Integral formulae of arithmetical characteristics
relating to the zeta-function of Hurwitz.

To the memory of the best friend, Tibor Szele.
By MIKLOS MIKOLAS in Budapest.

1. In what follows, X = x—|[x] means the fractional part of x; a,b are
arbitrary positive integers, (a, b) the greatest common divisor, [a, 8] the least
common multiple of these numbers respectively; x and u denote throughout
real, while s,z and w complex variables. We write o= R(s), T = J(s).

Well-known fundamental results on the density and uniform distribution
resp. of the numbers nx (n=1,2, . ) for any irrational x, together with the

fact that (x being fixed, irrational) 2nx-—N+a(N),‘) suggest an in-
vestlgatlon of the ,error-square mtegral"
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kl= l
where n, < n,< --- < ny is a sequence of arbitrary positive integers?) and for
the integrals on the right-hand side we have the elegant formula®)
1

) f (‘““?] (” = 2)‘"‘ 1(3[31

(2) and related results are often used in the analytic theory of numbers,
especially in sharper integral-mean estimations of remainder terms.*)

1) Ci. e. g. J. F. Koksma [9], Ch. VIII—IX. — Numbers in brackets refer to the
bibliography at the end of the paper.

?) The idea of using the integral (1) in order to obtain asymptotic results for
v%: [n - ) (,problem of Haroy—LirtLewoon®) is due to P. Erpés. (Cp. a paper of
I. S. GAr, Nieuw Archief voor Wiskunde 23 (1949), 13—38.)

3) See E. Lanpav [12], p. 170—171.

9 Cf. e. g. S. Crowra [2], P. Erpos—H. N. Suapriro [3], J. FraneL [4], -E. Lanpav
11], [12], H. Rapemacuer [15], A. Z. Warrisz [18], [19], [20], [21].
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Now, G. H. Harpy and J. E. LirTLEwoOD deal in some fundamental
works on geometry of numbers (cf. [5], [6]) also with the CESARO-means of

b [?z":"c-—%), thus being lead to the generalized sums Z; B,.(A%) (r=1,2,...).

n=N

Here B,(z) denotes, as usual, the BERNOULLI polynomial of degree r, defined by

w

eem—Bo(z)+Bl(z)w+ AB@wE- (w]<27);

therefore B,(2)=1, B,(2) =2z— -—2— , Bi(2) =5 z2(z—1)+ ﬁ etc. The applica-

tion of the sums just mentioned in the theory of diophantine approximations,
and the occuring of B,(z) in EULER's—MACLAURIN’s summation formula, offer
reasons for considering of

1
2 N
Vi 0 T éj B.(77) B.(m @) du
0

and of the integrals of the right-hand type.
In a previous paper, dealing with the connection of FAREY series and
1

&)

RIEMANN’s hypothesis,”) I used a lemma on bfP,(au) P.(bu)du with P,(x)=

Z sin 2’"”" (r=1). One can find in the same way by the representa-
tions
u o 2sin 2m ax -1 5 20082m rx
(@) By (%) =(—1) 2——“(2,,,,,)% — Bu(®d)=(=1) Z “CmayE

(which hold, apart from the case of B,(X) with x=0, +1,..., for
—oo <x<oeo and every u=1,2,...) that for any a,b

) !B,-(ﬁ) b= = (D) =12,

By, = (2r)! Bs,(0) denoting the suitable Bernoullian number. However, as far
as I am aware, the integrals (3) and (5) resp. have not been discussed till now.

In the present paper, our main purpose is to show that (2) and (5)
are all special cases of two integral relations involving the RIEMANN zeta-
function £(s) and its generalization, the functlion &(s, x) of HUFWITZ. Our

formulae imply also the exact evaluation of f;(s, u)*du and _[IQ(s, u)*du
0 i

5) Cf. M. Mikotis [14], Lemma 5.
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by I'(s) and &(s) for o< ; , results complementary in a certain sense to

recent interesting investigations of ]. F. KoksMA and C. G. LEKKERKERKER

.|

0

2
du (o:-i]) As well-known, I(s,x) is defined for

1
z.;(s, .'1) = Fs' 2

6> 1, 0<x =1 by the series -Zz."u(x'ii—m)’ ") and hence by analytic continua-

tion; it represents for every fixed x a regular function of s, except s=1
where there is a simple pole. We have L(s, 1) = L(s), {(1—r, x) = —(r—1)! B,(x)

r=1,2,..), LCu)=(—1)" —%"((3;;—)!&‘(;4= 1,2,..)9

2. Next we find the following

Theorem. 1. Let 6> % Then the integrals

Jon(s)= | E(1—s, @@)-E(1—s, bu) du,
0

Jor($)= | £(1—s, @@)-£(1—s, bu) du
0

exist and there hold the formulae

©) JC(I—s, &) L (1—s, Ba) du — 2I°(s)’ (QZ(L}?'(EE g;)',

7 J;(l—s,ﬂg(l—s,bu) du = 2|T(s)P ch e fz(fr;’i(fz :])) ( )
2. Ifo= -2-, Jao(s) and J.u(s) do not exist.®)

¢) See [10]).

7) A power A* means throughout ¢''°84 with the principal value of log A.

§) Cf. E. T. Warrraker and G. N. Warson [22], Ch. XIIL

9) The idea of integral throughout is to be taken in Lesescue’s sense; we say that

me)w-p(xndx exists or @(x)+ ip(x)€L(0, 1), if (simultaneously) ¢(x)€L(,1),

¢(x)€L(0,1). — (6) and (7) are transformed clearly into (5) for s=r (positive integer)
and especially into (2) for s=1.
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Proor. 1° We start with establishing of some properties of I(s, x) for

fixed s with 0 <x =1, by means of the representations
©

(8) ;(s,x)=s_’_l x'-s+x-s—sfﬁ(x+u)~s-ldu (0>0,s==1),

i

sin (2:1 ax+ %— :'rs]

_2r(1—s) & -
o Wi 2a)'* szl mt-s =
_2r(“ﬁl( . TTS N0 €08 2m X TS N sin2m:frx)
=2 sin3- 2, — s 08 ...21'1____—m1-= (0 <0)

which hold in complementary half-planes.”) Considering that

1 1

jﬁ(x+u)"‘l du =Ju(x+ u)*du= lTls [+ 1)'"*—x"']+

0 0
+ 2 [+ 1y =],

(8) may be written also in the form

@

(x+ !)"'—sJ‘E(x +u)*du

1

(10  UsR)=x" +x+ 1)+

(6>0, s3=1).

Furthermore partial integration shows that

v+l r+1

s+ I)JET(I—-E?) (e u) ™ dit = ]'E(i%‘)__‘”_" PR S

w41

- —j(x-{-u)'”" 2v+1—u)du= ——ls— [+ —(x+7+1))+

4+l

+2J a(x+u)""du »=12..);

r

10) For (8) see E. Lanpauv [12], p. 9. The formula (9) was given by A. Hurwitz in [8],
p. 95. Cf. also E. T. Whirttaker—G. N. Warson [22], p. 268—269, furthermore E. C. Tirch-
marsH [17), p. 36—37, E. Linoeror [13], p. 107, and T. M. ArostoL [1].
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hence by summing and substituting into (10), we get

1
s—1

Cls, )==x"" -l-—;-l)—(x-}-])"_i_ (x+ l)l—x+

) s(s

ik ;])IE(I—E)(x—}-u)"'gdu.
1

Since by |7(1—7) (u+x)"*| = -:—;—
vergent in any finite region with ¢ > —1, the right-hand side is (according to
well-known theorems of the theory of functions) a regular function of s in the
half-plane o > —1 unless s=1, and so it provides the analytic continua-
tion of {(s,x) up to the line o= —1. Therefore (11) holds for o> —I1,
s==1.

The formulae (9), (10) and (11) put in evidence, that (s, x) is a
continuous function of x in 0 <x =1, when s has an arbitrary fixed value
= 1; namely this is assured by the uniform convergence with respect to x
of the series > m"'cos 2mzx, > m’ 'sin 2m zx (o < 0) and of the integrals
in (10), (11) for 6 >0 and o=0 respectively. We have still to investigate
the behaviour of {(s,x) near to x=0.

If 6>0, s==1, we obtain from (10) by

u”® the last integral is uniformly con-

1
o(x+1)7

1 =
<'~E (x=0)

J-E(Jc+u)""1 du <j(x+u)"’"du=
1 1

the limit relation
(12) lim x*L(s, x)=1.

x> +0

If 6<0, we refer to the fact. that the right-hand side series in (9) is
majorized for all x by 2|F(l——s)|(2:fr)""( ;:;_s 4+ cos%i ]Zm"",

m=1
this implying the continuity of its sum H(x) for —oe < x < o<. On the other
hand, H(x) has the period 1 and therefore it follows that H(+0)==H(1—0),
i e ;
(13) lim (s, x)= lim (s, x) =C(s, 1) = §(5s).
x==1-0

x40

sin

It s=0, (11) gives at once

(14) lim £(0, x) = lim (%—-x): :

x40 x-=+0 2
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Finally, for 6=0, s=5=0, i.e. for s=iz (v=<=0) one has by (11) the
estimations

1 -2 1
<TJ‘(x+") dugf,

Jﬁu—a) (x+u) " *du

187, x)| < = +2(1‘+1) + ITI(’l‘-f-l)’ O<x=1);

(15)

thus C(i7, x) is bounded as x— +0.
2° Consider the beautiful formula of HURWITZ under (9). For x=1 it
becomes

_2r(l—s) . s |
Bt Mg 2om  (0<0),
or
(16) BB O e M Sy . Bkl i 5

@n

which is the functional equation of {(s). Otherwise, i. e. in case of 0 <x <1,
(9) remains valid for 0 =0 <1 too.") Viz. the cosine and sine series in (9)
converge (and even uniformly in any interval 0 <d = x = 1—d) when s< 1
by a criterion of DIRICHLET ), so that they (as ordinary DIRICHLET series)
represent for fixed x a function regular of s in the half-plane o< 1; the
only singularities (poles) of I'(1—s) being at s=1,2,3, ..., both sides of
(9) are likewise analytic in the region mentioned. Consequently, by writing
1—s instead of s, we have

ok 2['(5)[ TS - COS2MAAX . . 7S w siannx)
(17 & @ny cos = él = +sin 3 .é,; =

(0>0; 0<x<1).

3° Suppose a>%. Then {(1—s, x) is, according to the above results,

continuous for 0 <x=1; when x— +0, |{(1—s, x)| remains bounded in
1

the case o = 1, and becomes infinite as % if 5 < o<1 |[cf. (12)—(15)).
Therefore the inequality [{(1—s, x)F< Cx?eD (0<x=1) holds where
2(0—1)>—1 and C denotes a suitable constant, this implying

11) This fact does not appear to have been observed in the literature.
12) Ci. e. g G. H. Haroy and W. W. Rocosinski [7], p. 32; or W. W. Rocosinski [16],
p. 18.
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L(1—s, x)€ L*(0,1). It is clear, that the only possible discontinuties of the
functions £(1—s,an), L(1—s,bu), 5(1—s, bu) in O<u =1 lie at u=0 and
at the points u=§(k= Lids viss a—l),u=%(!= 1,2,...,6—1)respect-

ively, furthermore that all three are of the class L*(0, 1).

Hence we conclude ) that (17) contains on the right the Fourier series
of {(1—s, x) relating to the interval O0<x<1 and we may apply the
PARSEVAL—HURwWITZ theorem ™) in the form

1
[ 1w g@ du =i+ 3 3 @ ws+ 5.8,

f(x) ~ @+ Zl' (@, cos 2v7rx + p, sin 2»xx),

g(x)~ ao+ D) (@, cos 2vzrx + B sin 2y 7wx),
r=1
f(x) and g(x) denoting arbitrary functions of the complex class L*(0, 1).
By putting f(u) At C(]—S, m’ g(") T ;(1 . mr we obtain eo=—=aj=0,
0, when [a,b] ¥ #,

a,a;, = 5
41 (s)*(27d) * a'b’[a, b] ™ cose%s , as v=A4i[a,b] A=1,2,...),
0, when [a,b] ¥ 7,

BBy = S % , g TS
4I'(sy>(27d) " a’b’[a, b] ™ sin -, as v=A4[a,8] (A=1,2,...)

and therefore, in fact,

i —_— = 2 2 ab \' - -2 __
!C(l—s, au) §(1—s, bu)du =2I'(s) (21) ([__a,_ble) é“l =

—2r(s) 27)™ ( ;g—g] Z(2s).

(7) follows likewise by using that a’t?-—-(ab)"(%) and

2 2
s | . JTS 2
COS —— sin——| =ch

TET

g3

- shz%z =ch 7zzT.

13) Cf. e. g. G. H. Haroy and W. W. Rocosinski [7], p. 91.
14) See e. g. ibid. p. 16.
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4° Let ag%. If s=0, the products to be integrated in /, »(s) and

Ja »(s) have no meaning; let us suppose s==0.
]
Now, because of 2(o—1) = —1, the integral Ju”‘“"l)du (60 fixed,

[
0< 6 =1) does not exist; namely Ju“"‘” du— oo as d — -+ 0. Furthermore

we have by (12)
(18) Jim {2 [0(1—s, (@)|[£(1—s, bu)| | = (@b)"",
and thus 6 can be chosen such that
t(1—s, @@)||Z(1—s, ba)| > ;—(ab)"‘uz"'" O<u=6<1)

holds. Hence for every positive & < 6 the inequality
3 a
(19) le(l—s, ad)| |L(1—s, bu)| du > % (aby™ jug{,_n o

follows, since the last member is, for & sufficiently small, as large as we please,
]

_[|;(l—s,a'—u)[|?,'(l-—s, E)Jtm has the same property, and the real and
imaginary parts of {(1—s, au)5(1—s, bu) cannot belong simultaneously to
the class L(0,1). Therefore J, »(s) does not exist.

Writing £(1—s, bu) instead of {(1—s, bu), we see that (18) and (19)
keep their validity, which implies the divergence of J,.(s) and completes the
proof.

3. We mention the remarkable special case a=b==n, when (6) and
(7) furnish

(20) 6[ L(1—s, Ad)*du = 2I'(s) (277) > £(25)

y a>-%—;n=l,2....).‘5)
(21 J[;(I—s, 1) P du = 2|I(s)[*ch wr-(271) ¥ L(20)

15) As is to see, the values of the left-hand integrals do not depend on the integer n.
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If we put s for 1—s, and n=1, these formulae show that for o < %

1 1
the asymptotic properties of I;(s, u)du, j|;(s, u)[*du can easily be reduced
0 0

to those of I'(s) and &(s), while for ag% and the corresponding mean-

1
valueJ|C(s, u)—u*|*du an analogous closed representation cannot be given;

then one may use some general results and methods of the analytic theory
of numbers. (Cf. the paper [10] of J. F. KoksmA and C. G. LEKKERKERKER,
referred to in the introduction.)

After the above considerations, there arises the problem of sharp estima-

N
tions for a sum > &(s, m,x) or for
p==1

[n*r "']

(22) ﬂz Z(1—s, mx) du_.zr(s) (27) 2"r(:as)}j [""“"‘] (s>—%-],

this generalizing the problem of H. HARDY and ]. E. LiTTLEWOOD. [ hope to
deal with it in another paper.
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