Publ. Math. Debrecen 47 / 3-4 (1995), 393–401

Moore-automata in which the sign-equivalence is a Moore-congruence

By I. BABCSÁNYI¹ (Budapest) and A. NAGY² (Budapest)

Abstract. In [3], we investigated Mealy-automata in which the output-equivalence is a congruence. In present paper we prove similar results for Moore-automata. We give a construction for strongly Moore-simple Moore-automata and, using this result, we construct all Moore-automata in which the sign equivalence is a Moore-congruence. These automata are exactly the Moore-automata which have strongly Moore-simple state-homomorphic image.

1. Preliminaries

A Mealy-automaton $\underline{A} = (A, X, Y, \delta, \lambda)$ is called a *Moore-automaton* if there is a single-valued mapping $\mu : A \to Y$ such that

$$\lambda(a, x) = \mu(\delta(a, x))$$

for every $a \in A$, $x \in X$. Thus, for a Moore-automaton, we use the notation $\underline{A} = (A, X, Y, \delta, \mu)$. The function μ is said to be the sign function of \underline{A} .

Conversely, for every quintuple $\underline{A} = (A, X, Y, \delta, \mu)$ with nonempty sets A, X, Y and functions $\delta : A \times X \to A, \mu : A \to Y$ we can associate a Mealyautomaton $(A, X, Y, \delta, \lambda)$, where λ is defined by

$$\lambda(a,x)=\mu(\delta(a,x))\quad (a\in A,\ x\in X).$$

It is evident that this Mealy-automaton is a Moore-automaton with the sign function μ . Moreover, λ is determined by restriction of μ to the subset

$$\delta(A, X) = \{\delta(a, x); a \in A, x \in X\}$$

¹Supported by the Hungarian National Foundation for Scientific Research (OTKA) grant No. 7608.

 $^{^2 \}mathrm{Supported}$ by the Hungarian National Foundation for Scientific Research (OTKA) grant No. 1903.

of A. Thus two sign functions define the same output function λ if their restrictions to $\delta(A, X)$ are equal.

In this paper we suppose that the transition function δ and the output function λ are extended as in [3].

Let $\underline{A} = (A, X, Y, \delta, \mu)$ and $\underline{A}' = (A', X, Y, \delta', \mu')$ be Moore-automata. We say that a mapping $\alpha : A \longrightarrow A'$ is a *state-homomorphism* of \underline{A} into \underline{A}' if

$$\alpha(\delta(a, x)) = \delta'(\alpha(a), x), \quad \mu(a) = \mu'(\alpha(a))$$

for all $a \in A$ and $x \in X$. If α is surjective then \underline{A}' is called a *state-homomorphic image* of \underline{A} . If α is bijective then α is called a *state-isomorphism* and the automata \underline{A} and \underline{A}' are said to be *state-isomorphic*.

An equivalence relation τ of a state set A of a Moore-automaton $\underline{A} = (A, X, Y, \delta, \mu)$ is called a *congruence* on \underline{A} if

$$(a,b) \in \tau \implies (ap,bp) \in \tau \text{ and } \mu(ap) = \mu(bp)$$

for all $a, b \in A$ and $p \in X^+$.

Let ρ_{\max} denote the relation on the state set A of a Moore-automaton $\underline{A} = (A, X, Y, \delta, \mu)$ defined by

$$(a,b) \in \rho_{\max} \iff \mu(ap) = \mu(bp) \text{ for all } p \in X^+$$
 ([3])

We note that ρ_{max} is the greatest congruence of <u>A</u>.

An equivalence relation τ of a state set A of a Moore-automaton $\underline{A} = (A, X, Y, \delta, \mu)$ is called a *Moore-congruence* on \underline{A} if

$$(a,b) \in \tau \implies (ap,bp) \in \tau \text{ and } \mu(a) = \mu(b)$$

for all $a, b \in A$ and $p \in X^+$. It is trivial that every Moore-congruence of a Moore-automaton <u>A</u> is a congruence of <u>A</u>.

Let π_{\max} denote the relation on the state set A of a Moore-automaton $\underline{A} = (A, X, Y, \delta, \mu)$ defined by

$$(a,b) \in \pi_{\max} \iff \mu(ap) = \mu(bp) \text{ for all } p \in X^*$$
 ([2]).

We note that π_{\max} is the greatest Moore-congruence of <u>A</u>.

Denoting the identity relation of a Moore-automaton <u>A</u> by ι , we say that <u>A</u> is Moore-simple if $\pi_{\max} = \iota$. As known a Mealy-automaton is called simple if $\rho_{\max} = \iota$. As $\pi_{\max} \subseteq \rho_{\max}$, every Moore-automaton which is simple is also Moore-simple. It is easy to construct an example which shows that the converse is not true, in general. It can be proved that π_{\max} is the greatest Moore-congruence of <u>A</u> and <u>A</u>/ π_{\max} is Moore-simple.

On a Moore-automaton $\underline{A} = (A, X, Y, \delta, \mu)$ define the following two equivalence relations

$$\pi = \{ (a, b) \in A \times A : \ \mu(a) = \mu(b) \},$$

$$\rho = \{(a,b) \in A \times A : (\forall x \in X) \ \mu(\delta(a,x)) = \mu(\delta(b,x))\}.$$

 π is called the *sign equivalence* and ρ is said to be the *output equivalence* of <u>A</u>.

It is easy to see that $\pi_{\max} = \rho_{\max} \cap \pi \subseteq \rho \cap \pi$.

For notations and notions not defined here, we refer to [3], [4], and [5].

2. Some remarks on Moore-automata with $\rho = \rho_{max}$

In [3], we described Mealy-automata in which $\rho = \rho_{\text{max}}$. In this paper we deal with Moore-automata in which $\pi = \pi_{\text{max}}$. The following lemma shows that the Moore-automata with $\pi = \pi_{\text{max}}$ form a subclass of the Mealy-automata with property $\rho = \rho_{\text{max}}$.

Lemma 1. If $\pi = \pi_{\text{max}}$ in a Moore-automaton then $\rho = \rho_{\text{max}}$.

PROOF. Let $\underline{A} = (A, X, Y, \delta, \mu)$ be a Moore-automaton with the property that $\pi = \pi_{\max}$. If $(a, b) \in \rho$ then $(\delta(a, x), \delta(b, x)) \in \pi$ for all $x \in X$. In this case $\mu(axq) = \mu(bxq)$, for all $x \in X$ and $q \in X^*$, which means that $(a, b) \in \rho_{\max}$.

Corollary 1. $\underline{A} = (A, X, Y, \delta, \mu)$ is a Moore-automaton with $\pi = \rho = \iota$ if and only if μ is injective and

$$((\forall x \in X) \ \delta(a, x) = \delta(b, x)) \implies a = b.$$

We note that $\rho = \rho_{\text{max}}$ implies $\pi = \pi_{\text{max}}$ if and only if $\pi \subseteq \rho$. Next we give two examples for Moore-automata in which $\rho = \rho_{\text{max}}$ and, in the first example, $\pi \neq \pi_{\text{max}}$, in the second example, $\pi = \pi_{\text{max}}$. We remark that they determine the same Mealy-automaton, because their output-functions are equal.

Example 1. Let the Moore-automaton $\underline{A} = (A, X, Y, \delta, \mu)$ be defined by the following transition-output table with $A = \{1, 2, 3, 4, 5\}, X = \{x\}, Y = \{y_1, y_2, y_3\}$:

	y_1	y_1	y_2	y_2	y_3
	1	2	3	4	5
\overline{x}	1	1	1	3	1

It is easy to see that the π -classes are $\{1,2\}$, $\{3,4\}$, $\{5\}$, the π_{\max} -classes are $\{1,2\}$, $\{3\}$, $\{4\}$, $\{5\}$, the ρ_{\max} -classes are $\{1,2,3,5\}$, $\{4\}$ and $\rho = \rho_{\max}$. This example shows that the converse of Lemma 1 is not true.

Example 2. Let the Moore-automaton $\underline{A} = (A, X, Y, \delta, \mu)$ be defined by the following transition-output table with $A = \{1, 2, 3, 4, 5\}, X = \{x\}, Y = \{y_1, y_2, y_3\}$:

It is easy to check that the π -classes are $\{1, 2\}$, $\{3, 5\}$, $\{4\}$, $\pi_{\max} = \pi$, the ρ_{\max} -classes are $\{1, 2, 3, 5\}$, $\{4\}$ and $\rho = \rho_{\max}$.

The next construction plays a basic role in our investigations.

Construction I. Let $\underline{A} = (A, X, Y, \delta, \mu)$ be a Moore-automaton and $x_0 \notin X$ be a symbol. For an arbitrary state a of \underline{A} , define the mapping α_a of $X \cup \{x_0\}$ into Y as follows:

$$\alpha_a(x) = \begin{cases} \mu(\delta(a, x)) & \text{if } x \in X, \\ \mu(a) & \text{if } x = x_0. \end{cases}$$

Let $\mathcal{A} = \{\alpha_a; a \in A\}$ and, for every $a \in A$ and $x \in X$, let

$$\delta'(\alpha_a, x) = \alpha_{\delta(a, x)}, \quad \mu'(\alpha_a) = \mu(a), \quad \lambda'(\alpha_a, x) = \mu'(\delta'(\alpha_a, x)).$$

Consider the following quintuple: $\underline{A} = (A, X, Y, \delta', \mu').$

Lemma 2. For a Moore-automaton $\underline{A} = (A, X, Y, \delta, \mu)$ the following conditions are equivalent:

- (i) The quintuple $\underline{A} = (A, X, Y, \delta', \mu')$ defined in Construction I is a Moore-automaton;
- (ii) $\rho \cap \pi = \pi_{\max}$ in <u>A</u>;
- (iii) $\rho \cap \pi \subseteq \rho_{\max}$ in <u>A</u>;
- (iv) The quintuple $\underline{A} = (A, X, Y, \delta', \mu')$ is isomorphic to the (Moore-simple) factor automaton $\underline{A}/\pi_{\text{max}}$.

PROOF. It is easy to see that the quintuple $\underline{\mathcal{A}} = (\mathcal{A}, X, Y, \delta', \mu')$ is a Moore-automaton if and only if δ' is well-defined, that is, for every $a, b \in A$, $\alpha_a = \alpha_b$ if and only if $\pi_{\max}[a] = \pi_{\max}[b]$.

(i) \implies (ii): Assume that δ' is well-defined. Let $a, b \in A$ be arbitrary elements with $(a, b) \in \rho \cap \pi$. Then $\alpha_a = \alpha_b$ and so $(a, b) \in \pi_{\max}$. Thus $\rho \cap \pi \subseteq \pi_{\max}$. It is trivial that $\pi_{\max} \subseteq \rho \cap \pi$.

396

(*ii*) \implies (*i*): If $\pi_{\max} = \rho \cap \pi$ then $\alpha_a = \alpha_b$ implies $\alpha_{\delta(a,x)} = \alpha_{\delta(b,x)}$ for every $a, b \in A$ and $x \in X$. It means that δ' is well-defined.

 $(ii) \iff (iii)$: It is trivial.

(i) \implies (iv): If δ' is well-defined then the mapping $\alpha_a \to \pi_{\max}[a]$ is a state-isomorphism of \underline{A} onto \underline{A}/π_{\max} .

 $(iv) \implies (i)$: It is evident.

Corollary 2. If $\rho = \rho_{\text{max}}$ in a Moore-automaton $\underline{A} = (A, X, Y, \delta, \mu)$ then the quintuple \underline{A} defined in Construction I is a Moore-automaton.

PROOF. As $\pi_{\max} = \rho_{\max} \cap \pi$, the condition $\rho = \rho_{\max}$ implies that $\pi_{\max} = \rho \cap \pi$. Hence, Lemma 2 proves our assertion.

As the following example shows the converse of Corollary 2 is not true.

Example 3. Let the Moore-automaton $\underline{A} = (A, X, Y, \delta, \mu)$ be defined by the following transition-output table with $A = \{1, 2, 3, 4, 5\}, X = \{x\}, Y = \{y_1, y_2\}$:

It can be easily verified that the π -classes are $\{1, 2, 3\}$, $\{4, 5\}$, the ρ classes are $\{1, 2, 5\}$, $\{3, 4\}$, the π_{\max} -classes are $\{1, 2\}$, $\{3\}$, $\{4\}$, $\{5\}$, the ρ_{\max} -classes are $\{1, 2\}$, $\{3, 4\}$, $\{5\}$. Evidently, $\rho \cap \pi = \pi_{\max}$ but $\rho \neq \rho_{\max}$.

3. Strongly Moore-simple Moore-automata

Definition. A Moore-automaton will be called strongly Moore-simple if $\pi = \iota$, that is, the sign function is injective.

Theorem 1. For a Moore-automaton $\underline{A} = (A, X, Y, \delta, \mu)$ the following conditions are equivalent:

- (i) The quintuple $\underline{A} = (A, X, Y, \delta', \mu')$, where A, δ' , μ' are defined in Construction I is a Moore-automaton and μ' is injective;
- (ii) $\pi = \pi_{\max} \text{ in } \underline{A};$
- (iii) $\underline{A}/\pi_{\text{max}}$ is strongly Moore-simple.

PROOF. $(i) \implies (ii)$: Assume that \underline{A} is a Moore-automaton such that μ' is injective. Then, for arbitrary elements $a, b \in A$ with $(a, b) \in \pi$, we have

$$\mu'(\alpha_a) = \mu(a) = \mu(b) = \mu'(\alpha_b)$$

397

from which we get $\alpha_a = \alpha_b$. It means that $\mu(\delta(a, x)) = \mu(\delta(b, x))$, that is, $(\delta(a, x), \delta(b, x)) \in \pi$ for every $x \in X$. From this it follows that π is a Moore-congruence of <u>A</u>. Hence $\pi = \pi_{\max}$.

 $(ii) \implies (i)$: Assume that $\pi = \pi_{\max}$ is satisfied in a Moore-automaton \underline{A} . We show that μ' , δ' are well-defined and μ' is injective. Assume $\alpha_a = \alpha_b$ for some $a, b \in A$. Then $\mu(a) = \alpha_a(x_0) = \alpha_b(x_0) = \mu(b)$. Thus $\mu'(\alpha_a) = \mu'(\alpha_b)$, that is, μ' is well-defined. As π is a congruence, $\mu(a) = \mu(b)$ implies $\mu(\delta(a, x)) = \mu(\delta(b, x))$ and $\mu(\delta(\delta(a, x), z)) = \mu(\delta(\delta(b, x), z))$ for every $x, z \in X$. Consequently $\alpha_{\delta(a,x)} = \alpha_{\delta(b,x)}$, that is δ' is well-defined. If $\mu'(\alpha_a) = \mu'(\alpha_b)$, for some $a, b \in A$ then $\mu(a) = \mu(b)$ which means that $(a, b) \in \pi = \pi_{\max}$. From this it follows that, for every $x \in X$,

$$\alpha_a(x) = \mu(\delta(a, x)) = \mu(\delta(b, x)) = \alpha_b(x),$$

because π is a congruence. Moreover, $\alpha_a(x_0) = \mu(a) = \mu(b) = \alpha_b(x_0)$. Thus $\alpha_a = \alpha_b$. Consequently, μ' is injective and so (i) is satisfied.

 $(ii) \iff (iii)$: It is evident.

 \square

Next, we give a construction for strongly Moore-simple Moore-automata.

Construction II. Let M be a non-empty subset of the set $Y^{X \cup \{x_0\}}$ of all mappings of $X \cup \{x_0\}$ into Y such that $\alpha = \beta$ if and only if $\alpha(x_0) = \beta(x_0)$ for every $\alpha, \beta \in M$, where X and Y are arbitrary nonempty sets and $x_0 \notin X$ is a symbol. Consider the Moore-automaton $\underline{M} = (M, X, Y, \delta^*, \mu^*)$, where δ^* is arbitrary and μ^* is defined as follows:

$$\mu^*(\alpha) = \alpha(x_0), \quad \alpha \in M.$$

For non-empty sets X and Y, denote $\mathcal{M}[X,Y]$ the set of all Mooreautomata defined in Construction II. It is evident that $\underline{\mathcal{A}} \in \mathcal{M}[X,Y]$ supposing that $\pi = \pi_{\max}$ in the Moore-automaton $\underline{\mathcal{A}} = (\mathcal{A}, X, Y, \delta, \mu)$.

Theorem 2. A Moore-automaton is strongly Moore-simple if and only if it is state-isomorphic to a Moore-automaton $\underline{M} = (M, X, Y, \delta^*, \mu^*)$ defined in Construction II for some X, Y, δ^* and μ^* .

PROOF. It is trivial that Moore-automata defined in Construction II are strongly Moore-simple.

Conversely, let $\underline{A} = (A, X, Y, \delta, \mu)$ be an arbitrary strongly Mooresimple Moore-automaton. For this Moore-automaton consider \underline{A} defined in Construction I. By Lemma 2, \underline{A} is isomorphic to $\underline{A} \in \mathcal{M}[X, Y]$. \Box

For a Moore-automaton $\underline{M} = (M, X, Y, \delta^*, \mu^*) \in \mathcal{M}[X, Y]$ consider the automaton $(\mu^*(M), X, \tilde{\delta})$ without outputs, where $\tilde{\delta}$ is defined by

$$\hat{\delta}(\mu^*(\alpha), x) = \mu^*(\delta^*(\alpha, x)), \quad \alpha \in M, \ x \in X.$$

Lemma 3. $\underline{M}_1 = (M_1, X, Y, \delta_1^*, \mu_1^*), \ \underline{M}_2 = (M_2, X, Y, \delta_2^*, \mu_2^*) \in \mathcal{M}[X, Y]$ are state-isomorphic if and only if $(\mu_1^*(M_1), X, \delta_1) = (\mu_2^*(M_2), X, \delta_2).$

PROOF. Assume that \underline{M}_1 , $\underline{M}_2 \in \mathcal{M}[X, Y]$ are state-isomorphic. Let φ be a state-isomorphism of \underline{M}_1 onto \underline{M}_2 . Then, for every $\alpha \in M_1$, $\mu_1^*(\alpha) = \mu_2^*(\varphi(\alpha))$ which means that $\mu_1^*(M_1) = \mu_2^*(M_2)$. Furthermore

$$\tilde{\delta}_1(\mu_1^*(\alpha), x) = \mu_1^*(\delta_1^*(\alpha, x)) = \mu_2^*(\varphi(\delta_2^*(\alpha, x)))$$
$$= \mu_2^*(\delta_2^*(\varphi(\alpha), x)) = \tilde{\delta}_2(\mu_2^*(\varphi(\alpha)), x)$$

for all $\alpha \in M_1$ and $x \in X$. It is easy to see that $\tilde{\delta}_1 = \tilde{\delta}_2$.

Conversely, assume that $(\mu_1^*(M_1), X, \tilde{\delta_1}) = (\mu_2^*(M_2), X, \tilde{\delta_2})$ for some $\underline{M}_1, \underline{M}_2 \in \mathcal{M}[X, Y]$. It can be proved that $(\mu_2^*)^{-1}\mu_1^*$ is a state isomorphism of \underline{M}_1 onto \underline{M}_2 .

By the help of Lemma 3 we can give the number of all non-isomorphic automata of $\mathcal{M}[X, Y]$ in that case when X and Y are finite.

Corollary 3. If X and Y are finite sets then $\mathcal{M}[X,Y]$ contains

$$\sum_{k=1}^{|Y|} \binom{|Y|}{k} k^{k|X}$$

non-isomorphic Moore-automata.

PROOF. Let X and Y be arbitrary finite non-empty sets. By Lemma 3, the number of all non-isomorphic Moore-automata belonging to $\mathcal{M}[X,Y]$ equals the number of all automata (B,X,δ) defined by arbitrary $B \subseteq Y$ and $\delta: B \times X \to B$.

In [3] we construct all Moore-automata which are strongly simple Mealy-automata whose output function does not depend on the input signs ([1]). Theorem 2 of this paper gives all strongly Moore-simple Moore-automata. The next theorem shows that these two classes of Moore-automata are the same.

Theorem 3. A Moore-automaton is strongly Moore-simple if and only if it is a strongly simple Mealy-automaton whose output function does not depend on the input signs.

PROOF. Let $\underline{M} = (M, X, Y, \delta, \lambda)$ be a strongly simple Mealy-automaton (defined in Construction 2 of [3]) whose output function does not depend on the input signs, that is, \underline{M} can be considered as a Moore-automaton with the sign function λ . Then the elements of M are constant mappings of X into Y. Let $x_0 \notin X$ be a symbol and M' the set of all mappings $\alpha' : X \cup \{x_0\} \to Y$ defined by $\alpha'(x') = \alpha(x)$ for every $x' \in$ $X \cup \{x_0\}, x \in X$. Consider the Moore-automaton $\underline{M}' = (M', X, Y, \delta', \mu')$, where $\delta'(\alpha', x) = (\delta(\alpha, x))'$ and $\mu'(\alpha') = \lambda(\alpha)$. Evidently, $\varphi : \alpha \to \alpha'$ is a state-isomorphism of \underline{M} onto \underline{M}' . Conversely, assume that $\underline{M}' = (M', X, Y, \delta', \mu')$ is a strongly Moore-simple Moore automaton defined in Construction II for some X, Y and x_0 . Consider the Mealy-automaton $\underline{M} = (M, X, Y, \delta, \lambda)$, where

$$M = \{ \alpha : X \to Y; \ (\forall x \in X) \ \alpha(x) = \alpha(x_0) \},\$$

 $\delta(\alpha, x) = \beta$ if and only if $\delta'(\alpha', x) = \beta'$ and $\lambda(\alpha, x) = \alpha'(x_0)$ for every $\alpha \in M, \ x \in X$. It is easy to see that \underline{M} is a strongly simple Mealyautomaton whose output function does not depend on the input signs (see Construction 2 of [3]). We remember that then \underline{M} can be considered as a Moore-automaton with sign function λ . Let ϕ be a mapping of M' onto M defined by $\phi(\alpha') = \alpha$. It is evident that ϕ is a state-isomorphism of \underline{M}' onto \underline{M} .

4. Moore-automata with $\pi = \pi_{\max}$

Construction III. Let $\underline{M} = (M, X, Y, \delta^*, \mu^*)$ be a strongly Mooresimple Moore-automaton (defined in Construction II). Consider a family of sets B_m , $m \in M$ such that $B_m \cap B_{m'} = \emptyset$ if $m \neq m'$. For all $x \in X$ and $m \in M$, let $\varphi_{m,x}$ be a mapping of B_m into $B_{\delta^*(m,x)}$. Let $B = \bigcup_{m \in M} B_m$. Define the functions $\delta^\circ : B \times X \to B$ and $\mu^\circ : B \to Y$ as follows. For arbitrary $b \in B_m$, let

$$\delta^{\circ}(b,x) = \varphi_{m,x}(b) \text{ and } \mu^{\circ}(b) = m(x_0).$$

It can be easily verified that δ° and μ° are well-defined and so $\underline{B} = (B, X, Y, \delta^{\circ}, \mu^{\circ})$ is a Moore-automaton.

The mapping $\varphi_{m,x} : B_m \to B_{\delta^*(m,x)}$ $(m \in M, x \in X)$ can be extended by the following way. For all $m \in M, p \in X^*$ and $x \in X$, let

$$\varphi_{m,px} = \varphi_{mp,x} \circ \varphi_{m,p} \,,$$

where mp here denotes the last letter of $\delta^*(m, p)$. It is clear that $\varphi_{m,p}(a) = ap$ for all $a \in B_m$ and $p \in X^*$, where ap denotes the last letter of $\delta^{\circ}(a, p)$.

Theorem 4. A Moore-automaton has the property that $\pi = \pi_{\max}$ if and only if it can be given by Construction III.

PROOF. Let <u>B</u> be a Moore-automaton defined in Construction III. We prove that $\pi = \pi_{\max}$. Assume $(a, b) \in \pi$ for some $a, b \in B$. Then $a, b \in B_m$ for some $m \in M$. For arbitrary $p \in X^*$ and $x \in X$,

$$\mu^{\circ}(apx) = \mu^{\circ}(\delta^{\circ}(ap, x)) = \mu^{\circ}(\varphi_{mp,x} \circ \varphi_{mp}(a)) = \mu^{\circ}(\varphi_{m,px}(a))$$
$$= \mu^{\circ}(\varphi_{m,px}(b)) = \mu^{\circ}(\varphi_{mp,x} \circ \varphi_{mp}(b)) = \mu^{\circ}(\delta^{\circ}(ap, x)) = \mu^{\circ}(bpx).$$

Thus $(a, b) \in \pi_{\max}$ which implies $\pi = \pi_{\max}$.

Conversely, assume that $\pi = \pi_{\max}$ in a Moore-automaton $\underline{A} = (A, X, Y, \delta, \mu)$. By Theorem 1 and Lemma 2, $\underline{A} = (\mathcal{A}, X, Y, \delta', \mu')$ is a Mooreautomaton which is state-isomorphic to the strongly Moore-simple Mooreautomaton \underline{A}/π_{\max} . Using Construction III for $\underline{M} = \underline{A}$, consider the Moore-automaton $\underline{B} = (B, X, Y, \delta^{\circ}, \mu^{\circ})$ such that $B_{\alpha_a} = \pi_{\max}[a]$ and $\varphi_{\alpha_a,x}$ defined by $\varphi_{\alpha_a,x}(b) = \delta(b,x)$ for arbitrary $a \in A, b \in B_{\alpha_a}, x \in X$. It is easy to see that $A = B, \ \delta = \delta^{\circ}$ and $\mu = \mu^{\circ}$. Thus $\underline{A} = \underline{B}$.

References

- A. ÁDÁM, On the question of description of the behaviour of finite automata, Studia Sci. Math. Hungar. 13 (1978), 105–124.
- [2] I. BABCSÁNYI, A. NAGY and F. WETTL, Indistinguishable state pairs in strongly connected Moore-automata, PU.M.A. Ser. A 2 (1991), 15–24.
- [3] I. BABCSÁNYI and A. NAGY, Mealy-automata in which the output-equivalence is a congruence, *Acta Cybernetica* **11** (1994), 121–126.
- [4] F. GÉCSEG and I. PEÁK, Algebraic Theory of Automata, Akadémiai Kiadó, Budapest, 1972.
- [5] G. SZÁSZ, Introduction to Lattice Theory, Academic Press, New York-London, 1963.

I. BABCSÁNYI AND A. NAGY DEPARTMENT OF MATHEMATICS TRANSPORT ENGINEERING FACULTY TECHNICAL UNIVERSITY OF BUDAPEST H-1111 BUDAPEST, MŰEGYETEM RKP. 9. HUNGARY

(Received January 31, 1995; revised March 28, 1995)