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Let f(z)='§ﬂa.z' be an entire function; u(r)=u(r,f) the maximum

term for |z|=r and »(r) ==»(r, f) its rank. It is known (see [1], pp. 80—81.)
that if f(2) be of order ¢, 0 = ¢ = o<, then
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In Theorems 2 and 3 of this note we give two different refinements of (1).

Theorem 1. Let @(x) be a real function, positive integrable L in any
interval (d, r) where 4> 0;
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Define

P(r)— "’,E’,f) dx; Q)= f"iﬁ? dx;

then if Q(r)==0,
e
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PrROOF. Assume that (3) is not true, so that for some positive a(< Ki]
and X

“) P(x) =aQ(x) for every x> X.
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so that the left-hand integral is finite; and
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Hence (¢ ***P(t)),_, =0 and then by (4)

[#51Qtydt = (1—p+ K) ' (8—K) [t **' P(t)at =
i b 4

= a(1—B8+ K)'B—K) [t P71 Q(t) dt.

X

Since e(8— K)/(1—B8+K)< 1 and Q(f)==0, this is a contradiction, and so
(4) must fail for arbitrarily large values of X.
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Theorem 2. If f(2) is an entire function of order zero, and not consta nt
then

J tL(t) v (t)dt
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where L(t) is any continuous nondecreasing function of t such that
log L(t) =o(log t).
This is, for o =0, a strengthening of (1), which states that
Tim Jogr() _
r+m ?(r)
since, for a suitably large 4

’

J:t"L(t) v(t)dt = L(r) _ft" v(t)dt = L(r)log u(r)
a a
and

r[t2L@yr(tydt = L) v()) [t dt =L (r).

PrROOF OF THEOREM 2. For an entire function of order zero
= log (L(N¥(1) _
r-+=o I g r
The theorem will therefore follow if we take @(x)= L(x)»(x) in Theorem 1.
Theorem 3. If f(2) be of lower order 2, 0 = 2 = oo, then

(6) — = lim log u(r, /)

where v(r, f(")) denotes the rank of the maximum term for |z|=r of f*)(2)
(the p-th derivative of f(z)), where p is either an arbitrary constant integer or an
integer valued function of r such that

p(»)=0(»/logv), where v=v(r, fP).
This is a strengthening of (1) since (see [2])
< )
(M) "N =iy ST =
PrROOF OF THEOREM 3. The lower order of f(2) is the same as the
lower order of f(*(2). Hence from (1)

A )




On a theorem of Shah. 43

But from (7) it follows that

_ e f®)  _ rou(n, f)
“ODE ST Y. v I = o, )
log u(r, f) = log u(r, f®)—p log »(r, f»)

and the required result follows from (8).
Finally I wish to thank DR. S. M. SHAH for his valuable suggestions

and criticism.
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