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Sequences of connected spectrum
and the Vilenkin group

By ZOLTAN BOROS (Debrecen)

Abstract. The author presents a characterization of the sequences that satisfy
a generalization of the interval-filling property. In the second part an application in
harmonic analysis is given.

1. Notation and general results

Let K denote the field of real or complex numbers throughout this
section. When a linear normed space X is in consideration, put

D ball < o0

n=1

Definition. The Cartesian product P = [[°7;, P, is called a coefficient
system in K if P, is a non-void, finite subset of K for every n € N. The
coefficient system P is bounded if there exists K € R such that [p| < K
for every p € U, Py.

When X is a Banach space over K, P =[] ", P, is a bounded coef-
ficient system in K and b = (b,) € ¢1(X) set

0(X) =4 (b)) N— X

| P|| = sup{ |p| : p € P, for some n € N}

S, (P,b) = Zakbk)5kePkfork:1,2,...,n (n € N) and
k=1
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S(P,b) = {i Spbn

Definition. The set S(P,b) is called the P-spectrum of (by,).

0, € P, for every n € N} )

We wish to characterize the sequences (b,,) the P-spectrum of which is
connected with respect to a given coefficient system P. In case X = K =R
these sequences are called interval-filling (of type P) and discussed in [1],
[2]. Though the complete characterization of sequences with connected
P-spectrum, given in Theorem 1.3, seems to be rather complicated, all
the known results [1] for X = R and some new results for X = C (with
specified coefficient systems, cf. Section 2) can be directly derived from it.

First let us draw up a simple remark, which makes further argument
more convenient.

Lemma 1.1. Let P = [[__, P, be a bounded coeflicient system in
K, pi € Pyand P, ={p—pi|pe P} forneN, PP =[["_, P, X a
Banach space over K and b = (by,) € ¢1(X). Then S(P°,b) is connected if
and only if S(P,b) is connected.

PROOF. Observe that € S(P°,b) if and only if = + Y - | pib, €
S(P,b), thus the P°-spectrum and the P-spectrum of (b,) are congruent.

The following theorem, which is proved for special cases in [3] and [4],
plays a fundamental role in our investigations.

oo

Theorem 1.1. If X is a Banach space over K, P = [["_, P, is a
bounded coefficient system in K and b = (b,,) € ¢1(X), then the set S(P,b)
is compact.

Proor. For § = (d,,) € P define ¢,,(§) = 6,0, (n € N). Consider the
discrete topology on P,, and the product topology on P. The finite sets P,
are compact, thus P is also compact. Since ¢, : P — X is a composition of
a projection and a multiplication, it is continuous. The sum ¢ =3 >~ | ¢,
is uniformly convergent, consequently ¢ : P — X is continuous, hence its
range ¢(P) = S(P,b) is compact.

To formulate the following results we need further notation. When
(Y, 0) is a metric space and A C Y is finite, denote by d(A) the diameter
of A; for € > 0 define

T-(A) ={(a1,a2) € Ax A | p(a1,a2) <e} and

G THA) = A x A}
k=1

r(A) = inf {8 €10, 00[
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(where the power means repeated composition). Due to the finiteness of A
the above set is non-void and r(A) is its minimum, moreover there exists

m € N such that T;’gA)(A) =Ax A and m < card(4) — 1.

oo

Theorem 1.2. If X is a Banach space over K, P = [["_| P, is a
bounded coefficient system in K, b = (b,) € ¢1(X) and
liminf,, oo 7(Sn(P, b)) =0, then the P-spectrum of (b,) is connected.

PrROOF. Due to Lemma 1.1 we may assume that 0 € P, for every
n € N. Then

(1) Sn(P,b) C Sp+1(P,b) C S(P,b)

holds for every natural number n. To give an indirect proof to our theo-
rem suppose that there exist non-void, disjoint, closed subsets E' and F' of
S(P,b) with EUF = S(P,b). Then E and F are compact sets (cf. Theo-
rem 1.1), thus their distance go(F, F') is positive. Hence there exists ng € N
such that for n > ng we have
(2) 1Pl > okl < o(E, F).

k=n-+1
Now fix a natural number n > ng and choose z € EN S, (P,b). If 6, € Py
for k > n + 1, then (2) implies « + Y ., 0xbr ¢ F. From this and (1)
it follows that the nth partial sum of any representation of an arbitrary
element of F'is in F'N S, (P,b), so FNS,(P,b) and similarly EN .S, (P,b)
are non-void sets. For 0 < ¢ < o(E, F') we obviously have

To(Sn(P,b)) € (BN Su(P,)* U(FNSu(Pb)* & (Su(P1))?,

which implies the same property for 7(S,,(P, b)) whenever k € N. There-
fore (S, (P,b)) > o(E,F), hence liminfr(S,(P,b)) > o(E,F) > 0 in
contradiction with the hypothesis.

The previous theorem is convenient for applications (cf. Section 2),
while the complete characterization of sequences with connected P-spect-
rum is given in the following

Theorem 1.3. Let X be a Banach space over K, P = [[*_| P, a
bounded coefficient system in K and b = (b,) € ¢1(X). The P-spectrum
of (b,) is connected if and only if

(3) r(Sa(Pb) < Y d(P)]bi]

k=n-+1

holds for every natural number n.
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ProOOF. The sufficiency of the inequality-system (3) is an immediate
consequence of Theorem 1.2. To prove its necessity we use an indirect
reasoning again. Let us suppose that (3) does not hold for some n € N. Set
0 = peni1 d(Pr)|lbk|| and choose = € S, (P,b) arbitrary. Observe that
the assumptions G; C S, (P,b), z € G; and r(G;) <o (i =1,2,...,m)
imply r(J~, G;) < o, hence there exists a maximal set G, with the
assumed three properties of the sets G;. The set S, (P,b)\ G, is non-void,
since (3) is false for n as we have supposed. If y € G, and z € S,,(P,b)\ G,
then ||y — z|| > o, therefore y+ 37 | dxbx # 2+ ,—, .1 €xbr whenever
Ok, €k € P (k=n+1,n4+2,...). Let us now define

H, = {y+26kbn+k ‘ y € G, and 0y € Py for every k € N}.
k=1

H, and S(P,b) \ H, are non-void subsets of S(P,b). H, is a union of
finitely many compact sets, hence it is compact. The same holds for its
complement, since

S(P, b)\Hx:{Z+Z(5kbn+k ‘ o0 € P (k’ = 1,2,...), z € Sn(P,b)\Gx}
k=1

Therefore both of them is a closed set, thus S(P,b) is disconnected in
contradiction with the hypothesis.

2. Some Fourier-type transforms of the Vilenkin group

An analogue of Theorem 1 in [4] is given in this section. Consider a
sequence m = (my) : N — N\ {1} and let us denote by Z, the discrete
cyclic (additive) group of s elements (i.e. the set {0,1,...,s — 1} with
the modulo s addition). The Cartesian product (both in topological and

algebraic sense)
Gm =[] Zm.
n=1

is called the Vilenkin group [5, pages 501-510.]. For n € N and = =
(x1,x2,...) € Gy, define

on(x) = exp (x—”%i) .

My

The function p,, is a character of G,,, it is called the (nth) Rademacher
character of G,,. Any character of the Vilenkin group is a product of
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finitely many Rademacher characters. For a given sequence a = (a,) €
?1(C) set

o
¢a = Z Qp On -
n=1

The sum is absolutely and uniformly convergent, thus ¢, : G,, — C is
continuous. To illuminate the connection with the previous section, put

2
E, = {exp(—2m'> ’k:O,l,...,mn—l} (n € N)

n

and E = [[ _, E,. Observe that E is a bounded coefficient system in C
and ¢q(Gp) = S(E,a).

Lemma 2.1. If u, v, w are complex numbers and

wW— U T
arg §_7
v —u 6

then
lw — v gmax{\w—m ) ]v—u|——|w—u|}

(we consider the function arg : C\ {0} — | — m, 7] here).

w—v
arg o/l

Consider the case |w — v| > |w — ul, then § < «,

PROOF. Set

o =

arg(ls_:j)‘ and =

w— v = | — u| -0 4w —ul = o — ul 220
w—v=\wvw—-—4ul—-7 an w—-ul=v—-—ul—-7
sin(a + 3) sin(a+ 3)’

as known from elementary geometry. To obtain the inequality in consid-
eration, it is sufficient to justify

1 us
sinfo + 3) —sina— —=sin >0 (0<B<a<— |,
(@ +5) sngzo (0spsas?)

which can be performed by standard analysis of extreme values.
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Theorem 2.1. Let a = (a,) € ¢1(C) and G,, the Vilenkin group. If
m,, > 6 and

oo

k=n+1
hold for every natural number n, then the set ¢,(Gy,) Is connected.

PROOF. Due to Theorem 1.2 (or Theorem 1.3, since 1 < d(E,)) it
suffices to show that

oo

(5) r(Su(E.a)) < ) laxl

k=n+1

is satisfied for every n € N. Set 8, = 3.7~ . lax] (n € N) and let us
prove (5) by induction. For n = 1 we have

r(S1(E,a)) = 2|a1|sinl < 2|aq | sin — = lar| < f1.
mq 6

Assume that n > 1 and r(S,—1(F,a)) < B,—1. For x € S,,_1(F,a) put

k
A, = {x+anexp(—2m'> ) k=0,1,...,my, — 1}.
my
Similarly, as it is calculated for the case n =1, r(A,) < |an| < 5,. Hence

Az X Ay C T3 (90(E, a)).

Choose z, y € S,—1(F,a) with |z —y| < 8,-1. We are going to prove that
there exist z € A, and w € A, such that |z —w| < 3,,. Then we can infer

supar=( U ) =1 s, )

z€Sp_1(FE,a)

where t = card(S,—1(F,a)), that is r(S,(E,a)) < B,. The existence of
such z and w is obvious when |z — y| < 3, is satisfied: let z = x 4 a,, and
w =y + a,. Otherwise choose k € {0,1,...,m, — 1} such that

<

arg(y — ) — arg(an) — (mi + j> 27

n

il
6

hold for some j € Z and let z = x + a, exp(mi2m'). Lemma 2.1 implies

|z — y| < max < |ay| ‘x_y|_|a_”| < max < |ay| |x—y\—M )
N ’ V3~ ’ 2
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Now choose [ € {0,1,...,m, — 1} such that

arg(z — y) — arg(an) — (L + j) 2m

n

T
<
— 6

hold for some j € Z and let w = y+a, exp(mLNQM). Applying Lemma 2.1
we have

|z — w| < max?< |ay,] ]z—y\—M < max { |ay| \z_y’_M
N ’ V3~ ’ 2

< max{lan| , |z —y| - [an]} < max{lan|, Bn-1 —lanl}

= maX{|an| ) 5n} = ﬁn

Theorem 2.2. Let a = (a,) € ¢1(C) and G,, the Vilenkin group. If

T o0
(6) |ay|sin — > E lag|
mpy
k=n-+1

holds for every natural number n, then the set ¢,(G,,) is totally discon-
nected.

PRrooF. Since G, is a product of finite, discrete sets, it is compact
and totally disconnected. We have also proved that the mapping ¢, :
G, — C is continuous, now we wish to justify that it is injective as well.
It implies, as it is familiar, that ¢, is a homeomorphism. To prove the
injectivity suppose that =, y € G,,, * # y and ¢.(x) = ¢4(y). Put
p =inf{n € N |z, # y,}. Then the assumption ¢,(x) — ¢,(y) = 0 can be
written in the form

oo

ap(@p(y) - Qp(x» = Z an(@n(x) - Qn(y))a

n=p-+1

hence

.o
2|ap| Smm_ < |ap| |Qp(y) - Qp(x)| <

p
oo & 9]

Y lanlloa(@) —eny)l <2 ) laal,

n=p+1 n=p+1

in contradiction with the hypothesis.
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