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Sequences of connected spectrum
and the Vilenkin group

By ZOLT�AN BOROS (Debrecen)

Abstract. The author presents a characterization of the sequences that satisfy
a generalization of the interval-filling property. In the second part an application in
harmonic analysis is given.

1. Notation and general results

Let K denote the field of real or complex numbers throughout this
section. When a linear normed space X is in consideration, put

`1(X) =

{
(bn) : N→ X

∣∣∣∣
∞∑

n=1

‖bn‖ < ∞
}

.

Definition. The Cartesian product P =
∏∞

n=1 Pn is called a coefficient
system in K if Pn is a non-void, finite subset of K for every n ∈ N. The
coefficient system P is bounded if there exists K ∈ R such that |p| ≤ K
for every p ∈ ⋃∞

n=1 Pn.

When X is a Banach space over K, P =
∏∞

n=1 Pn is a bounded coef-
ficient system in K and b = (bn) ∈ `1(X) set

‖P‖ = sup{ |p| : p ∈ Pn for some n ∈ N}

Sn(P, b) =

{
n∑

k=1

δkbk

∣∣∣ δk ∈ Pk for k = 1, 2, . . . , n

}
(n ∈ N) and
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S(P, b) =

{ ∞∑
n=1

δnbn

∣∣∣ δn ∈ Pn for every n ∈ N
}

.

Definition. The set S(P, b) is called the P -spectrum of (bn).

We wish to characterize the sequences (bn) the P -spectrum of which is
connected with respect to a given coefficient system P . In case X = K = R
these sequences are called interval-filling (of type P ) and discussed in [1],
[2]. Though the complete characterization of sequences with connected
P -spectrum, given in Theorem 1.3, seems to be rather complicated, all
the known results [1] for X = R and some new results for X = C (with
specified coefficient systems, cf. Section 2) can be directly derived from it.

First let us draw up a simple remark, which makes further argument
more convenient.

Lemma 1.1. Let P =
∏∞

n=1 Pn be a bounded coefficient system in
K, p∗n ∈ Pn and P ◦n = {p − p∗n | p ∈ Pn} for n ∈ N, P ◦ =

∏∞
n=1 P ◦n , X a

Banach space over K and b = (bn) ∈ `1(X). Then S(P ◦, b) is connected if
and only if S(P, b) is connected.

Proof. Observe that x ∈ S(P ◦, b) if and only if x +
∑∞

n=1 p∗nbn ∈
S(P, b), thus the P ◦-spectrum and the P -spectrum of (bn) are congruent.

The following theorem, which is proved for special cases in [3] and [4],
plays a fundamental role in our investigations.

Theorem 1.1. If X is a Banach space over K, P =
∏∞

n=1 Pn is a
bounded coefficient system in K and b = (bn) ∈ `1(X), then the set S(P, b)
is compact.

Proof. For δ = (δn) ∈ P define φn(δ) = δnbn (n ∈ N). Consider the
discrete topology on Pn and the product topology on P . The finite sets Pn

are compact, thus P is also compact. Since φn : P → X is a composition of
a projection and a multiplication, it is continuous. The sum φ =

∑∞
n=1 φn

is uniformly convergent, consequently φ : P → X is continuous, hence its
range φ(P ) = S(P, b) is compact.

To formulate the following results we need further notation. When
(Y, %) is a metric space and A ⊂ Y is finite, denote by d(A) the diameter
of A; for ε > 0 define

Tε(A) = {(a1, a2) ∈ A×A | %(a1, a2) ≤ ε} and

r(A) = inf

{
ε ∈ ]0,∞[

∣∣∣∣
∞⋃

k=1

T k
ε (A) = A×A

}
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(where the power means repeated composition). Due to the finiteness of A
the above set is non-void and r(A) is its minimum, moreover there exists
m ∈ N such that Tm

r(A)(A) = A×A and m ≤ card(A)− 1.

Theorem 1.2. If X is a Banach space over K, P =
∏∞

n=1 Pn is a
bounded coefficient system in K, b = (bn) ∈ `1(X) and
lim infn→∞ r(Sn(P, b)) = 0, then the P -spectrum of (bn) is connected.

Proof. Due to Lemma 1.1 we may assume that 0 ∈ Pn for every
n ∈ N. Then

(1) Sn(P, b) ⊂ Sn+1(P, b) ⊂ S(P, b)

holds for every natural number n. To give an indirect proof to our theo-
rem suppose that there exist non-void, disjoint, closed subsets E and F of
S(P, b) with E ∪ F = S(P, b). Then E and F are compact sets (cf. Theo-
rem 1.1), thus their distance %(E,F ) is positive. Hence there exists n0 ∈ N
such that for n > n0 we have

(2) ‖P‖
∞∑

k=n+1

‖bk‖ < %(E, F ).

Now fix a natural number n > n0 and choose x ∈ E ∩ Sn(P, b). If δk ∈ Pk

for k ≥ n + 1, then (2) implies x +
∑∞

k=n+1 δkbk /∈ F . From this and (1)
it follows that the nth partial sum of any representation of an arbitrary
element of F is in F ∩ Sn(P, b), so F ∩ Sn(P, b) and similarly E ∩ Sn(P, b)
are non-void sets. For 0 < ε < %(E, F ) we obviously have

Tε(Sn(P, b)) ⊂ (E ∩ Sn(P, b))2 ∪ (F ∩ Sn(P, b))2 $ (Sn(P, b))2,

which implies the same property for T k
ε (Sn(P, b)) whenever k ∈ N. There-

fore r(Sn(P, b)) ≥ %(E, F ), hence lim inf r(Sn(P, b)) ≥ %(E, F ) > 0 in
contradiction with the hypothesis.

The previous theorem is convenient for applications (cf. Section 2),
while the complete characterization of sequences with connected P -spect-
rum is given in the following

Theorem 1.3. Let X be a Banach space over K, P =
∏∞

n=1 Pn a
bounded coefficient system in K and b = (bn) ∈ `1(X). The P -spectrum
of (bn) is connected if and only if

(3) r(Sn(P, b)) ≤
∞∑

k=n+1

d(Pk)‖bk‖

holds for every natural number n.
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Proof. The sufficiency of the inequality-system (3) is an immediate
consequence of Theorem 1.2. To prove its necessity we use an indirect
reasoning again. Let us suppose that (3) does not hold for some n ∈ N. Set
σ =

∑∞
k=n+1 d(Pk)‖bk‖ and choose x ∈ Sn(P, b) arbitrary. Observe that

the assumptions Gi ⊂ Sn(P, b), x ∈ Gi and r(Gi) ≤ σ (i = 1, 2, . . . ,m)
imply r(

⋃m
i=1 Gi) ≤ σ, hence there exists a maximal set Gx with the

assumed three properties of the sets Gi. The set Sn(P, b) \Gx is non-void,
since (3) is false for n as we have supposed. If y ∈ Gx and z ∈ Sn(P, b)\Gx,
then ‖y−z‖ > σ, therefore y +

∑∞
k=n+1 δkbk 6= z +

∑∞
k=n+1 εkbk whenever

δk, εk ∈ Pk (k = n + 1, n + 2, . . . ). Let us now define

Hx =

{
y +

∞∑

k=1

δkbn+k

∣∣∣ y ∈ Gx and δk ∈ Pk for every k ∈ N
}

.

Hx and S(P, b) \ Hx are non-void subsets of S(P, b). Hx is a union of
finitely many compact sets, hence it is compact. The same holds for its
complement, since

S(P, b)\Hx =

{
z +

∞∑

k=1

δkbn+k

∣∣∣ δk ∈ Pk (k = 1, 2, . . .), z ∈ Sn(P, b) \Gx

}
.

Therefore both of them is a closed set, thus S(P, b) is disconnected in
contradiction with the hypothesis.

2. Some Fourier-type transforms of the Vilenkin group

An analogue of Theorem 1 in [4] is given in this section. Consider a
sequence m = (mn) : N → N \ {1} and let us denote by Zs the discrete
cyclic (additive) group of s elements (i.e. the set {0, 1, . . . , s − 1} with
the modulo s addition). The Cartesian product (both in topological and
algebraic sense)

Gm =
∞∏

n=1

Zmn

is called the Vilenkin group [5, pages 501–510.]. For n ∈ N and x =
(x1, x2, . . . ) ∈ Gm define

%n(x) = exp
(

xn

mn
2πi

)
.

The function %n is a character of Gm, it is called the (nth) Rademacher
character of Gm. Any character of the Vilenkin group is a product of
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finitely many Rademacher characters. For a given sequence a = (an) ∈
`1(C) set

φa =
∞∑

n=1

an%n.

The sum is absolutely and uniformly convergent, thus φa : Gm → C is
continuous. To illuminate the connection with the previous section, put

En =
{

exp
(

k

mn
2πi

) ∣∣∣ k = 0, 1, . . . , mn − 1
}

(n ∈ N)

and E =
∏∞

n=1 En. Observe that E is a bounded coefficient system in C
and φa(Gm) = S(E, a).

Lemma 2.1. If u, v, w are complex numbers and

∣∣∣∣arg
(

w − u

v − u

)∣∣∣∣ ≤
π

6
,

then

|w − v| ≤ max
{
|w − u| , |v − u| − 1√

3
|w − u|

}

(we consider the function arg : C \ {0} → ]− π, π] here).

Proof. Set

α =
∣∣∣∣arg

(
w − u

v − u

)∣∣∣∣ and β =
∣∣∣∣arg

(
w − v

u− v

)∣∣∣∣ .

Consider the case |w − v| > |w − u|, then β ≤ α,

|w − v| = |v − u| sin α

sin(α + β)
and |w − u| = |v − u| sin β

sin(α + β)
,

as known from elementary geometry. To obtain the inequality in consid-
eration, it is sufficient to justify

sin(α + β)− sin α− 1√
3

sin β ≥ 0
(

0 ≤ β ≤ α ≤ π

6

)
,

which can be performed by standard analysis of extreme values.
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Theorem 2.1. Let a = (an) ∈ `1(C) and Gm the Vilenkin group. If
mn ≥ 6 and

(4) |an| ≤
∞∑

k=n+1

|ak|

hold for every natural number n, then the set φa(Gm) is connected.

Proof. Due to Theorem 1.2 (or Theorem 1.3, since 1 < d(En)) it
suffices to show that

(5) r(Sn(E, a)) ≤
∞∑

k=n+1

|ak|

is satisfied for every n ∈ N. Set βn =
∑∞

k=n+1 |ak| (n ∈ N) and let us
prove (5) by induction. For n = 1 we have

r(S1(E, a)) = 2|a1| sin π

m1
≤ 2|a1| sin π

6
= |a1| ≤ β1.

Assume that n > 1 and r(Sn−1(E, a)) ≤ βn−1. For x ∈ Sn−1(E, a) put

Ax =
{

x + an exp
(

k

mn
2πi

) ∣∣∣ k = 0, 1, . . . , mn − 1
}

.

Similarly, as it is calculated for the case n = 1, r(Ax) ≤ |an| ≤ βn. Hence

Ax ×Ax ⊂ Tmn−1
βn

(Sn(E, a)).

Choose x, y ∈ Sn−1(E, a) with |x−y| ≤ βn−1. We are going to prove that
there exist z ∈ Ax and w ∈ Ay such that |z −w| ≤ βn. Then we can infer

(Sn(E, a))2 =
( ⋃

x∈Sn−1(E,a)

Ax

)2

= T
t(mn−1)+t−1
βn

(Sn(E, a))

where t = card(Sn−1(E, a)), that is r(Sn(E, a)) ≤ βn. The existence of
such z and w is obvious when |x− y| ≤ βn is satisfied: let z = x + an and
w = y + an. Otherwise choose k ∈ {0, 1, . . . , mn − 1} such that

∣∣∣∣arg(y − x)− arg(an)−
(

k

mn
+ j

)
2π

∣∣∣∣ ≤
π

6

hold for some j ∈ Z and let z = x + an exp
(

k
mn

2πi
)
. Lemma 2.1 implies

|z − y| ≤ max
{
|an| , |x− y| − |an|√

3

}
≤ max

{
|an| , |x− y| − |an|

2

}
.
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Now choose l ∈ {0, 1, . . . , mn − 1} such that
∣∣∣∣arg(z − y)− arg(an)−

(
l

mn
+ j

)
2π

∣∣∣∣ ≤
π

6

hold for some j ∈ Z and let w = y +an exp
(

l
mn

2πi
)
. Applying Lemma 2.1

we have

|z − w| ≤ max
{
|an| , |z − y| − |an|√

3

}
≤ max

{
|an| , |z − y| − |an|

2

}

≤ max{|an| , |x− y| − |an|} ≤ max{|an| , βn−1 − |an|}
= max{|an| , βn} = βn.

Theorem 2.2. Let a = (an) ∈ `1(C) and Gm the Vilenkin group. If

(6) |an| sin π

mn
>

∞∑

k=n+1

|ak|

holds for every natural number n, then the set φa(Gm) is totally discon-
nected.

Proof. Since Gm is a product of finite, discrete sets, it is compact
and totally disconnected. We have also proved that the mapping φa :
Gm → C is continuous, now we wish to justify that it is injective as well.
It implies, as it is familiar, that φa is a homeomorphism. To prove the
injectivity suppose that x, y ∈ Gm, x 6= y and φa(x) = φa(y). Put
p = inf{n ∈ N | xn 6= yn}. Then the assumption φa(x)− φa(y) = 0 can be
written in the form

ap(%p(y)− %p(x)) =
∞∑

n=p+1

an(%n(x)− %n(y)),

hence

2|ap| sin π

mp
≤ |ap| |%p(y)− %p(x)| ≤

∞∑
n=p+1

|an| |%n(x)− %n(y)| ≤ 2
∞∑

n=p+1

|an|,

in contradiction with the hypothesis.
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