On the definition of the determinant as a multilinear antisymmetric function.

By S. N. AFRIAT in Jerusalem.

The properties considered here for the identification of the determinant are the three characteristic properties of WEIERSTRASS.¹) The present object is to show how this identification can be very simply carried out, together with an incidental proof of the multiplication theorem.²)

Consider a function $\Delta(\mathbf{a}) = \Delta(\mathbf{a}_1, \dots, \mathbf{a}_n)$, of *n* vectors $\mathbf{a}_1, \dots, \mathbf{a}_n$ of order *n*, and thus of a matrix \mathbf{a} of order $n \times n$ whose *i*, *j* th element a_{ij} is the *i*th element of the *j*th vector \mathbf{a}_j ; and suppose that it has the following properties:

I.
$$\Delta(\mathbf{a}_1,\ldots,\mathbf{x}\lambda,\ldots,\mathbf{a}_n) = \Delta(\mathbf{a}_1,\ldots,\mathbf{x},\ldots,\mathbf{a}_n)\lambda$$
.

II.
$$\Delta(\mathbf{a}_1,\ldots,\mathbf{x}+\mathbf{y},\ldots,\mathbf{a}_n) = \Delta(\mathbf{a}_1,\ldots,\mathbf{x},\ldots,\mathbf{a}_n) + \Delta(\mathbf{a}_1,\ldots,\mathbf{y},\ldots,\mathbf{a}_n)$$
.

III.
$$\Delta(\mathbf{a}_1,\ldots,\mathbf{x},\ldots,\mathbf{y},\ldots,\mathbf{a}_n) = -\Delta(\mathbf{a}_1,\ldots,\mathbf{y},\ldots,\mathbf{x},\ldots,\mathbf{a}_n)$$
.

As a consequence of III:

(1)
$$\Delta(\mathbf{a}_1,\ldots,\mathbf{x},\ldots,\mathbf{x},\ldots,\mathbf{a}_n)=0;$$

and if π is any permutation, by which $i \rightarrow \pi i$ for i = 1, ..., n and $\pi i \neq \pi j$ $(i \neq j)$, then

(2)
$$\Delta(\mathbf{a}_{n1},\ldots,\mathbf{a}_{nn})=\alpha(\pi)\Delta(\mathbf{a}_{1},\ldots,\mathbf{a}_{n}),$$

where $\alpha(\pi)$ is the alternating character of π .

Let **b** be a matrix of order $n \times n$, with elements b_{ij} and determinant $|\mathbf{b}| = \sum_{n} \alpha(\pi) b_{n1,1} \dots b_{nn,n}$. Then for $\Delta(\mathbf{ab})$ there is the expression

$$\Delta(\mathbf{a}_1b_{11}+\cdots+\mathbf{a}_nb_{n1},\ldots,\mathbf{a}_1b_{1n}+\cdots+\mathbf{a}_nb_{nn}).$$

By repeated application of I and II this ultimately becomes

$$\sum_{i} \Delta(\mathbf{a}_{i_1}, \ldots, \mathbf{a}_{i_n}) b_{i_1,1}, \ldots, b_{i_n,n},$$

¹⁾ Weierstrass, Werke III, 271-286. Other references are to be found in Mac Duffee [1].

²⁾ Gáspár [2] takes the multiplication theorem as one of a defining set of axioms.

where the indices in the set $i = (i_1, \ldots, i_n)$ range independently in $1, \ldots, n$. By (1) and (2), certain of the terms in this sum, those for which i_1, \ldots, i_n is not a permutation of $1, \ldots, n$ (i. e. there exist $i_j = i_k, j \neq k$), vanish, and the rest are contained in the sum

$$\sum_{n} \Delta(\mathbf{a}_{1},\ldots,\mathbf{a}_{n}) \alpha(\pi) b_{n1,1} \ldots b_{nn,n} = \Delta(\mathbf{a}) |\mathbf{b}|.$$

Hence I, II and III imply $\Delta(ab) = \Delta(a)|b|$. By taking a = 1, this gives $\Delta(b) = \Delta(1)|b|$; so that the function Δ is shown to be *identical with the determinant*, but for a constant multiplier, given by $\Delta(1)$. If there is taken the further supposition:

IV.
$$\Delta(1) = 1$$
;

then $\Delta(\mathbf{b}) = |\mathbf{b}|$; and $\Delta(\mathbf{a}\mathbf{b}) = \Delta(\mathbf{a})|\mathbf{b}|$ then shows that $|\mathbf{a}\mathbf{b}| = |\mathbf{a}||\mathbf{b}|$.

Bibliography.

- [1] C. C. MacDuffee, The Theory of Matrices, New York, 1946.
- [2] Julius Gaspar, Eine neue Definition der Determinanten, Publ. Math. Debrecen 3 (1954), 257-260.

(Received November 1, 1955.)