A class of systems of differential equations and its
treatment with matrix methods. L

By E. MAKAI in Budapest.

§ 1. Introduction.

The object of the present paper is the investigation of the following
system of differential equations:

(x—a)yi =aup+auys + -+ Qayn,

(1.1 (x—a)ys = auy + axys + -+ +a2ayn,

(X—ﬂu)y;- =amh +an2y2+ b +amlyno

Here the quantities a; and aix are complex constants and we suppose
throughout this paper that a;==0, so that the point x=0 is a regular place
of the system.

This system is a special case of a more general type of systems of dif-
ferential equations named by L. SCHLESINGER schlechthin kanonisch. These
systems can be written in the form

e o ik o
(12) y‘——k;ljzlx_a 'k (1—1,2,. ,n)
or
3 ’wP.—..(x) %
l' y — — —— :
(1-3) p—2 2 (=1,2...m)

where a;==aj, o(x) = (x—a,) (x—a,)...(x—a,), the ai’s are constants and

the functions Pu(x) polynomials of degree not exceeding o—1.

In fact if in the system (1.2) we put 6= n and a{f = a.d; where d; is

the Kronecker delta, we obtain that special case of the system (1.1) where
each a; is different. A similar consideration shows that if in the system (1.1)
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some of the a/’s are equal it remains still a special case of the thoroughly
investigated system (1.2).")

The system (1.1) being a schlechthin canonical one, it belongs to the
Fuchs type of systems of differential equations. It has a lot of advantageous
properties which render it easier for manipulation than the general Fuchs
systems. E. g. its solutions can be given in the form of power series the
coefficients of which are to be calculated in a closed form comparatively
easily with the help of Matrix Arithmetics. The power series expansion —
and its remainder term — can be majorized with a binomial power series
(§2) instead of the generally valid majorizing functions of the exponential type.

The system (1.1), respectively the ordinary differential equations to be
derived from it, lead in special cases to important classical equations, e. g.
to the equations of the ordinary, confluent and generalized hypergeometric
functions, LAGUERRE polynomials, BESSEL, LAME, MATHIEU functions, the dif-
ferential equations of HEUN and PocHHAMMER. (§5.) Having obtained the
solutions of the system (1. 1) solutions can be given of the schlechthin canon-
ical systems (1.2), the general Fuchs differential equation of the second
order and several other types of differential equations (§4.).

The differential equations and systems directly soluble through correla-
tion with a system of type (1.1) are in fact so numerous that in a suitably
chosen space of homogeneous linear differential equations resp. systems they
are everywhere dense. In other words and more accurately, the solutions of
each homogeneous and linear differential equation resp. system may be
approximated by those of (1.1) with arbitrary accuracy in a closed domain
or interval not containing singular points of the differential equation or
system. (§ 6.)

According to what has been aforesaid the system (1.1) is such a spe-
cial class of the homogeneous linear differential systems by the use of which
one can get insight also numerically with arbitrary accuracy into the proper-
ties of any homogeneous linear differential system or equation. This property
of the system (1.1) shows that it is worth while to study it by its own
merit and not merely as a tool which renders possible a treatment of a
number of more or less important differential equations.

1) The idea of the schlechthin kanonisch systems was introduced by Poincare [5] (p.
215). A full discussion of them is to be found in Schiesinger [8] (pp. 225—238, 268—285),
and in a more modern form in the posthumus papers of J. A. Lappo—DaniLevsky (Volumes
6, 7 and 8 of the Travaux de I'Institut Stekloff (1934—1936)).

The system (1.1) occurs in G. Birktorr’s paper [2], on p. 454, but the author did
not take into account its peculiarities arising out of its special form. — Numbers in brackets
refer to the Bibliography at the end of this paper.
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A problem in connection with the system (1.1) is the following. When
does it have a polynomial solution? The solution is given in § 8 under
rather general conditions. Moreover the explicit form of the polynomial solu-
tion can be given in a rather concise formula with the help of matrix nota-
tions. (§ 9.)

Generally the treatment of the system (1. 1) is greatly facilitated by the
use of Matrix Arithmetics. In the following bofd face type capital letters de-
note square matrixes and bold face type lower case letters column vectors.
Diagonal matrices will be written in the form (.-->. The notations which
will be used throughout this paper are:

(1.4) Re=tl, Leiu il
(1.5) X={X—a,X—a,...,X—a», &=x—ai,
Ay Qp...0;, ) yi Cm1
ST SRR (o S il (RS 1 (RPN | R
Gy G G »n i En
With these the system (1.1) can be written in the concise form
(1.7) Xy =Ay.

We remark that the solutions of the system (1.7) may be regarded as
members of a class of functions investigated by C. TRUESDELL [9]. This class
of functions depends analytically on the quantities x and « and possibly on
other parameters. If an element of this class is F(x,«) then it satisfies the
relation

— F(x «)=F(x,a—1).

Indeed if the solutions of (1.7) are denoted by y(x, A) then the solu-
tions of the system Xy — (A+«lI)y are y(x, A+ «I). Differentiating this
last equation we get Xy” —(A+[e—1]I)y’ from which

%y(x,A—l—al)my(x,A+[ﬂ-—1]I)-

It is to be noted that solutions of the system (1.2) do not satisfy gene-
rally a similar relation.
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§ 2. Solution of the system (1.1) with the aid
of a power series.

Our starting point in this chapter is the system

(2. l) (I—d;x)y€=§:b,-gyg (I——- 9 ..,ﬂ)

which is identical with (1.1) if
= 3 o
(2.2) di=_- and ba=—"".
Using the notations D =dd,, d,, ..., d,> and B=(by) this system can
be written in the form

2.1) (I—Dx)y = By.
As the point x=0 is a regular one, to each set of initial conditions
(2.3) ¥:(0) = co: (i=12,...,n),
or in vectorial form
(2.4) y(0) = e,

there exists a solution of the system, regular in a circular disk C with centre
0 which contains in its interior and periphery only regular points of the

system.
Now we assume the following formal power series:
(2.5) Yi(x) = coi+ Crix +-Caix*+ -+ - (i=12,...,n)
or in vector form (cf. 1.6))
(2.6) Y=y = 2 cax".

Substituting this into equation (2.1") we get after a short computation
that mc..—D(m—I)c..._1=Bc.._; or

2.7) en = [B+(m—1)D]en-s.

This two-term recurrence formula is important as with its aid the
quantity e. can be given in a closed form. Indeed,

en =1 [B+(m—1)D]ca. =
28 = [B+@—1)D] - [B+(m—2)DJens ==

=E1F! [B+(m—1)D] [B+ (m—2)D]---[B+ D|Be,.
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In the .simplest case, when n=1 the last formula gives the solution
(2.9) co(1—d-x)™
of the ordinary differential equation (1—d-x)y’ = by in the form

|
y= 2 —[b+(m—1)d][b+(m—2)d]...bcox™=
2 9) S

® b
=c.,m§o(— )" (_m?) (@-x)"

provided that |x|<|d'| as x=d' is a singular point of the function (2.9).
Now we proceed to the investigation of the convergence of the vector
power series (2.6). We will make use of the following lemma.

If the infinite series
(2.10) Vit V¥t Vat oo

consisting of the n-vectors v, with components vmi,vVme,..., Vmn iS absolutely
convergent i. e.

[val +[va| 4 -+ + | V| + -
is convergent then (2.10) is convergent.
Moreover the inequality
| Vont1 + Vmsz + -+ | = [ Vinst |+ | Vimsa| +- -+

holds. (|vam| is the quantity }[vmi+ --- + |vms] and we mean by the con-
vergence of the vector series (2.10) that each of the series

Vit veit - Umit o (i:1,2.---,")

is convergent.)
Applying the lemma to the vector power series (2.6) we can state that
if the series

@ 11) Sleallx”

is convergent then each term of it is not less in absolute value than the
corresponding term of any of the series (2.5) and the mth remainder term
of these series is not greater in absolute value than the mth remainder term
of (2.11).

As to the convergence of the series (2.11) we make the preliminary
remark that there exist positive numbers b and d such that v being an arbi-
trary vector

|Bv| = b|v| and |Dv|=d|v|.



10 E. Makai

It is well known that if »« denotes a positive number then this implies the
inequality
|(B+uD)v| = (b+ud)|v|.
As D is a diagonal matrix, d can be chosen as the maximum of the
quantities |d;|.
Applying this to the formula (2.7) we get the inequality

b m—1
s|l—4+— R A
Icml_(m+ -~ d)lc 1|
and from this follows that no term of the power series

el +2 el 121+ 2D o) x4 4

+b(b+d)"°(’f:!-|_[m_l]d)lcnl|x|m+“'

(2.12)

is less than the absolute value of the corresponding term of (2.11). The
radius of the circle of convergence of the series (2. 12) is "' and within this
circle the sum of this series is |¢,| (1—d|x|)™"". This means that the radius
of convergence of the solution (2.6) is at least d”'. In the general case we
cannot assert more, for on the circle ix}:d" there lies at least one singular
point of the system (2.1).

We can state now that the vector power series (2.6) represents the solu-
tion of the system (2.1) belonging to the initial condition y(0)=c¢, in a
circle the centre of which is the origin and which does not contain in its inte-
rior and circumference any singular point of the system.

If we want to estimate the absolute value of the remainder term

L]
2 l«:,..x'" this may be done by any quantity which estimates the remainder
m=p+

of the binomial series (2.9). In case of numerical calculations one can
develop several obvious refinements of this simple estimate.

§ 3. Remarks on the power series expansion.

In the preceding chapter we gave a power series expansion for the
solutions of the system (2.1) instead for those of the system (1.1). Of course
we could expand the solution of the system (1.1) or rather (1.7) in a power
series, but the resulting formula would be slightly more complicated. Formal
power series expansions in the neighborhood of other points including sin-
gular ones can be obtained essentially in the same way as in § 2. Naturally
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one must take into account the nature of the singularities as in the general
theory of Fuchs systems of differential equations.
We could investigate instead of the systems (1.1) and (2.1) the power

series expansions of the system
3.1) (K—Lx)z’ =Mz

where K, L, M are nxXn matrices with constant elements and z is an n-vec-
tor. This system too leads to a two-term recurrence formula yet it doesn’t
seem to have any interest in itself. Moreover it can be reduced to the type
(2.1) if the following conditions are satisfied:

(a) the matrix K has an inverse;

(b) there exists a matrix S with the aid of which K™'L can be trans-
formed into the diagonal form.?)

By virtue of our conditions equation (3.1) can be written in the form

(I—K'Lx)z =K 'Mz
resp.
(I—SK'LS'x)Sz =SK'MS'Sz.
Now Sz is a vector which we term y and then Sz’'=y’. Substituting
this into the last equation we get indeed an equation of type (2.1).

§ 4. Differential equations and systems, the solutions of which
are reducible to those of the system (1.1).

We shall prove the following statements.
A. Consider the second-order differential equation

4.1) Pu(x)y” + Pa-i(X)y' + Pa-2(x)y =0
where P, (X) = (x—a,)(x—a,)...(x—a,), (a; F+ax), and P,_;(x) and P,_s(x) are
polynomials of degree not exceeding n—1 resp. n—2.

There exists a system of type (1.1) with the following properties:

(1) the first component of each solution vector of the system is a solution
of the equation (4.1);

(2) each solution of (4.1) is the first component of a certain solution
vector of the system.

%) Matrices K and L subjected to these limitations lie still everywhere dense in a
space of matrices with a suitable metric; e. g. in the space defined by the distance

d(A, B) = V€|au—b.m
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With the notation
{1.5) E=x—a;
equation (4.1) can be written in the form
(4.2) y+ 3Byt S Ly=o
where p; and ¢: are suitable constants satisfying the conditions

P Pai(®) o 2?-_§1Pn-2(x).

=1 E-_- P.(x) =& Pn(x)
Now consider that special case of the system
(1.7 Xy =Ay
where
e 1 1 ...1
(4. 3) e a:n ﬁs !gn {5’
&, ﬁ.. ﬂ'. ﬂn
or
4.4) Evi=an+ (h+yst+ o+
4.4) '.Ee.}’i:_aayl‘F Bo(Ya+ys+ -+ )
(4.4,) By = @ui+Ba(Pat Vst -+ + ).

Introducing the notation u=y,+ys+---y., dividing (4.4;) by &
(i=2,3,...,n) and summing from i=2 to i=n we have the system

@.5) = a;yl +u

u —
2ENT 2 s.
Differentiating the first equation and eliminating u and «’ from this and
the system (4.5) we arrive at the second order differential equation

(46) P{'—-[ gl +|_ g:] 1+E1 - 0131&' ,V:Z L

This equation is easily identified with equation (4.2).
Therefore if we determine the elements of the matrix (4.3) so as to
satisfy the relations
—(ﬁl—l)=Pn —Bi = pi, “sﬂi—as=q1: (l'=2, 3,---,31),

the first component of each solution of the system Xy = Ay becomes a
solution of equation (4. 2).
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Conversely, to any particular solution of equation (4.1) e. g. to the one
characterized by the initial conditions y(0) =p, ¥'(0) = ¢ and designated by
y* there belongs a solution vector of the system, the first component of which
is identical with y*. For, consider that solution vector of the system (4.4)
which is determined by the initial conditions

»O)=p, yO)=r. (=23...,n)
where the y’s are subjected to the condition
o Lty o anamed e T

The first component of this particular vector is, according to the last para-
graph, a solution of equation (4.1). But from (4.4,) yi(0)=¢ and so we
found the desired particular solution y* of the second order equation.

B. Consider the schlechthin canonical system
ai .
(1.2) yi=k21'2:-"7yk (i=1,2,...,h).

There exists a system of type (1.1) from the system of solutions of which one
can construct each system of solutions of (1.2) by means of finite summing.
Consider namely that system of type (1.1) which has no unknowns

yu,J’m---,yw.J’m,J’m---.yw,---;J'm;]’az’---;ym
and the form of which is

4.7 1&,-y;,-=§a}i) Z:y.,,-. (i=12,...,n;j=1,2,..,0)
= =

Dividing equations (4.7) by & and summing with respect to j we have

g i n e () @
' o Qi B
Er-2 585w  —r2.m
which after introducing the notation

(4' 8) yf=gyij

becomes formally identical with the system (1.2). This shows that if we
possess a solution of the system (4.7), we also have a particular solution of
the system (1.2).

Conversely to any particular system of solutions of the system (1.2),
e. g. to that characterized by the initial conditions

1O =7, 20)=rys.... (0)=7a,

there belongs a particular solution of the system (4.7) from which using
relations (4.8) one can construct the solution of (1. 2) belonging to the given
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initial conditions. This particular solution of (4.7) is the one satisfying the
initial conditions - :
Yi(0) =7 (i=1,2,...,n;j=1,2,...,0)

Z &y (T
=l

C. The theorem of part A of this chapter deals with a particular class
of second order Fuchs type differential equations. Using the theorem of part
B we can prove the following. The general Fuchs type differential equation
of the second order is of the form

(4.9) [0}y’ + @ (x) Pa-i(x)y' + Pon-2 (x)y =0,

where o(x)=(x—a,) (x—a,)...(x—a,), ai==ax, and P,.1(x) and Pi.-2(X)
are polynomials whose degree does not exceed n—1 resp. 2n—2.

where

There exists a system of type (1.1) from the system of solutions of
which one can construct each system of solutions of (4.9) by means of finite
summing.

It is sufficient to show that there exists a schlechthin canonical system

(cf. (1.3))

4.10) o(x)y'=Py+z

o(x)2 =Qy+Rz
which is equivalent to equation (4.9). Here P, Q, R are suitable polynomials
of degree not exceeding n—1.%) Eliminating 2z from (4. 10) we have

o’y +o(w'—P—R)y' +(PR—Q—wP')y=0.
Our task is to determine P, Q, R so that the coefficient functions of the last
differential equation should be the same as the corresponding coefficien*
functions of equation (4.9):
(4.11) o' —P—R=P,,(x) and PR—Q—oP = Psu3(x).

It can be shown that to any w, P,..i(x) and Pi.-2(x) one can find a
solution of the system of equations (4.11) where P, Q, R are polynomials of
degree not exceeding n—1.

From the first of the equations (4.11) P4 R has to be equal to a po-
lynomial § of degree not exceeding n—1. § is supposed to be given in
advance but otherwise arbitrary since @’ and P,.; are arbitrary polynomials.
Writing R=S—P in the second equation (4.11) one gets

SP—P’-——Q—(DP’ EPQ,‘-Q(I).

3) Cf. Poincaré |5), pp. 215—216, where a similar theorem is enounced.
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One has to show that to any o, S, Ps..o there exist polynomials P and Q
satisfying the last equation. We re-write this equation in the form

4.12) +oT'+U=—Q
where

PR % W -
1 1 2n-2
i A - S i~ = i
U=Po2(x)— 7 S+ S igu.x
and

n-1 n
Q=i§qix‘, w:% w; X%,

Our task is now to show that to #/s and w/’s given in advance in an arbi-
trary manner there exist constants #; and ¢: satisfying equation (4.12).

If we consider provisionally the coefficients as arbitrary ones then the
left hand side of equation (4.12) is a polynomial of degree not exceeding
2n—2. In order that the degree of this polynomial should not exceed n—1
it is necessary that the coefficients of x2"-2, x2*-3, .. x" i. e. altogether n—1
quantities, should vanish. Now the requirement that on the left hand side the
coefficient of x**-? should vanish defines the quantity #.-,. If we require
moreover that also the coefficient of x*-% should vanish then we can deter-
mine from this the quantity #,_2 and so on until our last requirement defines #,.

We do not get any condition for #, and so in the polynomial 7 there
remains an arbitrary additive constant. This construction of 7 determines
simultaneously the polynomial Q (which of course depends on £,) and so our
problem is solved.

It follows that the component y of any solution vector of (4.10) is a
solution of the equation (4.9). The converse of this is easily verified as in
part A or B which completes the proof.

D. Another generalization of the statement of part A of this chapter is
the following.

Be P, (x) a polynomial having n simple roots none of which is equal
to O. Let further P.-i(x) be a polynomial of degree not exceeding n—i (i=1,
2,...,m) and m be an integer not greater than n. Then one can associate
with the equation

(4.13) Po(X) Y™ + Po_y ()Y D -+ + Pom(X)y =0

a system of type (1.1) with the following properties:
(1) the first component of each solution vector of the system is a solution
of the equation (4.13);
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(2) each solution of (4.13) is the first companent of a certain solution
vector of the system.

The proof of this statement will be omitted here

In view of the foregoing it seems probable that the theorem of part C
can be generalized to Fuchs type differential equations of any order. Yet it
is by no means true that the most general differential equation which can be
correlated to the system (1.1) is the general Fuchs one. Counter examples
are examples 7 and 8 of § 5.

§ 5. Examples.’)

1. If in (1.1) the value of n is 2 then y, and y, satisfy second order
ordinary differential equations in accordance with part A of § 4. Both differ-
ential equations belong to the hypergeometric type. In particular the solutnons
¥, and y, of the system

6.1 (x—1yi=F—ec—Bn + (e—7)
: xyi=+ (B—)N—7r)
satisfy the hypergeometric differentiai equations
x(1—=x)pi" +[y—(e+ B8+ ) x]yi—esy, =0
and
x(1—x)ys + [y +1—(e+ 8+ 1)x]yi—asy, =
As it is easily verified, a solution vector of the system (5.1) is
l J l 7F(e, 8,7, %)
- (B—7)F(e, 8, 7+ 1, %)
where F(e, 3, 7, x) is Gauss’ hypergeometric function.

2. The Jacebi polynomials are polynomial solutions of the hypergeo-
metric differential equation at certain special valucs of the parameters. Simi-
larly the system (1.1) may have in the casc n - 2 polynomial vector solu-
tions i. e. solutions both components of which are polynomials.

So if » is a non-negative integer the system
Eyi= —eap-i(«¢}r)y.
Sys=E@+v)y— Y.
has polynomial solutions. (Cfr. § 8.). In the special case where & =x—1

(5.2)

1) In this chapter we omit the restriction made on the parameters of the system
(1. 1), namely that no a; should be equal to 0.



A class of systems of differential equations. 17

and & x-41, a solution vector of (5.2) is
V. P
where P,“”(x) means a Jacobi polynomial. (The notation is the same as in

the book of G. SzEGO: Orthogonal polynomials.) This can be verified by
substituting the form

»

on =336 (Y Y

of the Jacobi polynomials into equations (5.2).%)

It is noteworthy that the system (5.2), the solution of which is a pair
of Jacobi polynomials, is of a simpler structure than the second order ordi-
nary differential equation of Jacobi polynomials. E. g. the parameter »
denoting the degree of the solution appears linearly in the system

= o s % w1,  10°1
Ry X-"_([ P -ﬁ]+'[l 0”-"’
and in the differential equation

(1—x) [P () + [B—e—(e+8+2)x] [P () +
+r(r+e+B+1)PSP(x)=0
it is involved in a quadratic expression.

3. Laguerre polynomials. Another example is the system
Eiyi=—ey,+(e+7)y:
yo=— »,+ Y2
which, though only a limiting case of the system (1.1), yet belongs to type
(2.1). The functions y, and y, satisfy the differential equations
'+ (1 +e—E&)yi+rn=0,
Eyi+  (e—&)ys+rn=0.
A polynomial solution exists if » is a non-negative integer. It is easy fo
verify that a polynomial solution vector is

[7]-[F82,)

(5.4)

where
@y — "‘5‘“](—305
=2 (155,

denotes a Laguerre polynomial again in accordance with SzEGO’s notation.

3) See e. g. Saxsoxe [6], vol. L, p. 143.

D2
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It is remarkable that in this example as well as in the foregoing, the
classical normalization of the polynomials gives rise to these relatively simple
solutions.

4. Whittaker's confluent hypergeometric equation®) is

d*w T .
7 M G e ey ey

Be

1 >
W=x% e 2y,
A simple computation shows that y satisfies the differential equation

(5.5) xy"+(l—2m——x)y’+(k—%+m]y=0.

The last equation has the same form as the differential equation (5. 4) of the
Laguerre polynomials and so with regard to example 3 and part A of § 4
we can state that the y in equation (5.5) can be identified with y, in the
system

xyi=2my+ (k—- —;— —-M) Y

el Y.
5. One of the differential equations associated with Bessel functions is
xy'+QRix+2v+ 1)y +i(2r+1)y=0.
It is satisfied by x”e-*/,(x) and by the solution y, of the system

{ 1
Xy =—2vy, +L‘V—-— 7]3’2 g
yi= 2iy1—2iy: 5,
6. Consider now that special case of the system (4.4) where n=3:
En=an+ (n+y)
Eyi= a4+ B (). +s)
Eys=as) + 8i()2+¥s).
The quantity y, satisfies the equation

&&&yy +[(1 — ) &8 —B.8 85— I-'fsEla]J’l'!‘[(“1:5'1_“2)'»5+(“nds—as)51]y1
which is Heun’s differential equation in its most general form.

6) See Whittaker—Warson [10], p. 337.
7) Another example of a system of type (1.1) associated with Bessel’s differential

equation was found by A. Renvi



A class of systems of differential equations. 19
A special case of this example is
(x—e)n ———%yﬁ- (321 s)
(x—eyi =y — 5 (3 3)

’ l
(x—e3)y; = a3y, — 2 (y2+s)-

Here y, satisfies the second order differential equation

N
X—8

-k

A==y A—E€g

r

1 1
[“2"!“4‘_ f‘3+_4‘

P & I o
) [x—e, e x—e,] il
the differential equation of Lamé’s functions.®)

7. The differential equation of Mathieu functions is of the form

Q+(a+16qcos2z)y=0

dz* :
Introducing the new variable x=cos 2z we have

N (3 ) =
(5.6) (1 x“)a;: o R +44gx|y=0.
Now the unknown y, of the system
Y- (y2+s)
; 1

.7 (1 _x)J’2=“2J"1+‘2*(y2+}’3)

; 1
(14+x)y;= “s]’1_—2‘ (324 ys)

satisfies equation (5.6) if @;—ay,=4¢ and —(a;+ @) = a/4.

In connection with this example we will apply the general method of
§ 2 for estimating the terms of the power series expansion of the general
solution of equation (5. 6).

We consider that solution of equation (5.6) which belongs to the ini-
tial conditions y(0)=r, y'(0) =s. Evidently this corresponds to the solution

r
of the system (5.7) with initial conditions co=[s/2].
s/2

8) See WHirtaker—WaTtson [10], p. 555.
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The value of the constant d in formula (2.12) is now 1. The quantity
b is by definition an upper bound of the quotient |Au|/|u| where A is now
the matrix of the right hand side of (5.7). Writing this quotient explicitly
and using the Cauchy—Schwarz inequality we have

|Aul/u| = 3+]af + el
Therefore each term of the Maclaurin series of y, is not greater in ab-
solute value than the corresponding term of the binomial series

]
P4+ 58 (1 — ] Yo,
We could get a better estimate if we would use the relation

1 V2
[ema| L1 |Cm-1,2F Cm-1,8] = ™ |Cm-1]

arising from the peculiar form of the differential equation (cf. formula (2. 7))
which shows that the absolute value of the coefficients c... is materially less
than |em-1/.

8. It is known that the square of the Mathieu functions satisfies after
a suitable transformation the differential equation

(5.8)  x(x—1)y"+5 @x—1)y"+(16g—a-+1—32gx)y —16qy=0.)

The system
, 1
LYy oy e Yo t+b1ys

5.9) : 1
; x—=D¥i=  —n—75rtby

}'52 y1+ Y2
is such that its component y; satisfies a third order differential equation which
becomes indentical with (5.8) after a suitable choice of the parameters
b, and b,.

9. The generalized hypergeometric function

5.10 e @1y By evny Cp ]—f : s
( . ) yl_pFn-l ﬂ!:ﬂm---,ﬂu = ¢ - oclmxn (P:ﬂ)

where none of the «/s is equal to any of the 8’s and @.==0,—1,—2,...
satisfies one and only one linear differential equation of order n, the coeffi-
cients of which are rational functions of x.”) The coefficients ¢ of y, satisfy

9) See WHittaker—Wartson [10], p. 418.
10) See Baiey [1], p. 8.
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the recurrence relation

G (et 1oy EEM@E M) (et m)

~ (B+m) (Bs+m)...(8.+m)
The function y, together with the functions y,, ys,..., y« — where y; is defin-
ed by interchanging in (5.10) the quantity @ with 8 4 1 — satisfies a system
of differential equations which may be readily changed into a system of type
(1.1). Three cases are to be distinguished.

(@) p=n. A direct substitution shows that y,,y,,...,y. is a solution
system of the system

Cim, Cw e 1 .

(1—x)y= alyl"*'%f]’rf‘%?s"""-i—%y,,

XYy=PRh— f):
L XYs == BV —8:¥;
XYn= B _ﬁaj’u-

Here the constants a; are defined by the decomposition of the quotient on
the right hand side of (5.11) into partial fractions:

(@ +m)(e+m)...(e+m) _ aQ @
Grm@E+m)...Gtm TR aT Y m
() p=n—1. The system satisfied by y,,y,,...,¥» is to be obtained
from (5.12) by interchanging the first equation with

T R TR
h=n+ ﬂﬂy2+ﬂays+ +ﬂ”yn.

The constants b; are defined by the following decomposition into par-
tial fractions:

(a1+m)(ag+m)...(“u-l+m) Xs bg bs ot b‘u
Grm@tm)...Gtm T Erm T EB+m T T Erm

() p<n—1. We obtain the system satisfied by y,,¥,, ..., y» again from
(5. 12) by interchanging the first equation with

*’

6
J'I—EJ’SH' ﬁsys"f' +ﬁ“yu-

The constants ¢; are defined by the equation
(al-{—m)(a,—i-m)...(ap—}-m): [ 3 Cs K Y 8 Cn
Be4m) (Bs+m)...(8u+m) Brt+m * Bi+m B+ m

In all three cases, setting up a vector power series solution Zenx™ for
the system (5.12), resp. its modifications, the system yields n relations be-
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tween Cim, Camy«+ .+, Cam aNd €1 m+1. Eliminating com, Csm,. .., Cum We arrive at the
recurrence formula (5.11). This in turn determines for y, uniquely an ordinary
differential equation of order n with rational coefficients provided that none
of the quantities a; (resp. b:,c¢;) vanish, or in other words no «; be equal to
any of the 8’s. This shows that the system (5.12) is equivalent to the well-
known ordinary n’th order differential equation of the generalized hypergeo-
metric function.

10. Pochhammer’s differential equation™)
P &2+ §(—1)"‘"la k—1)n- g9 (x) +
w-n () 9Y
@ —k— Dy 0(x)] 7 =

(where ¢(x) =(x—a,) (x—a,)...(x—a,), a; + a. and ¥(x) denotes an arbi-
trary polynomial of degree n—1) can be correlated to a system of type (1.1)
where

o t+n @ war. e

« a+” er @
A=Ar= :ll :}I : )

@, @, v Gutp

and the constants a; of the system are the roots of the equation ¢(x)=0.

This can be shown indirectly in the case when Ree;>1, Reu >0 and
@; and p are not natural numbers. The solutions of Pochhammer’s differen-
tial equation can be written in the form

[t—a)y't—ay™...¢—a)" (t—x)ydt  (j=12,...,n)
&
and these functions are linearly independent.”)
Consider the system
§iz2= (a'l_ l)zl + @2yt o0 +@n2n
bay=az+(ea—1)23+ -+ + @n2a

EzZn=a 21+ @2+ -+ +(en—1)2a

a solution of which is easily seen to be
R

1 =2 .
Z; = ——— i=12,...,n).
E ( )

11) See PocHHAMMER [4].
12) See Scuiesinger [7], vol. IL1.,, p. 456,
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Now by virtue of § 7 the functions

1 (t—a)”
Yi== j = t——a,-—-(t_x)“d{ (i=1,2,...,n)

%

satisfy the system Xy = Apy. If j assumes the values 1,2,..., n we have
n different solution vectors of this last system, the first components of which
are linearly independent. These n solutions determine uniquely that ordinary
differential equation of the nth order which is to be satisfied by each deter-
mination of y,. On the other hand the function y, satisfies the same Poch-
hammer differential equation at each value of j. This has to be therefore
identical with that ordinary nth order differential equation which one can
obtain from the system Xy’ = Apy by eliminating y,, ¥s,..., Va.

§ 6. Differential equations and systems the solutions of which can
be approximated with solutions of the system (1.1).

A. Consider the set of second order linear differential equations

6.1) LO)=yY"+£ ()Y +/(x)y=0,

where fi(x) and f,(x) are regular in a closed domain C. For the sake of
simplicity we will restrict ourselves in the following to the case where C is

a circular disk with the centre in the origin.
Be two elements of this set:
L=y +/®y +fu(x)y=0 and Ly(»)=y"+/a(X)y" +fu(x)y =0.
We define the distance of these two elements by

d(L, L) = max gﬁ i (X) —fra ().

It is known that in the space defined in this way the solutions of two
neighbouring elements are close one to another.
More accurately if #,(x) and 7,(x) are functions regular in C satisfying
the condition
max (m ()| +m(x)) <&,

and we consider the solutions of (6.1) and of

2"+ [/1(x)+m(x)] 2" + [fo(x) +n0(x)] 2 =0,
belonging to the same initial conditions

Y0 =20)=r,, YO)=ZO0)=nr (In/[+inl=1
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then there exists a number M depending only on f,(x) and f,(x) such that
|lz—y| < eM.

With the help of this one can prove the following assertion. 7o the
differential equation

(6.1) V' +LH&)Y +f(x)y=0
one can always find a sequence of differential equations of type
(4.1) Pu(x)y" + Pu1(x)y + Pa-2(x)y =0

(see § 4) which converge to (6.1) in the space defined above and their solu-
tions approach uniformty with arbitrary accuracy the solutions of (6.1). There-
fore the solutions of the differential equation (6.1) can be approximated on
the disk C with solutions of systems of differential equations of type (1.1).

For proving this it is sufficient to show that there exists a set of
polynomials

Py (x) (k=0,1,2; n=2,3,4,...)
where
P}u (X) —— (x_a] n) (x‘_ a2;‘) .- (x_ann) ((!.'.. =F ah)

and the polynomial Pi.(x) (k=0, 1) being of degree at most n—2-k is
such that

Polynomials satisfying this last condition may be constructed as follows.
Let us introduce the notation

Pin(x)=(—1)"

max >

z€EC k=0

Pin(x)
C1n@o .. . Cpn y
Then

ARG e se=(=) 1-Z}-{-Z)

Now let pi.(x) be the (n—2--k)th partial sum of the Maclaurin series
of fi(x) about which we know that they approach the functions fi(x) uni-
formly in C. Therefore if

1
max . |fi(x)—pun(x)| = &,
z€C k=0
then the sequence &, &, &, ... converges to 0. Now if
max {[A®), @} =T,
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where I" is a constant then
- {[Prdx)]; |Pou(x)|} = I+ 2a.

Let now n be a number greater than the radius of C and let us take
eux==jn (j=1,2,...,n). Then

po=(1=3) -5}~
and lim py,(x) = 1. Further

fi—> @

b

k=0

Pun(x) .
[ (x)_pgT(x_) £ (X) — Pin (X) | + | Prn ()] | 1 ) g A

The quantity on the right side tends uniformly to 0 as n— o and x¢C.
Therefore this construction yields the required sequence of differential equa-
tions of type (4.1).

In view of part D of § 4 the foregoing statement may be generalized
without effort to linear differential equations of any order, regular in a given
circular domain. The distance in the space connected with these differential
equations is to be defined as the upper bound of the sum of the absolute
values of the differences of the corresponding coefficients in the domain of

regularity.
B. Consider the set of systems of first order differential equations
(6.2) y:mgfa(x)yg (i=1,2,.,.,n)

where the fi(x) are regular functions in the closed circular disk C, the
centre of which is the origin. Be two elements of this set

ys:;ﬂ'fgkp)(x)yk (p=1:2; I.=],2,...,HL

and define the distance of these elements by

max > 30—

It is known that solutions of two neighbouring elements of this space lie
close together.

More precisely let na(x) (i, k=1,2,...,n) be regular functions in the
closed domain C and be

1
<
k=0

max 3 3 |a(3)| <
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Consider now those solutions of (6.2) and of the system

Z=3a@Wt+m@la  (=12...1

which belong to the same initial conditions

3:(0) = z:(0) =y (i=1,2,...,n;§|Ys|=1)-

Then there exists a number M depending only on the functions fi(x) and on
the radius of the domain C such that

|[yi—2zi| <eM (x€O).
With the help of this theorem one can prove the following assertion.
To the system of differential equations (6.2)

6.2) s élf.-.(x)y. P L TR

where the fa(x) satisfy the conditions given above,one can find a sequence of
schlechthin canonical systems which converges in the space defined above to
the system (6.2). The solutions of the successive elements of this sequence
approximate with arbitrary accuracy the solutions of the system (6. 2).

As the schlechthin canonical systems (1.3) are reducible to systems of
the form (1.1) (see § 4, part B) we can assert that

systems of differential equations of the first order reducible to systems
of type (1.1) are everywhere dense in the above defined space of first order
differential equations.

The proof may be arranged similarly to the preceding one. fix(x) may
be approximated by the /th partial sum of its Maclaurin series. @ (x) may be

1+1
chosen as Q (1— %,) and then one has to converge with / to oe.
= ‘

C. Similar theorems can be enounced if we remain in the domain of
real functions. Only in view of WEIERSTRASS’ theorem on the approximation
of continuous functions by polynomials one can replace the condition of
regularity of the coefficient functions by the continuity of them.

Of course differential equations or systems of differential equations may
be approximated in a given interval or domain also otherwise. For instance
one can divide the domain or interval into sufficiently little parts in each of
which one can approximate with differential equations or systems having
constant coefficients. Yet approximative solutions got in this way will not be
analytical in the whole domain of regularity resp. interval of continuity.
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Compare now two classes of ordinary differential equations defined in
the same closed circular domain C. First those which are equivalent with a
system of first order differential equations with constant coefficients i. e. with
the system y’= Ay where A is a constant matrix and on the other hand those
differential equations which are equivalent with the system Xy’ = Ay. One finds
still another difference: the first class, i. e. the class of differential equations
with constant coefficients, forms a nowhere dense subspace of the space defined
in part A of the foregoing chapter, whereas ordinary differential equations
connected with the not much more intricated system Xy = Ay form an
everywhere dense subspace of the same space.

This shows that it is worth while to consider the system Xy’ = Ay for
its own sake. By investigating this particular system one may hope to arrive
at results which are generally valid for the class of linear differential equa-
tions. The remaining part of this paper will deal therefore with the study of
the system (1.1) neglecting the exceptional cases almost throughout.

§ 7. Relations between the integrals of different systems
of type (1.1).

From the general theory of systems of linear differential equations it
follows that if Rea,, >0 and a,, is not a natural number then there exists
one and only one solution of the system (1.1) which can be written in the
form u(x) =u = (x—a,)""u,(x) where u,(x) is a vector the components of
which are regular at x—=a,. Now if Reu >0, it follows from the above-said
that the system

(7.1) Xy =(A+uDy
has one and only one solution which can be written in the form
v(x) =v=(x—a)""w(x),

where v,(x) is a vector function regular at x—=a,. If ¢ denotes a constant
we state that

(1.2) v(x)=c f(x-r)”"u(r)dr,

provided the way of integration does not pass through any singular point.
The right hand side of (7.2) is a vector the components of which
behave in the neighborhood of x=a, evidently as (x—a,)***.
It remains to show that the vector v defined by (7.2)is in fact a solu-
tion of (7.1). Denoting the components of u and v by u; resp. »; and choosing
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the constant ¢ to be 1, we get from (7.2) by partial integration that

. I 7 uor
v.‘(x)ziaj(x——t) U((f)dl',
and from this ;
vi(x) = J'(x—r)"“u;(r)dr.

@

Further
_|.(f-af) (x—)*ui(f)dt=

= (x—a) f (x—0*"ui(t)dt + f(r——x) (x—0" ' uidt =

= (@x—a) | =t w@dt—p | (x—1)" " wdt = (x—a)vi—pw,

a

or in vectorial form

(1.3) | =ty '<t—ar, t—ay,..., t—apu'dt =

={X—a;,X—qy,..., X—aq >V —pulv.
If we write now in the equation
(1.7) Xy'(x) = Ay(x)
t instead of x, u(f) instead of y(x), then multiplying with (x—¢)""" and inte-
grating between a, and x, we have

x x

J- (x—8)" 't—ay, t—ay, ..., t—adu' (f)dt = AJ. (x—t)" 'u(f)dt.

ay Ty

Comparing this with formula (7.3) and the definition of v we have
Xv—ulv=Ayv,

which completes the proof.
§ 8. Conditions of the existence of polynomial solutions.
Consider the recurrence formula

@.7) en = [B+(m—1)D]en

of the coefficients of the differential equation
%19 (I—Dx)y' =By (det D == 0).
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This relation can be written in the form
@ 1) cm=?nl—D[—A+(m-—-l)[]cm-1

(cf. (2.1) and (2.2)). If there exists a polynomial solution of the system
(2.1), its coefficients satisfy necessarily the above recurrence formula.

If the solution is a polynomial vector of the exact degree » (i. e. each
component of the solution vector is a polynomial, the degree of no compo-
nent exceeds » and at least one component is a polynomial of exact degree
v) then necessarily e,.1=0 and e, =0, i. e.

1
8.2) mD[—A+vI]c,=O (|ex| =E=0).
As det D ==0 this is possible only if
(8.3) det(—A+7I)=(—1)"det(A—»I) =0,

or in other words the nonnegative integer v is one of the characteristic num-
bers of the matrix A. This is a necessary condition for the existence of a
polynomial solution of degree ».

If moreover
(8.4) det(A—mlI)==0 (m=0,1,...,»—1),

then this last condition assures the existence of a polynomial vector solution.
For once we have calculated ¢, from (8. 2), the quantities e,.1, €,-3, ..., €, can
be determined unambiguously with the help of relation (8.1). The polynomial
vector determined in this way is in fact a solution of the equation (2.1’)
which may be checked by direct substitution.”)

§ 9. Construction of a polynomial solution.

A. Let O be a simple characteristic number of the constant matrix M
and let for any positive integer m be det (M + mI)==0. Then a characteristic
number of M+ I is », and if » is a nonnegative integer then according to

15) There are many problems where a polynomial solution e. g. of type (4.13) of a
single linear equation is sought. Now if we try to find polynomial vector solutions of tne
associated system (2.1') or (1. 1), the problem seems different at a first glance. One can
think that there may well exist systems of solutions of (1.1) where only say y, is a poly-
nomial. Yet one may prove that under rather general conditions (no a; is 0 or a natural
number and one characteristic number of the matrix A is 0 or a natural number) it follows
from the fact that y, is a polynomial that each component of the solution vector is also a
polynomial.
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what has been said in the last chapter the equation
9.1) Xy =M+7»I)y

has a polynomial solution of degree ». This solution is essentially uniquely
determined, for the vector ¢, defined by the equation Me,=0 is, apart
from a constant factor, unique.

Consider now the sequence

Xy =[M+@—DIy, Xy'=[M+(@—2)]y,..., Xy =(M+1Dy,
Xy =My

of equations. Each of them has a uniquely determined polynomial solution of

degree v—1, »—2,..., 1 resp. 0. Let now p=p(x) be the polynomial

solution of (9. 1). We state that the kth member of the sequence

(9.3) p'(x), p7(x), ..., pPP(x)
satisfies the kth equation of the sequence (9.2).
Let us namely differentiate the equation Xp'= (M -+ vI)p; we get

Xp'+p =M+»I)p.
This shows that the first member of the sequence (9.3) satisfies the first of
the equations (9.2). Successive differentiation shows the validity of the whole
statement.

We can find the last member of the series (9. 3) as follows. As the left
hand side of the equation

9.2)

x pr_l"l‘” — M p(')
is the O vector, p'™ is the eigenvector of the matrix belonging to the charac-
teristic number 0.

Having obtained the constant vector p® the other members of the set
(9.3) can be calculated without using the calculus. Indeed, substituting the
solutions (9.3) into the equations (9.2) we get by writing in the reversed
order:

0= Mp™r
Xp?=M--Dpr?"
Xp - (M- »Ip.
From these equations we have
pr-t=M-=I)"'Xp»

9.4)  prI=(M-21) " Xpe= (M- 21) 'X-(MA1) ' Xp®»

p(x) ='-= M+ vD'X-(M4-[r—1]1) "X (M A1) X p@,
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The last formula represents the polynomial solution of the system (9.1)
in a closed form with the help of matrix symbols.

Example. In the simplest case when n=1 the matrix M is deter-
mined by the requirement that its characteristic number be 0: M=0. If » is
a nonnegative integer then the solution of the equation (x—a,)y' =y is

1
r—1

©.5)  y—tx—a) -t x—a) ot x—ayyr =By,

It is remarkable that just as equations (2.6) and (2.8) are the counterpart of

the binomial expansion (2.9°) for n> 1, the formula (9.4) representing poly-

nomial solutions of our systems in terms of matrix products is a generaliza-

tion of the product representation (9.5) of the solution in the case n=1.
Formula (9.4) shows in addition that the polynomial vector — resp. each

component of it — is a homogeneous form of degree » of the quantities § = x—a;.

B. Though formula (9.4) gives us the polynomial solution of equation
(9.1) as a function of the quantities &,§&,...,&, it has not the customary
appearance

(9.6) ﬁ 2”7 2'161'1.‘,..-',&,5;,“'&;,,

Hh=1 i)=1 iy =

of a form of degree ». Performing however each operation (multiplication and
summation) in (9.4) we arrive just to the form (9.6). Namely let us introduce
the matrix C* = (M +4I)"" the general element of which be c%. The right
hand side of the last expression (9.4) is a product of matrices of the type C» X
the general element of which is c\'E. Performing the multiplication of the

matrices C®X and applying the product operator to the vector

py
() — .
> L’ff"

we find that the ith component of the solution vector p is

n

©0.6) p@=2 2 - 260 e EE, el
~

|y=l gy 1 "=

This is the same type of representation as the expression (9.6).
Example. In the case of the system

’.&Iy; = (“1 -+ ")yl‘_ @y

9.7 Eyi= —ah+ (et
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the quantities M and (M--4K) " are the following:

1 |ez: -7 e
ok (3 «, -+ i

S |
M e [ €2 {2 I, (nl + ; l) |
—e, @) |

where

I
| « L —a IR 5
J,u‘—‘ ’ * y 2 |=/.(I.-4I-r:] 4= €2,).

G+ 4|

The components of the solution vectors are akin to the Jacobi polyno-

mials More precisely, if we use the result of example 2, §5, if & —x—1,
g, —=x+-1, then the vector

o= [3]- E 208)

is a solution of the system (9.7).
If we construct the solution as in part A of this ciapter, we hnd spo-
cessively
pPr = 2l

.8 4 (e, 2 1) |

(») , ] Ir L I [(“;‘I"l)-i T € |

and generally

:.-
- [k [y

1 % (f] (at 1) ()1 &
Th 7 | &k Ta
N 4 % ["J(“'J" D (e 158

where (¢)n-=e(¢+1)...(¢+n—1). If §=x—1,&=x-1 then e. g. the
first component of p(x) is

Pi(x) =const. PL ™" %" V(x) =

;const.g(—l«.) (-—:l_l]] (x—;l)ﬂt'sz_—l)t

This is just the equality (5.3) which in turn is — by Leibniz’ rule — an
alternative form of RODRIGUES’ formula.

This shows that formula (9.4) resp. (9.6') may be interpreted as a
generalization of RODRIGUES’ formula.

pY(x) = (k--0,1,.... 1)
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§ 10. The closure of the solutions of the system
Xy = (N+2Dy.

A. The result of part A of the previous chapter can be re-written as

follows.
Be N a constant matrix and consider the operator

d
(10.1) X —N.

Let us call eigenvalues those quantities 4 for which there exists a poly-
nomial solution y of the system

(10.2) (Xdix——N]yzly.

These polynomial solutions will be called eigenfunctions of the linear matrix
operator (10.1). The set of the eigenvalues will be termed the spectrum of
the operator.

This spectrum has a very simple structure provided we exclude certain
special cases.

For let the characteristic numbers »,, »,,..., », of the matrix N be such
that none of their differences be a non-negative integer. In this case one
of the characteristic numbers of the matrix My =N—»I is 0.

Equation (10.2) can be written now in the form

d
Xay: M+ (A + Vk)lly;

and we saw at the beginning of the last chapter that if 44 », is equal te
the non-negative integer », then the last equation has a polynomial solution
of degree ». In other words if 4=w»—w, then equation (10.2) has an
eigenfunction of degree ». This means that the n sets of equidistant numbers

==V '_-Vl+ ]:0--) _,’I+V:°--
(10.3) =iy _V2+1,::., _'"2+")0--
— Yy —Vut+1,..., —Vut7,...
belong to the spectrum of the system (10.2).
We saw at the end of § 8 that the conditions imposed on the matrix
N assure that the spectrum of the operator (10. 1) does not contain any more
eigenvalues.

B. The eigenfunction belonging to the eigenvalue — 47 will be
denoted in the following by p®®(x) or p®®. We are going to show that
the eigenfunctions of the egquation (10.1) are closed in the space of the vector

D3
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functions regular in a given closed domain D, or in the space of the real
vector functions continuous in a closed real interval a = x = b.

We call a system of elements of a function space closed if each ele-
ment of the function space can be approximated with arbitrary accuracy by
linear combinations of the elements of the given system. The distance of two
elements is defined as the maximum of the absolute value of the difference

of the elements.

For proving the property of closure in both function spaces it is clearly
sufficient to show that each polynomial vector p(x) of degree » is represent-
able as a linear combination of the eigenfunctions p®*(x) (/==0,1,...,7»;
E=1.2 g )

This will be shown by induction. In the case »=0 the assertion is
trivial, for the polynomial vectors

piUr l), p(o.- 2]’ aSitey Plos ")

of degree O are just the characteristic vectors of the matrix N. As they are
linearly independent, each constant vector is a certain linear combination of

them.
Suppose the statement is true for »—1. It will be shown that it is true

for ». As the vector p®*(x) is a solution of the equation
5 \ |
{‘\Ey}—NJ y={(—m+0y,

its /th derivate satisfies the equation

"
(x:ﬁ—h)”‘""—my-

]
Moreover, as (‘%) p®¥(x) is a constant vector, we have necessarily
p®“ ¥ (x) = const. p©@».x* 4 rhP(x),

where r“¥(x) denotes a polynomial vector of degree at most /— 1. The arbitrary
multiplicative constant of this equation can be chosen to be 1:
(10.4) p& R (x) = p@ ¥+ r® P (x).

Consider now an arbitrary polynomial vector of degree »:

p(x) = vx*+r(x).

Here v denotes a constant vector and r(x) is a vector of degree not exceed-
ing »—1. As one can find always constants b, such that

i
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we can write:
(10.5) p(x)— g b p® ¥ (x) = r(x)— g; b r M (x).

But on the right hand side there is a vector of degree not exceeding
v—1 which according to our supposition is a linear combination of the
vectors p»¥(x) (=0, 1,...,v—1; k=1,2,..., n). This completes the proof.

§ 11. Polynomials satisfying second order linear differential
equations.

The assertions of § 9, just like those of the other chapters, were stated
by excluding singular cases which represent a nowhere dense manifold. The
singular cases of §9 are characterized by the existence of characteristic
numbers whose difference is an integer which may be 0. Now, unlike the
singular cases not treated in the other chapters, the excluded cases of §9
have a special importance. Indeed we saw in part A of §4 that the differential
equation
4.1) Pa®)Y" + Pat ()Y + Paa(x)y =0
can be associated with a system of type (1.1) where

«, 1 1.1
« b B B
(4.3) A= . : :
@ B BB
If n>2 this matrix is singular and the procedure of § 10 cannot be used
for the construction of a polynomial solution. (An example for such a type of

differential equations is ex. 5. of § 5.) Yet the equation (4.1) has in certain
cases polynomial solutions according to the following theorem of E.HEINE.™)

If in the equation
4.1) Py(x)y" + Pn1(X)y" + Pa-2(x)y =0

(where P,(x)=(x—a,)(x—a,)...(x—a,), ai=a, and P,.1(x) resp. Pa.3(x)
are polynomials the degrees of which do not exceed n—1, resp. n—2) we
regard P,(x) and P,-,(x) as given polynomials and we try to find a polyno-
mial P, o(x) for which equation (4.1) has a solution of degree v, then this

problem has exactly (,,.;. :_2] different solutions.

14) See Heine |3], pp. 472—479.
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In connection with the system of differential equations (4.4) the theorem
of HEINE may be reformulated the following way. To given quantities a,,..., a,,

@, 3,....58, one can find o different systems of the quantities
( 4

&, &, . .., «, such that one of the solutions y, of the system (4. 4) is a poly-

nomial.
One can show that if the solution y, is a polynomial, then the other

components of the solution vector y are also polynomials. For if we denote
again y,+y;+--- +y. by u, then from equation (4.4,) u is a polynomial,
and as the right hand side of each of the equations (4.4:) is a polynomial,
the quantity &y; is also a polynomial. From this y;= x; log & + 7r:(x), where
7t;(x) is again a polynomial. Further

2 = 2 wilog & + 3 i(x),
and as this expression is equal to u and & + &, so necessarily x;=0.

Therefore to the polynomial solution of (4.1) there belongs a polynomial
vector of the system (4.4) having the same degree ».

This polynomial vector of degree » can be found supposing that the

numbers 1,2,..., »—1 are not characteristic numbers of the matrix A of the
system
(1.1) Xy =Ay

where A is of the form (4.3).

As to the determination of this polynomial vector, the following theorem
may be useful. We do not state it for systems with matrix A of the form
(4.3), but more generally for any system (1.1) where 0 and » are two charac-
teristic numbers of the matrix A and none of the numbers 1,2,...,v—1 is
a characteristic number:

If we choose adequately the column vector ¢, the system
(11.1) Xy =Ay+e
has a polynomial solution.
For differentiating this system we have
Xy'=(A-Dy
or
(11.2) Xp'=(A—I)p where p=y,

and as the matrix A—1I belongs to the class treated in § 9, there exists a
polynomial vector p which is a solution of the last system.
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If we possess a solution of the system (11.2) and integrate its ith equa-
tion from, say, x=Ah; to x=2x, we arrive to the system (11.1) where the
column vector ¢ is a constant of integration. Its components are

hi
¢i=(hi—a;)pi(h)) + :‘2'1‘ Qix J-p.,(x)dx,
hi
provided that
Y= j pe(x)dx
hi

and p«(x) is the kth component of p(x).
Now the homogeneous system corresponding to (11.1) has a polynomial
solution when ¢=0, which furnishes a set of algebraic equations between

the quantities a; and aa.
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