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Some theorems on convergence in density.

By C. T. RAJAGOPAL in Madras.

Introduction.

R. CReiGHTON Buck ([1], § 2) has given a very general definition of
the “convergence in density” of a real function f(x) of a real variable x
which tends to oo over a set with suitable properties; and, using an ‘“addi-
tive property” of his generalized density function, he has proved a Tauberian
or conditional-converse theorem ([1], Theorem 2.4), with interesting appli-
cations ([1], Theorem 3.2 and corollaries, Theorem 3.4), for the conver-
gence in density of a function which is supposed to be summable by a
method («) linked with his density function. One object of this note is to
prove directly (without recourse to the additivity property) an extension of
Buck’s converse theorem in one case, viz. Theorem I of § 2, and to deduce
from it Buck’s theorem for f(x) which is (C, 1)-summable, viz. Theorem Ii
of §2. The theorems just referred to have all the applications noticed by
Buck as well as other applications (§§ 3, 5). Among the latter applications,
we have one which yields an extension of a result recently proved by S¢eGLov
[8], and others which bring out new implications of certain Tauberian results
proved by MINAKSHISUNDARAM [4] and myself [6].

§ 1. Notation and definitions.

The density function of this note is a direct generalization of the idea
of (assymptotic) density of a sequence of positive integers; and it is defined
for sets on the real axis bounded below (say, by the origin). For the pur-
pose of denoting such sets we shall generally reserve capital letters of the
English alphabet, so that no ambiguity is likely to arise as a result of our
symbolizing the operations of addition, subtraction and multiplication for
these sets exactly like the corresponding operations in ordinary algebra.

Let X denote the set of points on the x-axis in any interval 0<{=x,
so that, when x=x, =0, X is a set Xi which is non-null or null according
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as x>0 or x;=0. Let E denote any set on the positive x-axis, measurable
in the usual (Lebesgue) sense in every finite interval. Then m(E X), the mea-
sure of the product of the sets £ and X, is such that 0 = m(EX) = x,
and so

F—=Tim MEX)

0 = z+® =1
dE]imM
- s

In general 4> 4 and Z,z_f may be called upper and lower densities respec--
tively of E; while, the special case 4 = 4, the common value 4 of 4 and 4
may be called the density of E. In this note m(EX) arises as an integral
in one of two ways, as in the definitions which follow.

DEFINITION 1. Let E be a set on the positive x-axis, measurable in every
finite interval; and let E*(t) be the characteristic function of E, defined as 1
or 0 according as t does or does not belong to E. Then the density 4 of E
is given by

=

A=1im % E*(t)dt

T-+0@ o
whenever this limif exists.

DerFINITION 2. Given any sequence of positive integers, let S,
v=12,3,..., be defined as Sy =1 or S; =0 according as v does or does
not belong to the given sequence. Let i denote the sequence

1 0<h<A< e <dp—> oo,

Then the i-density of the given sequence of integers is defined to be the fol-
lowing limit (4,) whenever that limit exists:
h=(R, 24, 1)—1lim S;,
Y=+
S: for 1,&{(1,41,"'_3_1,

iLe. 4d=Ilim —I—fS.‘.(r)dt where S;(t)= 0 for 0=t<a
¢ = 8

rz+o X

When “lim” in Definitions 1 and 2 is replaced by “lim”, we obtain the
definitions of 4 and 4, respectively. Moreover, when {4,} in Definition 2 is
the sequence of positive integers, 4, is the same as the (asymptotic) density
of the given sequence of integers as usually understood.

The sense in which a function is said in this note to “converge in
density” may now be formally defined.
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DEfFINITION 3. A real function f(x) of a real variable x is said to “tend
to [ in density” (or a real sequence s, is said to “tend to | in A-density”) if
f(x)—1 as x— o over a set of density 4=1 (or s,— [ as n— oo through
a sequence of density 4.=1).

When 1 is finite, as is the case in the sequel unless otherwise stated,
f(x) (or s.) is said to “converge in density (or A-density)”. Furthermore, when

d=1 (or 4 =1) is replaced by 4=1 (or 4 —=1), f(x) (or s.) is said to
“converge in upper density (or A-density)”.

§ 2. Preliminary theorems.

Theorem 1. Suppose that f(x) is measurable in the usual (Lebesgue)
sense in every finite interval of (0, o) and satisfies the conditions:

(i) lim f(x) =1, (i) lim lj f(t)dt=1.
i iveo X
Then ;

(@) if >0 is given and E(O) is the set of points in (0, o) defined :
E{f= [+ 6}, it follows that E(J) is of lower density O, i. e.
) lim ”‘(E(:) . Y

E ]

Furthermore (a) can be strenghened to the conclusion

(b) that f(x)— 1 in upper density.

PROOF. (a) Suppose (as we may) that /=0 and that, corresponding to
any small ¢ >0, F(¢) and G(d, ¢) are defined as the sets:

F(§)=F{—p =f<—¢}, where —pu=Dboundf,
G(d,e)=G{d>f= —e}.

Then plainly the measure m(FX) of F(e)-X is bounded (zero in the special
case in which —u >0) and the measure m(GX) < x. Consequently, if in the

relation
1 1 1 1
< J.f(t)dfm }'I"""‘;J.“""?J.'“
(1] EX FX GX

we let x— oo and take lower limits of both sides, we get

®) 0=dtim ZEX o
¢ being arbitrery, this gives at once (2).
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(b) Let us write E(1/k)=Ei for k=1,2,3,... . Then we see from
(2) that, if =0 and k are fixed, we can find, corresponding to a given
sequence &, | 0 (n— o<), an increasing divergent sequence of values of x>y,
for each of which

E.- X—Y,
i ;—J’o °)<&.
Consequently we can find x, >0 and then inductively x> xi-1, k=2, after
Xi, X2, ..., Xk-1, S0 that the sequence x; is divergent and
4) i L o Y"_')<s,, k=1, x=0.
X — Xx-1

Now let sets A (k= 1), A be defined by
(6)) Ac = E(Xi—Xi-1), A=A+ A+ -

Then

m(AXn) m(A XI A%+A XE_XI"]_ +A Xn—Xu-l)
xn X

R o ;Z’"‘A")

Xn

n

Zm(Ek'Xk_Xk-l) 2 (X — Xx-1) &
="=1 = < kz:‘ —po (n—b m)

hzd (xk — Xk-1) é‘ (xk —Xx-1)

by (4). Hence A is a set of lower density 0O, and we shall complete the
proof by showing that f(x)—/=0 as x— oc over a set of upper density 1
given by [Xo—A— a bounded set] where X is the set of all x> 0.

Given any small ¢ >0, we can choose a positive integer &, such that
ky+ 1 > 1/e. Then it is clear that, for x,, <x€ Xo—A, we have f<1/(k,+1)<e.
Also, since we have assumed that lim f(x)=[{=0, we can find yx, so that
f>—1/(ks4+1)>—e for x>y.,. Hence |fl<s for x € Xo—A—Xi;,—Yi,.
This, as explained, establishes (b).

Theorem IlI. If, in Theorem I, hypothesis (i) is retained and (ii) is
particularized to

x

(ii") : lim — J f(t)dt =1,

x—»m

then
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(a) conclusion (a) of Theorem I will appear with (2) lim... featuring
instead of lim ..., .

(b) conclusion (b) of Theorem I will become the statement that f(x)— 1
in density.

PrOOF. (a) This conclusion is obvious since now (3) holds with “lim”
instead of “lim”. -
(b) Since (2) is true with “lim” instead of “lim”, we have
'-"-(%i‘&ﬂo as x— oo, for any fixed integer k.
Therefore we can define the divergent sequence x: inductively, choosing xi
after xi, X2, ..., Xx-1, S0 that (4) is satisfied along with
m(Ei1 X)

(6) ' ) o for x>x,kZ2

It sets Ay (k=1), A are defined by (5), and x, < x < X,41, then

mAX) _ mA-Xi—Xo+ - +A-Xo—Xua + A-X—X,)
X X

_ m(AtAet o+ Aut A X) _ 2 mA) +m(AnX)

x 3
This gives, since A,uXcCEuX,

m(AX) _ Zm(Ak)

=1 m(En X)
X Xn % X %
Z(xk—xk-t)&
o + 8pp1 —0 (x—=+o0c oOr n-— o),

§ (Xx—xx—l)

by (4) and (6). Thus the set A is of density O and we can repeat the clos-
ing arguments of the proof of Theorem 1 (b) to show that f(x)—/=0 as
Xx— oo over a set [Xo—A— a bounded set] of unit density.

The following corollary can be proved exactly like Theorem II, by
choosing the sets E, F, G as in the proof of Theorem L.

Corollary II. Theorem Il can be restated with hypothesis (i) relaxed to
the two-fold hypothesis: (ia) f(x) is bounded below, (ib) for every & >0, the
set of x for which f(x)>l—=& has density 1.

Theorem Il is a conditional converse of the next theorem in one case.

D6
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Theorem III. Suppose that f(x), defined as in Theorem I, tends to [
in density, f(x) being either bounded in case l is finite or bounded below in
case | = »o. Then

x

lim -J'c— FPydt—1.
0

The proof of Theorem III is like that of Theorem I(a). Only, in consi-

dering jf(t)dt, we now split X into two sets FX, GX (instead of three),

0
defining F, G as follows. When [ is finite, equal to O (as we may suppose),
F=F{e<|f| = pu},n=Dbound |f|; G=G{|f| =&}, where & >0 is arbitrarily
small; when [= oo, F=F{—u=f<c}, —p=boundf, G=G{f=c),
where ¢ > 0 is arbitrarily large; so that, in either case,

m(GX)/x—1 and m(FX)/x—0 (x —0).

§ 3. Theorems on sequences.

Theorem 1. Suppose that s, >0, n=1,2,3,..., isa sequence such that
(@) lim s,=0,
(ii") (R, 4,1)—lim s,=lim > =S (x—4,)
>0 l,éz X
where 4 is the sequence in (1). Then
(R, 4, 1)—lim s;' = oo.

=0 (5%,=0)

PRrROOF. Defining
(M s(t)=sa for adn=t<imu (n=1),
consider the integrals

®) % f s(t)dt, % f (s(t)) " dt.
Ay Ay

Since we are interested only in conditions as x — oo (4, = X < 4n41), WE may
take the lower limits of integration in (8) to be each 0, assuming each integ-
rand to be O for 0 ={¢<4,. The hypotheses of the theorem can then be
written:

@) lim 5(x) =0, (ii) tim - [ stydt =0,

0
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and it follows, from Theorem II as applicable to a i-step function f(x), that
s(x)—>0 or {s(x)}'— oo, in A-density.

Since s(x) is bounded below (by 0), Theorem III for a i-step function f(x),
with [ = 0, gives

L[ sty tat— =
0

which is the conclusion sought on account of s(f) in the integrand being
defined by (7) for £ = 4, and being O otherwise.

The following result due to Buck ([1], Theorem 3. 4), which reduces
to one of J. ARBAULT’s in the case p,==n", r >0, is an immediate deduction
from Theorem 1.

Corollary 1. Suppose that a, >0 (n=1,2,3,...) and Z1/na. < o. Let
p» be an increasing sequence of positive numbers, with np.= O(P,) where
Po=p,+ps+ >+ +Pu—>oo. Then

P (pr1ay+ Pata+ + -+ + Puty) — oo.

Corollary 1 may be established thus. KRONECKER s necessary condition
for the convergence of 31/na, is (C, 1)—lim a;' = 0. Hence Theorem 1, with
sa=a,' and A,=n gives (C,1)—lima,= o whence the conclusion of
Corollary 1 follows by an appeal to a well-known theorem due to CESARO
and HARDY.

Theorem 2. Let s,=a,+a+++-+an,a,.=0,n=1. Then a neces-
sary condition for the convergence of the sequence {s.} or of the series Za,
is that

oy
== 1u+l '_'irn

where {4.} is the sequence in (1).
ProOF. If s,— [, then we have, defining s(f) by (7),

—0 in A-density

%—J-s(r)dt—»l as Xx-—» oo,
0

and so

x

2D Gp— £, s(t)dt= Z Gody .0 as X — 00}
A Sz X Apy=z X
h
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or, defining n so that 4, = x < 4.1, we have

©) a1 (a—2)+ x + @n(X—2n) + a,.(l.,.;l—x) —
Since
a @ (Ans1—X) ! Qphn(An-1—X) ad
0 = x =% x(ill-i-l-—l‘) =daa 0,

(9) implies that
(R, 2, 1)—lim ¢, =0, while lim ¢,=0

i+ n—=o
as can be seen from a comparison of the convergent series Xa,. with the
divergent series Z(Ans1—4n)/An. Therefore we reach the desired conclusion
by appealing to Theorem Il as in the proof of Theorem 1, buth with a, in
place of s..

If Za, is a series of positive and negative terms, then it is strill true
that the convergence of the series implies (R, 4, 1)—Ilim «,=0. Hence, pro-
ceeding as in the proof of Theorem 2, but appealing to Corollary II instead
of Theorem Il, we get the following result which, in the case 4.=n, reduc-
es to one given by DEeNjoy and Buck ([1], Corollary 2 to Theorem 3. 2).

Corollary 2. If Za, is a convergent series of real terms such that
@ = Apion/(Ans1—4»), Where {in} is the sequence in (1), has the properties:
(ia) lim @ >— oo,
(iib) for every € >0, @, >—¢& as n runs through a subsequence of A-density 1,
then an—0 as n— oo through a subsequence of A-density 1.

§ 4. Two lemmas.

The lemmas given below are known results required to prove the theo-
rems of the next section. These theorems concern positive regular integral
transforms of a function f(x) measurable in every finite interval of (0, o),
defined by
(10) W(o)=a[pon)f(dx,  a>0,

0

whose kernel y(x) satisfies the conditions:
C(ia) Y(x)=0 for x=0,
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C(ib) there are positive constants c, k(c) such that
Y(x)= k() for 0=x=c,

Cii) [v@ax=1.

Lemma 1. Suppose that f(x) is bounded below and ¥ (o) is defined by
(10) with y(x) satisfying the conditions C stated above. Then

X

1) Tim - f fydt = (1/ck(©) Tm (o).
0

In the case in which the kernel v(x) satisfies the conditions C augment-
ed by

C(iia) [w@xdx+0, —oo<u<sos,
we have g
(12) lim - | f(t)dt = lim ®(0),

z+m X a-++0

0
whenever the limit on the right side exists.

(12) has been proved by HarDY ([3], Theorem 236) and (11) is impli-
cit in that proof since, assuming (as we may) that f(x) =0, we get the
inequality

B(0) = k(c)aj fX)dx—ck(c) ’ -+ j F)dx ‘
0 0
from which (11) results when o-—-+40. The choice f(x)=1 .in the last

inequality shows that, in (11), ck(c) = 1.
The next lemma is a result which I have proved elsewhere ([5], Lemma 2).

Lemma IL. If ¢(x) satisfies conditions C(ia), C(ii), and we define

g(x)=[w(t)at,

and if s(x) is a function of bounded variation in every finite interval of
(0, =) such that s(0)=0, then

D(0) EI g(ox)d{s(x)} =0 Irp(ax)s(x)dx =¥(o0)
0 0

Jor every o >0 for which ®(0) exists as a Riemann—Stieltjes integral.
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§ 5. Theorems on integral transforms.

The theorems of this section are, with one exception which is the direct
Abelian result appearing as the first half of (13), conditional converses,
Tauberian in character.

Theorem 3. Let ¥(o) defined by (10) be the transform of f(x) which
is bounded below. Let the kernel y(x) of the transform satisfy conditions
C(ia), C(ib) in the stronger form that v (x) is monotonic decreasing in (0, o),
C(ii) and additionally

(-]

C (i) ¥(x) is an integral, i.e. w(x)=[x(t)at.
Then .
(13) llT (o) = hm - Jf(t)dt = (l/max mp(c)] lim -:li(a)

PrOOF. The second half of (13) follows at once from (11) and is, in
fact, known ([4], Theorem 1). The first half of (13) can be proved easily by
using Lemma Il and writing

B(0)=0 [w(e0f()dx =[x/, FE=[/O)dL
0 0 0

Note. (13) is ‘best-possible’ in the sense that neither of the signs = in it
can be replaced by < as shown by the example and the theorem which follow.

Example. In (13) of Theorem 3, the second sign = is reduced to = for
J(x) defined as follows:

1., Iny for Im=x<int+1; da=n!(n=1),4=0
fx)=

otherwise.
For the above f(x),
» At

lim -l ftydt=lim +1 _[ f(tydt =

-+

A+l
(14) w(o)=off(x)w(ax)dx— b} fo(z.n b ) p(0x)dx <

Arpyq
r+2

<£0(ln—la-l)#’(ai.)é j Y(u)du +éo An—An1) P (04,) + J w(u)du.
0

ok,0
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Let r in (14) be such that 4. = x,/0 <4 where (by using the fact

lim xy(x)=0) x, has been determined so that xvy(x) <& for x> x,. Then
<e¢ for n=r+1,
=maxxy(x)=k for n=r.

(15) O (hn— D1 ) W(O2n) < Ohn W (0n)

Also, when ¢ —0 and hence r— oo,

O‘J-r_,l ' @ @
6) [ ywdu= sz(u)daqo, [ wwydu< | w@ydu—o
0 0 LN zy(r+2)

Using (15) and (16) in (14), we have iﬁg%ﬁ(o) = k+2¢ or, & being
arbitrary,

fim (o) = k— kTim f ft)at.
0

o++0 z»>m X

The above relation in conjunction with the second half of (13) shows that,
for the f(x) of our choice, equality prevails in the second half of (13).

Theorem 4. In Theorem 3, assume that f(x) is bounded above (as
well as below). Then the hypothesis

a7 im f(x) — Tim %Jf(t)dt=l
0
reduces the first half of (13) to an equality, i. e.
mow(a)=f.

Proor.") It is enough to suppose that /=0 and, observing that (on this
supposition) conditions C(ia) and C(ii) give lim & (o) = 0, to prove that, given
any & >0 we shall have
(18) lim#(0)= —s for 6=0,/0
and r— o through positive integral values. Since Theorem I (a) can be
restated with — f(x) in place of f(x) and /=0, (17) with /=0 implies that
the set E(¢) defined by

E(s)=E{f=—¢)}
has lower density O, i. e. that there is a sequence x,:
DS HC BT vy Ximrvo (F—noe)

1) Although Theorem 4 is presented as a supplement to Theorem 3, the only con-
ditions on ¥ (x) required to prove Theorem 4 are C(ia), C(ii) and the boundedness of ¥ (x)
in (0, o).
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such that
(19) BEX) 0 (o)

As 0— 0 through the sequence of values
1

20 r = T—=

20) = TEmEx)

we can prove that (18) holds, using the fact that f(x) is bounded. For, the
identity

r) xy

where C(EX,) is the complement of EX,, shows that, as r— oo,

B(0,) =0 l¢(0rx)f(x)dx+or s g vy

@(o,) > —o,m(EX,)-O(1)—¢0, I y(o.x)dx—O(1)- a,_l. Y(o.x)dx >

cwx,)

> —O[a,m(EX,)]—e'l‘tp(x)dx—O(-l) j W(x)dx.

Since o,m(EX,)—0 and o0,x,— o by (19) and (20), (18) is proved and
thence the required result.
Note. In Theorem 4, let
a+axt - Fan=s. for Lha=sx<ha (1),
By i) 0 for 0=x<4
where {4} is the sequence in (1). Then, by Lemma II,

B(o)=0 [ y(@nse)dx= [ plox)ds) = 3 aug(oi)

0 0
provided the last series is convergent and ¢(x) is defined as in Lemma II.
Consequently Theorem 4 assumes the form that, whenever Za, has bounded
partial sums s, and
lims.=(R, 4, 1)—lims. =1,
we have
lim Za.tp(al.)al

o->+0n=1

Theorem 4 in this form, with ¢(x)=e=* and 4,=n is due to S¢eaLov [8].

%) We suppose that x, can be found so that m(EX;) >0 and hence m(EX,)) >0
for r > 1. Otherwise EX_ is of measure 0 for every positive number x, and the proof in
the sequal becomes trivial.
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Under the conditions of Theorem 3, the first half of (13) can be com-
pleted by the statement

x

lim L f f(t)dt = Tim B(a) = Tim ~ | f(¢)at.
zam X o++0 z»o X
0 0
Hence the following theorem, obtained by combining Theorem II with conclu-
sion (12) of Lemma I, is stronger than Theorem II.

Theorem 5. Let ¥(0) be defined by (10), the kernel function y(x)
satisfying the conditions imposed on it in Theorem 3 and the additional con-
dition C(iia). Then the hypotheses

lim f(x)=1,  lim (o) =1

together imply that f(x) converges to | in density.

Theorem 5 is of course true when its hypothesis lim f(x)=1 is repla-
ced by Iim f(x) =1 s

The next theorem partakes of the characteristics of Theorem 5 and a
theorem of DELANGE ([2], Théoréme 8), its conclusion (26) which is analogous
to the conclusion of Theorem 5 having no counterpart in DELANGE’s theorem.

Theorem 6. (a) Suppose that

9(x) = [y(t)at

and y(x) satisfies conditions C(ia), C(ib) in the stronger form that y(x) is
monotonic decreasing in (0, o), C(ii) augmented by C(iia) and

(Ciib) () |1og x| dx < o.
0

Suppose that s(x) is a function of bounded variation in every finite interval
of (0, o) such that s(0)=0 and

(22) D(o)= fqa(ox)d{s(x)} —[ as o—+0,

the integral being a convergent Lebesgue—Stieltjes integral for o >0,

@3) lim — f td{s(t)} >— oo.

X

z—+®@



90 C. T. Rajagopal

Then

x

(24) lim % f s(f)dt=1.

z-—+m@
o

(b) In the particular case in which s(x) in (22) is the A-step function
of (21), and (23) holds in the particular form

(23) Z (1ay|—a) B (y—2y-)) P=0(%), p>1, n— oo,
conclusion (24) becomes the statement
(24) (R, 2, 1)—lims, =1

and carries with it the implications:

(25) lims,=1{, lims,={I{—lim (|a.|-—a.)/2,
n-=o "o n -0
(26) S» converges to | in A-density.

PROOF. (a) is a known result proved by me elsewhere ([7], Theorem A
with k& =0).

(b) It is easy to prove that (23") is a particular form of (23), in the
case of the s(x) of (21), by following, for instance, SzAsz ([9], p. 126), and
showing that (23°) implies

» 4yQy

lim — > =00
e bon

n>@ y=I|
which in turn implies (23) for the s(x) of (21). Hence we get (24’) which is
simply (24) for the s(x) of (21). The further conclusion (25) follows from
(23) and (24'), as I have shown elsewhere ([6], Lemma 1’); while the con-
clusion (26) follows from (24’) and the first half of (25), when we appeal
to Theorem Il in a form applicable to a A-step function.
Theorem 6 is a widening and a deepening of the well-known Tauberian
theorem ([9], p. 126) that (23'), or more simply the condition
lim @ ln/(An—4n-1) >— oo which implies (23"), ensures the eonclusion

@
lim s, = lim > a.e-

o-»+0 n=]
whenever the limit on the right side exists.
The final theorem which follows is a companion to the preceding.

Theorem 7. (a) Suppose that ¢(x) is defined as in Theorem 6 with
Y(x) satisfying the conditions C of that theorem excluding C(iia). Suppose
that s(x) and its transform ¢(0) are both defined as in Theorem 6, but we
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have, instead of (22) and (23),

(27 ®(0) = g(ox)d{s(x)} = O(1), a—+0,
0
(28) lim bound {s(§)—s(x)}=0.(d), d—+0.
Trm x<f<(l+d)x
Then
(29) lim s(x) = mﬂ @(0), lims(x)= lim P(o),

(30)  s(x) converges to each of its extreme limits in upper density.
(b) If s(x) in (27) is the A-step function of (21) and consequently (28)
assumes the form

lim min Z2a,=o0.(d), d -0,
noro =ty =(l4d)z

(29) and (30) will become the statement:
lim s, = lim @(0),  lims,= lim @(a),

n->o o++0 gy o> +0
s. converges to each of its extreme limits in upper A-density.

PrROOF. (b) is obviously a special case of (a), while (a) without its
conclusion (30) is substantially a theorem of MINAKSHISUNDRAM ([4], Theo-
rem 4)°), and conclusion (30) itself is a consequence of (29) in virtue of
Theorem [ since (28) can be shown to imply

x T

fim s(x) —=Tim % f stydt,  lim s(x) = lim % f s(t)dt.

x> 0 T @ z>®

The following kernels satisfy all the conditions C assumed in Theorem 6
and also condition C(iii) of Theorem 3:

w(x)=e,
Y(x) = ﬁ (p>0),

d X
""(")Z—H(f—_l]»
,k(l—x)*",k>l, oy X<,

Yol 0 for x=1.

8) Minaksuisunparam, following V. Ramaswami whom he cites, replaces (28) by the
following condition which is effectively the same as (28):
lim  bound {s@)—s(x)} =0, (log(3,+ 1)), p— oo,
T>® z{£€11+ﬁp):
where dp (p=1,2,3,...) is a positive sequence bounded above.
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On the other hand, the kernel (x)=2sin*x/zx® satisfies the conditions C
assumed in Theorem 6 with one difference, namely, exclusion of the stron-
ger form of C(ib) but not of the original form.

In conclusion, | wish to acknowledge my indebtedness to DRr. V.
GANAPATHY IYER and the late DRr. T. ViJAYARAGHAVAN who clarified several
points for me in the course of personal discussions.
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