automata with property ρ = ρmax.

Lemma 1. If π = πmax in a Moore-automaton then ρ = ρmax.

Proof. Let A = (A,X, Y, δ, µ) be a Moore-automaton with the prop-
erty that π = πmax. If (a, b) ∈ ρ then (δ(a, x), δ(b, x)) ∈ π for all x ∈ X.
In this case µ(axq) = µ(bxq), for all x ∈ X and q ∈ X∗, which means that
(a, b) ∈ ρmax. ¤

Corollary 1. A = (A,X, Y, δ, µ) is a Moore-automaton with π = ρ = ι
if and only if µ is injective and

((∀x ∈ X) δ(a, x) = δ(b, x)) =⇒ a = b.

We note that ρ = ρmax implies π = πmax if and only if π ⊆ ρ. Next we
give two examples for Moore-automata in which ρ = ρmax and, in the first
example, π 6= πmax, in the second example, π = πmax. We remark that
they determine the same Mealy-automaton, because their output-functions
are equal.

Example 1. Let the Moore-automaton A = (A, X, Y, δ, µ) be defined
by the following transition-output table with A = {1, 2, 3, 4, 5}, X = {x},
Y = {y1, y2, y3}:

y1 y1 y2 y2 y3

1 2 3 4 5
x 1 1 1 3 1
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It is easy to see that the π-classes are {1, 2}, {3, 4}, {5}, the πmax-
classes are {1, 2}, {3}, {4}, {5}, the ρmax-classes are {1, 2, 3, 5}, {4} and
ρ = ρmax. This example shows that the converse of Lemma 1 is not true.

Example 2. Let the Moore-automaton A = (A, X, Y, δ, µ) be defined
by the following transition-output table with A = {1, 2, 3, 4, 5}, X = {x},
Y = {y1, y2, y3}:

y1 y1 y2 y3 y2

1 2 3 4 5
x 1 1 1 3 1

It is easy to check that the π-classes are {1, 2}, {3, 5}, {4}, πmax = π,
the ρmax-classes are {1, 2, 3, 5}, {4} and ρ = ρmax.

The next construction plays a basic role in our investigations.

Construction I. Let A = (A,X, Y, δ, µ) be a Moore-automaton and
x0 /∈ X be a symbol. For an arbitrary state a of A, define the mapping αa

of X ∪ {x0} into Y as follows:

αa(x) =
{

µ(δ(a, x)) if x ∈ X,

µ(a) if x = x0.

Let A = {αa; a ∈ A} and, for every a ∈ A and x ∈ X, let

δ′(αa, x) = αδ(a,x), µ′(αa) = µ(a), λ′(αa, x) = µ′(δ′(αa, x)).

Consider the following quintuple: A = (A, X, Y, δ′, µ′).

Lemma 2. For a Moore-automaton A = (A,X, Y, δ, µ) the following
conditions are equivalent:

(i) The quintuple A = (A, X, Y, δ′, µ′) defined in Construction
I is a Moore-automaton;

(ii) ρ ∩ π = πmax in A;

(iii) ρ ∩ π ⊆ ρmax in A;

(iv) The quintuple A = (A, X, Y, δ′, µ′) is isomorphic to the
(Moore-simple) factor automaton A/πmax.

Proof. It is easy to see that the quintuple A = (A, X, Y, δ′, µ′) is a
Moore-automaton if and only if δ′ is well-defined, that is, for every a, b ∈ A,
αa = αb if and only if πmax[a] = πmax[b].

(i) =⇒ (ii): Assume that δ′ is well-defined. Let a, b ∈ A be arbitrary
elements with (a, b) ∈ ρ ∩ π. Then αa = αb and so (a, b) ∈ πmax. Thus
ρ ∩ π ⊆ πmax. It is trivial that πmax ⊆ ρ ∩ π.
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(ii) =⇒ (i): If πmax = ρ ∩ π then αa = αb implies αδ(a,x) = αδ(b,x)

for every a, b ∈ A and x ∈ X. It means that δ′ is well-defined.
(ii) ⇐⇒ (iii): It is trivial.
(i) =⇒ (iv): If δ′ is well-defined then the mappping αa → πmax[a] is

a state-isomorphism of A onto A/πmax.
(iv) =⇒ (i): It is evident. ¤
Corollary 2. If ρ = ρmax in a Moore-automaton A = (A,X, Y, δ, µ)

then the quintuple A defined in Construction I is a Moore-automaton.

Proof. As πmax = ρmax ∩ π, the condition ρ = ρmax implies that
πmax = ρ ∩ π. Hence, Lemma 2 proves our assertion. ¤

As the following example shows the converse of Corollary 2 is not true.

Example 3. Let the Moore-automaton A = (A, X, Y, δ, µ) be defined
by the following transition-output table with A = {1, 2, 3, 4, 5}, X = {x},
Y = {y1, y2}:

y1 y1 y1 y2 y2

1 2 3 4 5
x 2 2 4 4 3

It can be easily verified that the π-classes are {1, 2, 3}, {4, 5}, the ρ-
classes are {1, 2, 5}, {3, 4}, the πmax-classes are {1, 2}, {3}, {4}, {5}, the
ρmax-classes are {1, 2}, {3, 4}, {5}. Evidently, ρ∩ π = πmax but ρ 6= ρmax.

3. Strongly Moore-simple Moore-automata

Definition. A Moore-automaton will be called strongly Moore-simple
if π = ι, that is, the sign function is injective.

Theorem 1. For a Moore-automaton A = (A, X, Y, δ, µ) the following
conditions are equivalent:

(i) The quintuple A = (A, X, Y, δ′, µ′), where A, δ′, µ′ are de-
fined in Construction I is a Moore-automaton and µ′ is in-
jective;

(ii) π = πmax in A;

(iii) A/πmax is strongly Moore-simple.

Proof. (i) =⇒ (ii): Assume that A is a Moore-automaton such
that µ′ is injective. Then, for arbitrary elements a, b ∈ A with (a, b) ∈ π,
we have

µ′(αa) = µ(a) = µ(b) = µ′(αb)
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from which we get αa = αb. It means that µ(δ(a, x)) = µ(δ(b, x)), that is,
(δ(a, x), δ(b, x)) ∈ π for every x ∈ X. From this it follows that π is a
Moore-congruence of A. Hence π = πmax.

(ii) =⇒ (i): Assume that π = πmax is satisfied in a Moore-automaton
A. We show that µ′, δ′ are well-defined and µ′ is injective. Assume
αa = αb for some a, b ∈ A. Then µ(a) = αa(x0) = αb(x0) = µ(b). Thus
µ′(αa) = µ′(αb), that is, µ′ is well-defined. As π is a congruence, µ(a) =
µ(b) implies µ(δ(a, x)) = µ(δ(b, x)) and µ(δ(δ(a, x), z)) = µ(δ(δ(b, x), z))
for every x, z ∈ X. Consequently αδ(a,x) = αδ(b,x), that is δ′ is well-defined.
If µ′(αa) = µ′(αb), for some a, b ∈ A then µ(a) = µ(b) which means that
(a, b) ∈ π = πmax. From this it follows that, for every x ∈ X,

αa(x) = µ(δ(a, x)) = µ(δ(b, x)) = αb(x),

because π is a congruence. Moreover, αa(x0) = µ(a) = µ(b) = αb(x0).
Thus αa = αb. Consequently, µ′ is injective and so (i) is satisfied.

(ii) ⇐⇒ (iii): It is evident. ¤
Next, we give a construction for strongly Moore-simple Moore-auto-

mata.

Construction II. Let M be a non-empty subset of the set Y X∪{x0}
of all mappings of X ∪ {x0} into Y such that α = β if and only if
α(x0) = β(x0) for every α, β ∈ M , where X and Y are arbitrary non-
empty sets and x0 /∈ X is a symbol. Consider the Moore-automaton
M = (M, X, Y, δ∗, µ∗), where δ∗ is arbitrary and µ∗ is defined as follows:

µ∗(α) = α(x0), α ∈ M.

For non-empty sets X and Y , denote M[X, Y ] the set of all Moore-
automata defined in Construction II. It is evident that A ∈ M[X, Y ]
supposing that π = πmax in the Moore-automaton A = (A, X, Y, δ, µ).

Theorem 2. A Moore-automaton is strongly Moore-simple if and only
if it is state-isomorphic to a Moore-automaton M = (M, X, Y, δ∗, µ∗) de-
fined in Construction II for some X, Y , δ∗ and µ∗.

Proof. It is trivial that Moore-automata defined in Construction II
are strongly Moore-simple.

Conversely, let A = (A,X, Y, δ, µ) be an arbitrary strongly Moore-
simple Moore-automaton. For this Moore-automaton consider A defined
in Construction I. By Lemma 2, A is isomorphic to A ∈M[X,Y ]. ¤

For a Moore-automaton M = (M, X, Y, δ∗, µ∗) ∈ M[X, Y ] consider
the automaton (µ∗(M), X, δ̃) without outputs, where δ̃ is defined by

δ̃(µ∗(α), x) = µ∗(δ∗(α, x)), α ∈ M, x ∈ X.
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Lemma 3. M1=(M1, X, Y, δ∗1 , µ∗1), M2=(M2, X, Y, δ∗2 , µ∗2)∈M[X, Y ]
are state-isomorphic if and only if (µ∗1(M1), X, δ̃1) = (µ∗2(M2), X, δ̃2).

Proof. Assume that M1, M2 ∈M[X, Y ] are state-isomorphic. Let
ϕ be a state-isomorphism of M1 onto M2. Then, for every α ∈ M1,
µ∗1(α) = µ∗2(ϕ(α)) which means that µ∗1(M1) = µ∗2(M2). Furthermore

δ̃1(µ∗1(α), x) = µ∗1(δ
∗
1(α, x)) = µ∗2(ϕ(δ∗2(α, x)))

= µ∗2(δ
∗
2(ϕ(α), x)) = δ̃2(µ∗2(ϕ(α)), x)

for all α ∈ M1 and x ∈ X. It is easy to see that δ̃1 = δ̃2.
Conversely, assume that (µ∗1(M1), X, δ̃1) = (µ∗2(M2), X, δ̃2) for some

M1,M2 ∈M[X, Y ]. It can be proved that (µ∗2)
−1µ∗1 is a state isomorphism

of M1 onto M2. ¤
By the help of Lemma 3 we can give the number of all non-isomorphic

automata of M[X, Y ] in that case when X and Y are finite.

Corollary 3. If X and Y are finite sets then M[X,Y ] contains

|Y |∑

k=1

(|Y |
k

)
kk|X|

non-isomorphic Moore-automata.

Proof. Let X and Y be arbitrary finite non-empty sets. By Lem-
ma 3, the number of all non-isomorphic Moore-automata belonging to
M[X, Y ] equals the number of all automata (B, X, δ) defined by arbitrary
B ⊆ Y and δ : B ×X → B. ¤

In [3] we construct all Moore-automata which are strongly simple
Mealy-automata whose output function does not depend on the input signs
([1]). Theorem 2 of this paper gives all strongly Moore-simple Moore-
automata. The next theorem shows that these two classes of Moore-
automata are the same.

Theorem 3. A Moore-automaton is strongly Moore-simple if and only
if it is a strongly simple Mealy-automaton whose output function does not
depend on the input signs.

Proof. Let M = (M,X, Y, δ, λ) be a strongly simple Mealy-auto-
maton (defined in Construction 2 of [3]) whose output function does not
depend on the input signs, that is, M can be considered as a Moore-auto-
maton with the sign function λ. Then the elements of M are constant
mappings of X into Y . Let x0 /∈ X be a symbol and M ′ the set of all
mappings α′ : X ∪ {x0} → Y defined by α′(x′) = α(x) for every x′ ∈
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X ∪ {x0}, x ∈ X. Consider the Moore-automaton M ′ = (M ′, X, Y, δ′, µ′),
where δ′(α′, x) = (δ(α, x))′ and µ′(α′) = λ(α). Evidently, ϕ : α → α′

is a state-isomorphism of M onto M ′. Conversely, assume that M ′ =
(M ′, X, Y, δ′, µ′) is a strongly Moore-simple Moore automaton defined in
Construction II for some X, Y and x0. Consider the Mealy-automaton
M = (M, X, Y, δ, λ), where

M = {α : X → Y ; (∀x ∈ X) α(x) = α(x0)},
δ(α, x) = β if and only if δ′(α′, x) = β′ and λ(α, x) = α′(x0) for every
α ∈ M, x ∈ X. It is easy to see that M is a strongly simple Mealy-
automaton whose output function does not depend on the input signs (see
Construction 2 of [3]). We remember that then M can be considered as a
Moore-automaton with sign function λ. Let φ be a mapping of M ′ onto
M defined by φ(α′) = α. It is evident that φ is a state-isomorphism of M ′

onto M . ¤

4. Moore-automata with π = πmax

Construction III. Let M = (M, X, Y, δ∗, µ∗) be a strongly Moore-
simple Moore-automaton (defined in Construction II). Consider a family
of sets Bm, m ∈ M such that Bm ∩Bm′ = ∅ if m 6= m′. For all x ∈ X and
m ∈ M , let ϕm,x be a mapping of Bm into Bδ∗(m,x). Let B =

⋃
m∈M Bm.

Define the functions δ◦ : B × X → B and µ◦ : B → Y as follows. For
arbitrary b ∈ Bm, let

δ◦(b, x) = ϕm,x(b) and µ◦(b) = m(x0).

It can be easily verified that δ◦ and µ◦ are well-defined and so B =
(B, X, Y, δ◦, µ◦) is a Moore-automaton.

The mapping ϕm,x : Bm → Bδ∗(m,x) (m ∈ M, x ∈ X) can be ex-
tended by the following way. For all m ∈ M , p ∈ X∗ and x ∈ X, let

ϕm,px = ϕmp,x ◦ ϕm,p ,

where mp here denotes the last letter of δ∗(m, p). It is clear that ϕm,p(a) =
ap for all a ∈ Bm and p ∈ X∗, where ap denotes the last letter of δ◦(a, p).

Theorem 4. A Moore-automaton has the property that π = πmax if
and only if it can be given by Construction III.

Proof. Let B be a Moore-automaton defined in Construction III.
We prove that π = πmax. Assume (a, b) ∈ π for some a, b ∈ B. Then
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a, b ∈ Bm for some m ∈ M . For arbitrary p ∈ X∗ and x ∈ X,

µ◦(apx) = µ◦(δ◦(ap, x)) = µ◦(ϕmp,x ◦ ϕmp(a)) = µ◦(ϕm,px(a))

= µ◦(ϕm,px(b)) = µ◦(ϕmp,x ◦ ϕmp(b)) = µ◦(δ◦(ap, x)) = µ◦(bpx).

Thus (a, b) ∈ πmax which implies π = πmax.
Conversely, assume that π = πmax in a Moore-automaton A = (A,X,

Y, δ, µ). By Theorem 1 and Lemma 2, A = (A, X, Y, δ′, µ′) is a Moore-
automaton which is state-isomorphic to the strongly Moore-simple Moore-
automaton A/πmax. Using Construction III for M = A, consider the
Moore-automaton B = (B, X, Y, δ◦, µ◦) such that Bαa

= πmax[a] and
ϕαa,x defined by ϕαa,x(b) = δ(b, x) for arbitrary a ∈ A, b ∈ Bαa , x ∈ X.
It is easy to see that A = B, δ = δ◦ and µ = µ◦. Thus A = B. ¤
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