Sequences of connected spectrum and the Vilenkin group

By ZOLTÁN BOROS (Debrecen)

Abstract

The author presents a characterization of the sequences that satisfy a generalization of the interval-filling property. In the second part an application in harmonic analysis is given.

1. Notation and general results

Let \mathbb{K} denote the field of real or complex numbers throughout this section. When a linear normed space X is in consideration, put

$$
\ell_{1}(X)=\left\{\left(b_{n}\right): \mathbb{N} \rightarrow X \mid \sum_{n=1}^{\infty}\left\|b_{n}\right\|<\infty\right\} .
$$

Definition. The Cartesian product $P=\prod_{n=1}^{\infty} P_{n}$ is called a coefficient system in \mathbb{K} if P_{n} is a non-void, finite subset of \mathbb{K} for every $n \in \mathbb{N}$. The coefficient system P is bounded if there exists $K \in \mathbb{R}$ such that $|p| \leq K$ for every $p \in \bigcup_{n=1}^{\infty} P_{n}$.

When X is a Banach space over $\mathbb{K}, P=\prod_{n=1}^{\infty} P_{n}$ is a bounded coefficient system in \mathbb{K} and $b=\left(b_{n}\right) \in \ell_{1}(X)$ set

$$
\begin{gathered}
\|P\|=\sup \left\{|p|: p \in P_{n} \text { for some } n \in \mathbb{N}\right\} \\
S_{n}(P, b)=\left\{\sum_{k=1}^{n} \delta_{k} b_{k} \mid \delta_{k} \in P_{k} \text { for } k=1,2, \ldots, n\right\} \quad(n \in \mathbb{N}) \text { and }
\end{gathered}
$$

[^0]Key words and phrases: interval-filling sequences, Vilenkin group.
Research supported by the Hungarian National Scientific Research Foundation, Operating Grant Number OTKA 1652.

$$
S(P, b)=\left\{\sum_{n=1}^{\infty} \delta_{n} b_{n} \mid \delta_{n} \in P_{n} \text { for every } n \in \mathbb{N}\right\}
$$

Definition. The set $S(P, b)$ is called the P-spectrum of $\left(b_{n}\right)$.
We wish to characterize the sequences $\left(b_{n}\right)$ the P-spectrum of which is connected with respect to a given coefficient system P. In case $X=\mathbb{K}=\mathbb{R}$ these sequences are called interval-filling (of type P) and discussed in [1], [2]. Though the complete characterization of sequences with connected P-spectrum, given in Theorem 1.3 , seems to be rather complicated, all the known results [1] for $X=\mathbb{R}$ and some new results for $X=\mathbb{C}$ (with specified coefficient systems, cf. Section 2) can be directly derived from it.

First let us draw up a simple remark, which makes further argument more convenient.

Lemma 1.1. Let $P=\prod_{n=1}^{\infty} P_{n}$ be a bounded coefficient system in $\mathbb{K}, p_{n}^{*} \in P_{n}$ and $P_{n}^{\circ}=\left\{p-p_{n}^{*} \mid p \in P_{n}\right\}$ for $n \in \mathbb{N}, P^{\circ}=\prod_{n=1}^{\infty} P_{n}^{\circ}, X$ a Banach space over \mathbb{K} and $b=\left(b_{n}\right) \in \ell_{1}(X)$. Then $S\left(P^{\circ}, b\right)$ is connected if and only if $S(P, b)$ is connected.

Proof. Observe that $x \in S\left(P^{\circ}, b\right)$ if and only if $x+\sum_{n=1}^{\infty} p_{n}^{*} b_{n} \in$ $S(P, b)$, thus the P°-spectrum and the P-spectrum of $\left(b_{n}\right)$ are congruent.

The following theorem, which is proved for special cases in [3] and [4], plays a fundamental role in our investigations.

Theorem 1.1. If X is a Banach space over $\mathbb{K}, P=\prod_{n=1}^{\infty} P_{n}$ is a bounded coefficient system in \mathbb{K} and $b=\left(b_{n}\right) \in \ell_{1}(X)$, then the set $S(P, b)$ is compact.

Proof. For $\delta=\left(\delta_{n}\right) \in P$ define $\phi_{n}(\delta)=\delta_{n} b_{n}(n \in \mathbb{N})$. Consider the discrete topology on P_{n} and the product topology on P. The finite sets P_{n} are compact, thus P is also compact. Since $\phi_{n}: P \rightarrow X$ is a composition of a projection and a multiplication, it is continuous. The sum $\phi=\sum_{n=1}^{\infty} \phi_{n}$ is uniformly convergent, consequently $\phi: P \rightarrow X$ is continuous, hence its range $\phi(P)=S(P, b)$ is compact.

To formulate the following results we need further notation. When (Y, ϱ) is a metric space and $A \subset Y$ is finite, denote by $d(A)$ the diameter of A; for $\varepsilon>0$ define

$$
\begin{aligned}
T_{\varepsilon}(A) & =\left\{\left(a_{1}, a_{2}\right) \in A \times A \mid \varrho\left(a_{1}, a_{2}\right) \leq \varepsilon\right\} \quad \text { and } \\
r(A) & =\inf \{\varepsilon \in] 0, \infty\left[\mid \bigcup_{k=1}^{\infty} T_{\varepsilon}^{k}(A)=A \times A\right\}
\end{aligned}
$$

(where the power means repeated composition). Due to the finiteness of A the above set is non-void and $r(A)$ is its minimum, moreover there exists $m \in \mathbb{N}$ such that $T_{r(A)}^{m}(A)=A \times A$ and $m \leq \operatorname{card}(A)-1$.

Theorem 1.2. If X is a Banach space over $\mathbb{K}, P=\prod_{n=1}^{\infty} P_{n}$ is a bounded coefficient system in $\mathbb{K}, b=\left(b_{n}\right) \in \ell_{1}(X)$ and $\liminf _{n \rightarrow \infty} r\left(S_{n}(P, b)\right)=0$, then the P-spectrum of $\left(b_{n}\right)$ is connected.

Proof. Due to Lemma 1.1 we may assume that $0 \in P_{n}$ for every $n \in \mathbb{N}$. Then

$$
\begin{equation*}
S_{n}(P, b) \subset S_{n+1}(P, b) \subset S(P, b) \tag{1}
\end{equation*}
$$

holds for every natural number n. To give an indirect proof to our theorem suppose that there exist non-void, disjoint, closed subsets E and F of $S(P, b)$ with $E \cup F=S(P, b)$. Then E and F are compact sets (cf. Theorem 1.1), thus their distance $\varrho(E, F)$ is positive. Hence there exists $n_{0} \in \mathbb{N}$ such that for $n>n_{0}$ we have

$$
\begin{equation*}
\|P\| \sum_{k=n+1}^{\infty}\left\|b_{k}\right\|<\varrho(E, F) \tag{2}
\end{equation*}
$$

Now fix a natural number $n>n_{0}$ and choose $x \in E \cap S_{n}(P, b)$. If $\delta_{k} \in P_{k}$ for $k \geq n+1$, then (2) implies $x+\sum_{k=n+1}^{\infty} \delta_{k} b_{k} \notin F$. From this and (1) it follows that the nth partial sum of any representation of an arbitrary element of F is in $F \cap S_{n}(P, b)$, so $F \cap S_{n}(P, b)$ and similarly $E \cap S_{n}(P, b)$ are non-void sets. For $0<\varepsilon<\varrho(E, F)$ we obviously have

$$
T_{\varepsilon}\left(S_{n}(P, b)\right) \subset\left(E \cap S_{n}(P, b)\right)^{2} \cup\left(F \cap S_{n}(P, b)\right)^{2} \varsubsetneqq\left(S_{n}(P, b)\right)^{2}
$$

which implies the same property for $T_{\varepsilon}^{k}\left(S_{n}(P, b)\right)$ whenever $k \in \mathbb{N}$. Therefore $r\left(S_{n}(P, b)\right) \geq \varrho(E, F)$, hence $\liminf r\left(S_{n}(P, b)\right) \geq \varrho(E, F)>0$ in contradiction with the hypothesis.

The previous theorem is convenient for applications (cf. Section 2), while the complete characterization of sequences with connected P-spectrum is given in the following

Theorem 1.3. Let X be a Banach space over $\mathbb{K}, P=\prod_{n=1}^{\infty} P_{n}$ a bounded coefficient system in \mathbb{K} and $b=\left(b_{n}\right) \in \ell_{1}(X)$. The P-spectrum of $\left(b_{n}\right)$ is connected if and only if

$$
\begin{equation*}
r\left(S_{n}(P, b)\right) \leq \sum_{k=n+1}^{\infty} d\left(P_{k}\right)\left\|b_{k}\right\| \tag{3}
\end{equation*}
$$

holds for every natural number n.

Proof. The sufficiency of the inequality-system (3) is an immediate consequence of Theorem 1.2. To prove its necessity we use an indirect reasoning again. Let us suppose that (3) does not hold for some $n \in \mathbb{N}$. Set $\sigma=\sum_{k=n+1}^{\infty} d\left(P_{k}\right)\left\|b_{k}\right\|$ and choose $x \in S_{n}(P, b)$ arbitrary. Observe that the assumptions $G_{i} \subset S_{n}(P, b), x \in G_{i}$ and $r\left(G_{i}\right) \leq \sigma \quad(i=1,2, \ldots, m)$ imply $r\left(\bigcup_{i=1}^{m} G_{i}\right) \leq \sigma$, hence there exists a maximal set G_{x} with the assumed three properties of the sets G_{i}. The set $S_{n}(P, b) \backslash G_{x}$ is non-void, since (3) is false for n as we have supposed. If $y \in G_{x}$ and $z \in S_{n}(P, b) \backslash G_{x}$, then $\|y-z\|>\sigma$, therefore $y+\sum_{k=n+1}^{\infty} \delta_{k} b_{k} \neq z+\sum_{k=n+1}^{\infty} \epsilon_{k} b_{k}$ whenever $\delta_{k}, \epsilon_{k} \in P_{k} \quad(k=n+1, n+2, \ldots)$. Let us now define

$$
H_{x}=\left\{y+\sum_{k=1}^{\infty} \delta_{k} b_{n+k} \mid y \in G_{x} \text { and } \delta_{k} \in P_{k} \text { for every } k \in \mathbb{N}\right\}
$$

H_{x} and $S(P, b) \backslash H_{x}$ are non-void subsets of $S(P, b) . H_{x}$ is a union of finitely many compact sets, hence it is compact. The same holds for its complement, since
$S(P, b) \backslash H_{x}=\left\{z+\sum_{k=1}^{\infty} \delta_{k} b_{n+k} \mid \delta_{k} \in P_{k}(k=1,2, \ldots), z \in S_{n}(P, b) \backslash G_{x}\right\}$.
Therefore both of them is a closed set, thus $S(P, b)$ is disconnected in contradiction with the hypothesis.

2. Some Fourier-type transforms of the Vilenkin group

An analogue of Theorem 1 in [4] is given in this section. Consider a sequence $m=\left(m_{n}\right): \mathbb{N} \rightarrow \mathbb{N} \backslash\{1\}$ and let us denote by Z_{s} the discrete cyclic (additive) group of s elements (i.e. the set $\{0,1, \ldots, s-1\}$ with the modulo s addition). The Cartesian product (both in topological and algebraic sense)

$$
G_{m}=\prod_{n=1}^{\infty} Z_{m_{n}}
$$

is called the Vilenkin group [5, pages 501-510.]. For $n \in \mathbb{N}$ and $x=$ $\left(x_{1}, x_{2}, \ldots\right) \in G_{m}$ define

$$
\varrho_{n}(x)=\exp \left(\frac{x_{n}}{m_{n}} 2 \pi i\right)
$$

The function ϱ_{n} is a character of G_{m}, it is called the (n th) Rademacher character of G_{m}. Any character of the Vilenkin group is a product of
finitely many Rademacher characters. For a given sequence $a=\left(a_{n}\right) \in$ $\ell_{1}(\mathbb{C})$ set

$$
\phi_{a}=\sum_{n=1}^{\infty} a_{n} \varrho_{n}
$$

The sum is absolutely and uniformly convergent, thus $\phi_{a}: G_{m} \rightarrow \mathbb{C}$ is continuous. To illuminate the connection with the previous section, put

$$
E_{n}=\left\{\left.\exp \left(\frac{k}{m_{n}} 2 \pi i\right) \right\rvert\, k=0,1, \ldots, m_{n}-1\right\} \quad(n \in \mathbb{N})
$$

and $E=\prod_{n=1}^{\infty} E_{n}$. Observe that E is a bounded coefficient system in \mathbb{C} and $\phi_{a}\left(G_{m}\right)=S(E, a)$.

Lemma 2.1. If u, v, w are complex numbers and

$$
\left|\arg \left(\frac{w-u}{v-u}\right)\right| \leq \frac{\pi}{6}
$$

then

$$
|w-v| \leq \max \left\{|w-u|,|v-u|-\frac{1}{\sqrt{3}}|w-u|\right\}
$$

(we consider the function $\arg : \mathbb{C} \backslash\{0\} \rightarrow]-\pi, \pi]$ here).
Proof. Set

$$
\alpha=\left|\arg \left(\frac{w-u}{v-u}\right)\right| \quad \text { and } \quad \beta=\left|\arg \left(\frac{w-v}{u-v}\right)\right| .
$$

Consider the case $|w-v|>|w-u|$, then $\beta \leq \alpha$,

$$
|w-v|=|v-u| \frac{\sin \alpha}{\sin (\alpha+\beta)} \quad \text { and } \quad|w-u|=|v-u| \frac{\sin \beta}{\sin (\alpha+\beta)}
$$

as known from elementary geometry. To obtain the inequality in consideration, it is sufficient to justify

$$
\sin (\alpha+\beta)-\sin \alpha-\frac{1}{\sqrt{3}} \sin \beta \geq 0 \quad\left(0 \leq \beta \leq \alpha \leq \frac{\pi}{6}\right)
$$

which can be performed by standard analysis of extreme values.

Theorem 2.1. Let $a=\left(a_{n}\right) \in \ell_{1}(\mathbb{C})$ and G_{m} the Vilenkin group. If $m_{n} \geq 6$ and

$$
\begin{equation*}
\left|a_{n}\right| \leq \sum_{k=n+1}^{\infty}\left|a_{k}\right| \tag{4}
\end{equation*}
$$

hold for every natural number n, then the set $\phi_{a}\left(G_{m}\right)$ is connected.
Proof. Due to Theorem 1.2 (or Theorem 1.3, since $1<d\left(E_{n}\right)$) it suffices to show that

$$
\begin{equation*}
r\left(S_{n}(E, a)\right) \leq \sum_{k=n+1}^{\infty}\left|a_{k}\right| \tag{5}
\end{equation*}
$$

is satisfied for every $n \in \mathbb{N}$. Set $\beta_{n}=\sum_{k=n+1}^{\infty}\left|a_{k}\right| \quad(n \in \mathbb{N})$ and let us prove (5) by induction. For $n=1$ we have

$$
r\left(S_{1}(E, a)\right)=2\left|a_{1}\right| \sin \frac{\pi}{m_{1}} \leq 2\left|a_{1}\right| \sin \frac{\pi}{6}=\left|a_{1}\right| \leq \beta_{1} .
$$

Assume that $n>1$ and $r\left(S_{n-1}(E, a)\right) \leq \beta_{n-1}$. For $x \in S_{n-1}(E, a)$ put

$$
A_{x}=\left\{\left.x+a_{n} \exp \left(\frac{k}{m_{n}} 2 \pi i\right) \right\rvert\, k=0,1, \ldots, m_{n}-1\right\} .
$$

Similarly, as it is calculated for the case $n=1, r\left(A_{x}\right) \leq\left|a_{n}\right| \leq \beta_{n}$. Hence

$$
A_{x} \times A_{x} \subset T_{\beta_{n}}^{m_{n}-1}\left(S_{n}(E, a)\right)
$$

Choose $x, y \in S_{n-1}(E, a)$ with $|x-y| \leq \beta_{n-1}$. We are going to prove that there exist $z \in A_{x}$ and $w \in A_{y}$ such that $|z-w| \leq \beta_{n}$. Then we can infer

$$
\left(S_{n}(E, a)\right)^{2}=\left(\bigcup_{x \in S_{n-1}(E, a)} A_{x}\right)^{2}=T_{\beta_{n}}^{t\left(m_{n}-1\right)+t-1}\left(S_{n}(E, a)\right)
$$

where $t=\operatorname{card}\left(S_{n-1}(E, a)\right)$, that is $r\left(S_{n}(E, a)\right) \leq \beta_{n}$. The existence of such z and w is obvious when $|x-y| \leq \beta_{n}$ is satisfied: let $z=x+a_{n}$ and $w=y+a_{n}$. Otherwise choose $k \in\left\{0,1, \ldots, m_{n}-1\right\}$ such that

$$
\left|\arg (y-x)-\arg \left(a_{n}\right)-\left(\frac{k}{m_{n}}+j\right) 2 \pi\right| \leq \frac{\pi}{6}
$$

hold for some $j \in \mathbb{Z}$ and let $z=x+a_{n} \exp \left(\frac{k}{m_{n}} 2 \pi i\right)$. Lemma 2.1 implies

$$
|z-y| \leq \max \left\{\left|a_{n}\right|,|x-y|-\frac{\left|a_{n}\right|}{\sqrt{3}}\right\} \leq \max \left\{\left|a_{n}\right|,|x-y|-\frac{\left|a_{n}\right|}{2}\right\}
$$

Now choose $l \in\left\{0,1, \ldots, m_{n}-1\right\}$ such that

$$
\left|\arg (z-y)-\arg \left(a_{n}\right)-\left(\frac{l}{m_{n}}+j\right) 2 \pi\right| \leq \frac{\pi}{6}
$$

hold for some $j \in \mathbb{Z}$ and let $w=y+a_{n} \exp \left(\frac{l}{m_{n}} 2 \pi i\right)$. Applying Lemma 2.1 we have

$$
\begin{gathered}
|z-w| \leq \max \left\{\left|a_{n}\right|,|z-y|-\frac{\left|a_{n}\right|}{\sqrt{3}}\right\} \leq \max \left\{\left|a_{n}\right|,|z-y|-\frac{\left|a_{n}\right|}{2}\right\} \\
\leq \max \left\{\left|a_{n}\right|,|x-y|-\left|a_{n}\right|\right\} \leq \max \left\{\left|a_{n}\right|, \beta_{n-1}-\left|a_{n}\right|\right\} \\
=\max \left\{\left|a_{n}\right|, \beta_{n}\right\}=\beta_{n}
\end{gathered}
$$

Theorem 2.2. Let $a=\left(a_{n}\right) \in \ell_{1}(\mathbb{C})$ and G_{m} the Vilenkin group. If

$$
\begin{equation*}
\left|a_{n}\right| \sin \frac{\pi}{m_{n}}>\sum_{k=n+1}^{\infty}\left|a_{k}\right| \tag{6}
\end{equation*}
$$

holds for every natural number n, then the set $\phi_{a}\left(G_{m}\right)$ is totally disconnected.

Proof. Since G_{m} is a product of finite, discrete sets, it is compact and totally disconnected. We have also proved that the mapping ϕ_{a} : $G_{m} \rightarrow \mathbb{C}$ is continuous, now we wish to justify that it is injective as well. It implies, as it is familiar, that ϕ_{a} is a homeomorphism. To prove the injectivity suppose that $x, y \in G_{m}, x \neq y$ and $\phi_{a}(x)=\phi_{a}(y)$. Put $p=\inf \left\{n \in \mathbb{N} \mid x_{n} \neq y_{n}\right\}$. Then the assumption $\phi_{a}(x)-\phi_{a}(y)=0$ can be written in the form

$$
a_{p}\left(\varrho_{p}(y)-\varrho_{p}(x)\right)=\sum_{n=p+1}^{\infty} a_{n}\left(\varrho_{n}(x)-\varrho_{n}(y)\right),
$$

hence

$$
\begin{gathered}
2\left|a_{p}\right| \sin \frac{\pi}{m_{p}} \leq\left|a_{p}\right|\left|\varrho_{p}(y)-\varrho_{p}(x)\right| \leq \\
\sum_{n=p+1}^{\infty}\left|a_{n}\right|\left|\varrho_{n}(x)-\varrho_{n}(y)\right| \leq 2 \sum_{n=p+1}^{\infty}\left|a_{n}\right|,
\end{gathered}
$$

in contradiction with the hypothesis.

References

[1] Z. Boros, Interval-filling sequences with respect to a finite set of real coefficients, Publ. Math. Debrecen 43 1-2 (1993), 61-68.
[2] Z. Daróczy, A. Járai and I. KÁtai, Intervalfüllende Folgen und volladditive Funktionen, Acta Sci. Math. 52 (1988), 337-350.
[3] Z. Daróczy and I. Kátai, Generalized number systems in the complex plane, Acta Math. Hungar. 51 3-4 (1988), 409-416.
[4] Gy. Maksa, Interval-filling sequences and the dyadic group, Grazer Math. Ber. 315 (1991), 69-74.
[5] F. Schipp, P. Simon and W. R. Wade, Walsh series, Akadémiai Kiadó, Budapest, 1990.

ZOLTÁN BOROS

INSTITUTE OF MATHEMATICS AND INFORMATICS
LAJOS KOSSUTH UNIVERSITY
H-4010 DEBRECEN, PF. 12
HUNGARY
E-MAIL: boros@math.klte.hu

[^0]: Mathematics Subject Classification: Primary 11B05; Secondary 43A32.

