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MATHEMATICAL NOTES.
By A. RENYI in Budapest.

IL. On the sequence of generalized partial sums of a series.

Introduction.

Let a,,a,,...,a,,... denote an arbitrary sequence of real numbers. We
define the corresponding sequence A, 4A,,..., A, ... as follows: we put

A, =0
and if the representation of the integer n = 1 in the dyadic system is
(1) n=2"%42k4...4-2k
(where ky, >k, >---> ki =0 are integers) we put
@) Av=ai+a,,+ - +ay.

We shall call the sequence {A.} the sequence of generalized partial sums of

the sequence {a,} (or of the series a,.].

Clearly the sequence {A,} consists of all possible finite sums of
elements of the sequence {a,}, each such sum occurring exactly once
in the sequence {A.}; the mentioned sums are ordered according to
the lexicographic order. Evidently the ordinary partial sums of any

@

rearrangement of the series 2, a, are all contained in the sequence {A,}. Clearly

if the series ZO a, is a rearrangement of the series %—;a.., then the sequence
{A.} corresponding to the sequence {a.} in the same way as {A,} corresponds
to {a.}, is a rearrangement of {A,}. This is worth mentioning because by
rearranging a series the sequence of ordinary partial sums is in general com-
pletely changed.

In the present paper we shall investigate how the properties of the
sequence {A,} depend on the properties of the sequence {a.}.
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§ 1. On the limit of the arithmetic means of the powers
of generalized partial sums.

First we prove the following
Theorem 1. The limit

n-1

=4
n

a, — Iim

n—»o

@
exists if and only if the series 26 a; converges; in this case we have

(£1=%§aj.

PrROOF OF THEOREM 1. Let us put

n-1

1
(3) Oy =—2 A
k=)
As clearly
s-1
(4) At Av =2 a; 0=k=2"—1
j=0
we have
] s-1
(5) O == ?g a;.
Thus if &, =1im o, exists, we have also lim o:s=e«, and thus ;?aj is con-
n—+@ s>o =

vergent and has the sum 2e,. This proves that the convergence of > a; is
=0

necessary for the existence of the limit @,. Now let us assume that > a; is
J=0

convergent, and let us put

(6) Zﬂ’j= A.

J=0
It follows by (5) that
g imor4.

It is easy to verify the following assertion: If n=2%4-2% ... 424 where
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k>k>--->k=0, we have

! i
rz-'; 21:,, 0‘:3,"" ;Z’: 21',.(0'._. - ag, + gt + a“v-l ’
(8) Oy =— — + -— 1

!
_Z_l‘ 2%y D'

=1

Now we need the following elementary

Lemma 1. If ¢, ¢,,...,¢k,... iS an arbitrary sequence of numbers, with
lim¢c =c¢, and we put
k-»@ i
> 24,
r=1
©) In= =

i
32
=1

for n=24+42%4 .- 24, then lim 7, =c.

=

PROOF OF LEMMA 1. It is easy to see, that the linear summation method
by which we obtain {y.} from {c:} is a regular TOEPLITZ method; this pro-
ves Lemma 1. A direct proof is as follows:

Let us choose an arbitrary &£ > 0; then there can be found an integer
K, = K,(¢) such that |cx—c|< ¢ for k= K,; we have further |cx| =C for
k=0,1,.... Now we have clearly

Ky-1

c;z’

lrn—c|se+——=2¢

Ko
for n= Csi Thus limy.=c.

n—»0

It follows by Lemma 1 and (7) that the first term on the right of (8)

tends to —g— As regards the second term, we have clearly

t i
2 2"7(0;,1+---01.-,_1)| 2;'01;"'2"7
=2 — v=1
e !

1
> >

=1 =1

As |a.|—0, it foliows by Lemma 1 and (10) that the second term on the

(10)

right of (8) tends to 0. Thus we have proved lim t:-'..=i and so the proof

n—+m 2

of Theorem 1 is completed.
Now we proceed to prove the following more general



132 A. Rényi

Theorem 2. The limits
n-1
PR O 1. 5. LN TR L
ni=

n—+o

all exist if and only if the series gaj and ; a; are both convergent. The
= J

values of the limits ¢, can be expressed as follows: let t denote a real number,
0=1{¢<1, and let us consider the dyadic expansion®)

(=3=0

n=—| 2
of t, where &,(t) is equal to O or 1. Let us consider the function

(11) A(f) = é: @unn(f).

If é:af and Zb‘a? are convergent, then the series on the right of (11) is
5 =

convergent®) for almost every value of t and the function A(t) belongs to any
class L"(p=1)in (0,1). The limits ., are simply the moments of A(t), i. e.

(12) «&= | (A@)Ydt T b T,

Before proving Theorem 2 we make some remarks.
Remark 1. 1t is clear from Theorem 1 that for the existence of , the con-

vergence of > a; is not necessary, but this condition is necessary already for
n=>0

the existence of «,. It is also clear that under the conditions of Theorem 2 we
1 1
have J’A(t)dt=%, because js,,(t) dt = %(I:: A S |
0 0

Remark 2. It follows from (12) for r=2 that

(Za) + 2
-

i=

r
1) If ¢ is a dyadic rational number, t-—-_? , we choose the finite expansion, in which

£,(f)=0 for n > s.
2) See H. PorLarp, Subseries of a convergent series, Bull. Amer. Math. Soc. 49

(1943), 730—731.
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This can be expressed also in the following form:

! ] n-1 2_1 (i) 9
(13) lim — g(A"_'“‘) - Tgaj.

fi—»

Remark 3. The functions & (f) are connected with the well known
RADEMACHER functions Ri(f)=sg sin 2"zt as follows: s.,(r)=%(1 + Rx(1)).

Thus (11) can be written also in the following equivalent form:

Let us put
1 @
(14) D)= 2 @R ()
Then we have ,
.. 18 ) §
(15) ,I,L“; e go(Ak—a,) =J(D(r)) dt (r=1,2..))
0

Clearly (13) is the special case r=2 of (15). The right hand side of (15) is
evidently equal to O for odd values of r.

w [++] (=]
Remark 4. Note that if > a; and > a; are convergent but > |a;| diver-
J% j g j 4 g | ;]

ges, the sequence A, is unbounded, and thus not only the existence of the

limits @, but even the boundedness of the mean values% gAI is not trivial.

PrROOF OF THEOREM 2. We start from the formula

(16) 15 v f (S.(B) dt
2 éb =5

where

(17) S.(f) = goak 1 ().

To prove (16) it suffices to point out that the values of the function
S, (f) are the numbers Ay, A, ..., A2».1, and each of these values is taken on

by the function S,(f) on a subinterval of Iength-zl—,.

We prove first the sufficiency part of Theorem 2.
@ @
Let us suppose that the series > a; and >, aj are convergent and put
= =

=

L=

m -
aj—A and O aj =B By a well known theorem on RADEMACHER’S
=0
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series”) the convergence of the series Z by implies that the series % b R (f)

converges almost everywhere to a funchon which belongs to every class
L"(p=1). It is also known that for any integer m = 1 we have

1
N m
(18) f Zbkm dt-:c (Zb‘i)
k=0
where C,. is a positive constant, not depending on b,, b,,... . We may take
e.g. C.,=mm™. It follows that we have for almost every ¢

lim S, (t) = A(t)

and A(f) belongs to every class L"(p = 1). We have further for r = 2

= JIS,,(f)'-—A(t)’Idt.

(19) I 0[ (S,(t))'dt—éf(A () dt

As for any pair of real numbers x and h we have for r=1,2,...
|(x4+h) —x"| = rh(|x[" +|x+h[)
it follows from (19) that ‘

1 1 1
j (S, (t)) dt— J AWy dt| =r [1S.(O0—A®] (S +]A@O)at.
Applying the inequality of SCHWARZ we obtain
: |

1
T

1) j(s,(t))'dt—f(A(t))"dr} =2r [( 1(s,,(r)— A(!))“dt)(r—l )’*'[’%E]M]‘

because by (18)

[-|Sr(f)|nr'odt < (r—1)""! (ﬁi-___ga]r—t
and 0

r-1 (A2 + B))f‘l

J(A(t))*’*‘-'dr =(r—1) x

Now as

f .0~ Aoyt +4(§ ‘“),

0

%) See A. Zvamunp, Trigonometrical Series, Monografje Matematyczne, Warszawa—
Lwéw 1935, pp. 123—124.
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it follows from (21) that

1

lim [(S, () dt= J (A(ty dt.

Y=o ()

Thus putting

"

r]_l < r
(22) o' = 12_?0 Al
we have proved
1

(23) lim 0 = | (A()Y dt = .
-+ 0

135

To deduce lim 0! = &, from (23), we shall need the following identity:

V>0

If n=2%42%4 ... 42 with k, > ky>---> k =0 we have

’ oki_ s o
(24) g A= gz*f e+ § [ gl (A- 7 2 ﬂx».) —A?]

Thus it follows

r-1 r
K- e} T (r. e
(25) o = ul +o%(9) oy
where
!
32467
(26) o L
" I
29
=1
and

!
T -
% s J";*)j(ak; 4 +a"j-1)r °

(21) o ¥t ;
J=1
It follows by (23) and Lemma 1 that
(28) lim 4 = a,.

n-==o

As regards v, ® we shall prove that

(29) limao'® =0 for 9=0,1,...,7—1; r=12,... .

n-=
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As every convergent sequence is bounded, there can be found positive con-
stants K¢ (0=1, 2,...) such that

(30) o] = Ke-
It will be useful to put og‘:!zl and thus K,= 1. It follows

2"!(|a,,,[+ +|a-'~'_, 1|)r .
(31) |ow?| = K= ; .
A7

Applying the inequality of CAUCHY, we obtain

(32) |69 = ] 22“1(2:& )" =

n j=2
Now to an arbitrary &£ >0 there can be found an integer k,= k,(¢) such that

%a;, < &. We may further suppose B°— ; a; < 1, because if this where not
=

so, we could consider the sequence {%a.} with a suitable 3 0<&#<1)
instead of the sequence {a.}. Thus it follows, taking into account that
k; = k,—J, that

r-@ o, -

I 2%:2)
ék,(&'.’: 2 + n ]

the series Z I being convergent for any « > 0.

J'_‘l

As l=k+1= l?ggzzn we obtain

-

w

I:S:" e

(33)

-

r

2,‘0(10 2n)
o) — log 2 2
(34) |on® | =C\e+ = (e=0,1,...,r—1)

where C, is a positive constant, depending only on r. Thus it follows that
(35) ime'?=0 (O=es=r—1;r=12,..)).

n—>m

This completes the proof of lim 6’ =«,, and thus the proof of the suffi-

n-+o

ciency of the conditions of Theorem 2.
To prove the necessity it suffices to mention, that according to Theorem 1

®
the convergence of gak is necessary already for the existence of «,, and
k=
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according to (16)

(Sa) +§a~

2'_'—

(=]
Thus lim of) — e, implies the convergence of g" ax.

>+

It follows evidently from Theorem 2 that we have under the conditions
of Theorem 2

n—»o

(36) im L 3540 = [ ra@yar

if f(x) is any polynomial. If g‘bla.l is also convergent, i. e. if the sequence
Ay is bounded, it follows by a well known argument that (36) is valid for

any continuous function. If the absolute convergence of ;“" is not suppo-

sed, we can prove (36) only for continuous functions f(x) satisfying some
restrictions concerning the order of magnitude of f(x) for x — . We shall
not go into details here, and mention only that without any restriction on
f(x) the integral on the right-hand side of (36) does not exist in general.?)

For some special continuous functions f(x) the validity of (36) can be
deduced from Theorem 2. For instance if f(x)=|x—c| where ¢ is an arbi-
trary real number, then (36) is valid. This implies, that

(37) lim — ; IAr—a1|—J.|D(t)|df

n—+o

and as the right-hand side (37) is positive unless a,=a,=---=0, it follows
trom (37) that the sequence A, is not strongly summable except if all aa.
vanish.

%) A sufficient condition for the existence of the integral on the right of (36) is that
f(x) should satisfy the inequality f(x)< Ce’” where ¢ < -:_ (A2 4 B2)™! (see Zvamunp.
loc. cit.).
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§ 2. The asymptotic distribution of generalized partial sums.

Now we shall consider the asymptotic distribution of the sequence A,.
We shall prove the following

Theorem 3. Let a,,a,,...,a.,... denote a real sequence and put
A,=0 and A.=ay,+ @i, + - +a, if n=2542%4 ... + 2% where k,>k,>
>---> ki =0 are integers. Let N,(x) denote the number of those among the
numbers A,, A, ..., As-1 Which are <x, i.e. put

(38) N..(x)=A*Z;1 (n=1,2,...).

k-n
@

-l & ]
Let us suppose that the series O a; and D, a; are convergent, and let us put
% P

J_

again A(f) = 2, an&...(t) where &,(t) is the n-th dyadic digit of t, i.e. &,(f)

isQorl and t= 2%@’ Let F(x) denote the measure of the set of those

n=1
points t of the interval (0, 1) for which A(t)<x. By other words F(x) is the
distribution function of A(f). (F(x) is clearly nondecreasing, continuous to the
right, lim F(x)=0 and I1m F(x)=1.) Then we have

T-=-O

m N, (x)

(39) h =F(x)

in all continuity points x of F (x).
PROOF OF THEOREM 3. First we prove that if x is a point of continuity
of F(x) then

(40) lim

Y=+

No;(x) e F(x)

This can be shown as follows: The function

Sy(f) = :'g; ax flﬂr[(!)

takes on the values A,, A,,..., Ae».1, each on a set of measure —217 Thus de-

noting by F,(x) the measure of the set of those values ¢ (0 = < f) for which
Sy(t)<x (i. e. F,(x) is the distribution function of S,(f)) we have

(41) _I_V‘-:'(x)

o Fy(x).
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@® @
Taking into account that if > a; and ;“ a; are convergent, S,(f) tends almost
J=d =

everywhere to A(f), and therefore it tends also in measure to A(f), we have
lim F,(x) = F(x) in all continuity points of F(x). This proves (40).

-+

To prove (39) we start from the formula

L
(42) Na(x)=2" Fu (0)+ 2, 29 Fprj(x—an,— - —au; )
==
if
n=2M42k4 ... L-28 (k> ky>--->k = 0).
Now we need the following elementary

Lemma 2. If ¢, =0 and c¢,—0, there can be found a monotonically
increasing sequence I, of integers, such that lim l,— + oo and

L ]

lim(Ca-14 -+ +Cag,)) =0.

n—»o
PROOF OF THE LEMMA. Let us put
d,.=MaX C;‘

k=n
and

[, = min ([n/2] V{_-F'I]

Then we have

-

n-1 »-

ZCJ
n-

[ J

di=hd, = B _ V w2y — 0,
mln i)

IM

J=

which proves the assertion of our Lemma.
To complete the proof of Theorem 3 let us choose the sequence I, in
such a way, that /,— o for n—o and (|a.|+|@ya|+-+|a)4,|)—0

for »—oo. This is possible by Lemma 2 because 2 a; being convergent we
J=0
have lima,=0. For any ¢ >0 we can find an integer &*==k"(¢) such that

n-—=om
|Fy(x)—F(x)| <& if k= K". It follows that

N - LS, () = oo +s+ 2

n =i

(43)
which implies that

(44) lim sup N—';IC—J—Q = F(x).
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Clearly we can find a value #, such that if » = v, then |a,|+|ay.1|+ -+
+|ay.,| <& Thus if n = 2™ we have k, = 7, and

ky-lg -1
b AR 1 22*“ Z 2 =n—2"",
kf:—___akl_lfk'
We have evidently
= — Fei(x—¢#).
N CEn k‘-)g:lkl - . ( 8)

If we choose the integer £** so that for k = k** we have | Fok(x—&)— F(x—¢)| <e,
it follows

N, (x)

45) = (Fe—0—9) (1— 1)

provided that k,— 5L, =k**. As for n— oo, k;— oo and thus i, — oo, further
ky— by, — o0, it follows from (45) that

(46) lim inf 2 ,f ) = F(x).

(44) and (46) together imply that
(47) tim & (")

o

= F(x)

for any continuity point x of F(x). Thus Theorem 3 is proved.

§ 3. Equivalence of the (C, 2)-summability of generalized
partial sums with the convergence of a series.

It follows from Theorem 1 that if the arithmetic means of the sequence

@
{Ai} of generalized partial sums of a series > a, converge to a limit «,, the
n=_0

series itself is convergent and has the sum 2e,. In this § we shall show that
the same holds for the Cesaro means of order 2 too. Thus we prove the
following

Theorem 4. If the Cesdro means of order 2 of the sequence {A.} of

generalized partial sums of the series Za,, converge to a limit «,, then the
n=0

@
series > a, is convergent and has the sum 2a,.
n—={)
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PROOF OF THEOREM 4. Let us put
n-1
n_ 1 B
(48) o = [n) ;(n k) A..
2

By supposition lim 6® —=e,, which implies that
n—»o

(49) lim o) = a,.
Now it is easy to show that, putting
(50) Sk=a,+a,+---+a,
we have
2" —1)S,a+ S 2. §;
(51) O = —
2(2"—1)

It follows that
2(2" —1)a%—2(2"— 1) g St

52 Ot
s 2"—1) §—1

By (49), we have

» -1
53) lim (s, + 5 | = 26
Now we shall prove that (53) implies
(54) lim S, = 2a,.

¥—->@

Clearly it suffices to show that S, is bounded. But if S, were unbounded,
we could find a subsequence S, such that »;— oo, |S,.|— o0 and |S,|=
(S, +%] I ==+ oo in contradiction
to (53). Thus Theorem 4 is proved. Similar results hold for other methods
of summation too. We hope to return to the question in another paper.

= |Sy;-1| which would imply lin:_.s:p
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