On a topology in endomorphism rings of abelian groups.*
By + TIBOR SZELE in Debrecen.

1. Introduction. Let G be an arbitrary (additive) abelian group, and
E(G) the complete endomorphism ring of G.') If @ is some subset of E(G)
then the centralizer of ® in E(G) is a ring P= Eg(G) with unit element.
The representation P= Eg(G) is called a canonical representation of the ring
P. Any ring R with unit element possesses a canonical representation. Indeed,
let G be the additive group of the ring R, and @ the set of those endo-
morphisms #. (c € R) for which

X9 =cx (x € G).

Then, as it is easily seen, E¢(G) >~ R holds.

By a topological ring we shall mean an associative ring which is also
a T,-space, such that r—s and rs (r, s € R) are continuous functions of r and s.

The aim of the present note is to equip the canonical representations
of rings with unit element with a well-defined topology, which induces a
concept of convergence embracing those natural phenomena of convergence,
which have already occurred in purely algebraic investigations of endomorph-
ism rings.?) The fact that this topology is always complete, seems to be of
some interest. It is also shown that in this topology one has the fact well-
known for p-adic numbers that a O-sequence is always summable.

* This paper is based on the last lecture of the author, delivered March 26, 1955
at the University of Szeged, at a meeting held on the occasion of the 50th birthday of
Professor LiszLo Kaumir. The present paper having for its aim to record this lecture was
written by J. Ero6s and A. Kerrész. They had at their disposal only some of the author’s
written notes and verbal comments they could remember of.

1) Elements of G will be denoted by small Latin letters, endomorphisms of G by
small Greek letters. Endomorphisms will be considered to be right operators. The void
set will be denoted by ), whereas O will stand for the null-endomorphism. {...,5,, ...}
denotes the set of the elements g,. For any two sets M and N, M N denotes the set
consisting of all the elements of M which are not contained in N.

) See e.g. A. Kerrész, On radical-free rings of endomorphisms, Acta Univ. Debre-
cen 4 (1957), under press.
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2. Results, Let P=Eg(G) be a canonical representation of the ring
R with unit element. In P we define closed sets as follows :

A subset A (WS ASP) of the set P is called closed if 8€P belongs to
A whenever for every x € G there is an infinite set of elements «, € A satis-
fying xf=xea,.

By this definition

1) § and P are closed sets,

2) any finite subset of P is closed,

3) the union of two closed sets is closed,

4) the intersection of any class of closed sets is closed.

Thus P is a T7,-space.

We show that the closure of a set B (SP) is the set B of all elements
y € P such that either y € B or else for any x € G there exists an infinity of
elements $, € B for which xy = xj, holds.

Indeed, let n be an element such that for any x € G the relations xn =
== xE® hold for an infinity of elements £® ¢ B. Now, if only a finite num-
ber of the &»’s belonging to some fixed element x € G is contained in B,
then there exists at least one index 4,, for which &2 € B but §2¢ B. In this
case xn=x§;:1=xﬁ‘# is true for infinitely many elements 8, € B. Thus, for
any x € G the relation xn=2x#, holds for an infinity of elements g, ¢ B,
i.e. n€B. The set B is therefore closed. — On the other hand, let D be a
closed set containing B. If n € B, then n€D. If n¢€ B and 7 ¢ B then for any
x € G there exists an infinity of elements 8, € B such that xn=xg,. Since
D is a closed set, we necessarily have 7€ D, i.e. BED.

Let ®={g,} be a system of elements ¢, of the ring P, where » runs
over an arbitrary infinite (not necessarily ordered) set of indices N. We call
the system @ a O-system, if any neighborhood of the zero of P contains
almost every element (i.e. all elements with at most a finite number of
exceptions) of @. With other terms, the system @ is a O-system, if for
closed sets A,0¢ A, the relation ¢, € A holds for at most a finite number of
v € N.

Theorem 1. For a system ® = {¢,},cn of elements of the ring P the
following properties are equivalent :

a) @ is a O-system;
b) for any element x of G the relation x¢, == 0 holds only with a finite
number of v € N.

PROOF. If a) does not hold, then b) does not either. Indeed, let us sup-
pose that for the closed set A (O¢ A) and for an infinity of indices » € N
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the relation ¢,, € A holds. If infinitely many of these are equal, say, to the
element ¢*, then ¢* € A implies ¢*==0 and thus for a suitable element
x, € G the relation x,¢, =0 holds with infinitely many » € N. The other pos-
sibility is that A contains an infinity of pairwise different endomorphisms

(1) Pryy Pryy oo

belonging to @. b) cannot hold in this case either, for by b) the relation
x-0=x¢,, would hold for any element x € G with almost every endomorph-
ism (1), which by the closedness of A would lead to the contradiction 0 ¢ A.

If b) does not hold, then a) does not either. Let x,€ G be an element
such that x,9,,==0 for an infinity of »;€ N. If for an infinity of these indi-
ces »; the relation ¢,,=¢" holds, then the set {¢*}= A consisting of a
single element is closed and does not contain the element O, whereas for an
infinity of indices »; € N one has ¢, € A. In the contrary case x,¢, +0
(i=1,2,...) holds for an infinity of pairwise different endomorphisms
@ris Pryy - - - Let A be the closure of the set {g,,, @,,,...}. The set A does
not contain the eiement O, for the element x, does not fulfil the relation
Xy'0 = Xo¢,,. The set A is therefore a closed set which does not contain 0,
and such that for an infinity of » € N we have ¢, € A, so that a) does not hold.

This completes the proof of Theorem 1. By this theorem a O0-system
can always be understood to be a system with property b).

An infinite system @ = {g,},en of elements of the ring P is said to
converge to the limit ¢ € P, if for any x € G the relation x(¢,—¢)=0 holds
with the exception of a finite number of »’s. If @ converges to ¢ we write
lim ¢, =¢. Since P is a T,-space, the limit is uniquely determined.

»EN

By the sum @+ & and the product @-& of two systems @ = {¢.},en
and &= {y,},ey we understand the system {@,-+,},cx and the system
{¢, ¥, }ren, respectively. By the above definition of convergence it is easy to
see that if lim ¢,=—¢ and lgr: v, =1y then Iél‘:'l (p»+v») =@+ and

rEN
lim (¢,v,)=¢-w. From these relations it follows that P is a fopological
rEN

ring with respect to the topology considered.

A system @ ={¢,},c~ is called a Cauchy system if for every x€ G
there exists a finite subsystem N of N such that x(¢,,—¢,)=0 for every
v, ¥, € N\ N©. If a system converges, then it is a Cauchy system. For, let
lim ¢, =¢ i.e. llen\1r (¢»—¢)=0. Then, for a given x € G we denote by

reN

N@® the set of those elements » of the set N, for which x(¢,—¢)==0 holds.
The set N@ is finite, and thus x(¢,,—@,,) = x((¢,,—¢)— (¢»,—¢)) =0 for
every v, 1, € N\ N®.
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The topological ring P is called complete, if in P every Cauchy system
is convergent. We prove the following

Theorem 2. The topological ring P is complete.

Let @ = {9p,},en be a Cauchy system in P. Then for x € G the element
x@, is the same element x¢ of G for almost every index ». We show that
the mapping x —x¢ (x€ G) is an endomorphism ¢ of G, which is con-
tained in the centralizer of @. Indeed, for the elements x, y € G there exists
an index » € N such that x¢ =x¢,, y¢ =y¢, and (x+y)¢ = (x+ )¢, and
therefore (x+y)¢ = (x+y)9, = x¢,+y¢,=x¢ +y¢ holds; moreover, for
x€G and 9 € @ there exists a u € N such that (x$)¢ = (x%)¢p. and x¢=
=x¢, and therefore (x%)p = (x3)@p. = (x¢.)$ = (x9)$ holds. Finally, it

is clear that lim ¢, =¢. This completes the proof of the theorem.
»EN

We say that a system @ = {@,},e~ in P is summable and has the sum
@ €P, if for any x € G there exists a finite subset N® of N such that for any

finite subset F of N containing N® the relation x [(’é‘, tp,) —go) =0 holds.

Theorem 3. The system @ = {@,},en is summable if and only if it
is a O-system.

If @ is a summable system, then the relation x¢, =0 clearly holds for
every index »§ N, and so @ is a O-system. Conversely, let @ be a O-system.
We define the sets N@® as follows: » € N@ if and only if x¢,==0. We show
that the mapping

x—»x[ Z t}’r] (x€G)

yEN @)

is an endomorphism ¢ of G which is contained in the centralizer of @. In-
deed, let /= N®@yN®yN=; then we evidently have

x+p=(x +y)[é;%) - (’g@)%] +y{’§,(,,%) =xp+y9.
Furthermore, for x€ G and 3€@ let J=NEHyN®. Then (xH¢g=
=9 % o) =x( % 9,)% = (xg) 9. Finally, by the definition of the en-
domorphism ¢ we have x(('g tp.,]—tp)=0 for any finite subset F of N,
such that N®C F, and thus @ is summable; this completes the proof.

Corollary. If @ ={9,},en and ¥ ={y,},cn are two systems in P and
D is a summable system, then the system ®-& is also summable.

(Received September 18, 1955.)



