MATHEMATICAL NOTES.

By A. RÉNYI in Budapest.

II. On the sequence of generalized partial sums of a series.

Introduction.

Let $a_0, a_1, \ldots, a_n, \ldots$ denote an arbitrary sequence of real numbers. We define the corresponding sequence $A_0, A_1, \ldots, A_n, \ldots$ as follows: we put

$$A_0 = 0$$

and if the representation of the integer $n \ge 1$ in the dyadic system is

$$(1) n = 2^{k_1} + 2^{k_2} + \cdots + 2^{k_l}$$

(where $k_1 > k_2 > \cdots > k_l \ge 0$ are integers) we put

pletely changed.

(2)
$$A_n = a_{k_1} + a_{k_2} + \cdots + a_{k_l}.$$

We shall call the sequence $\{A_n\}$ the sequence of generalized partial sums of the sequence $\{a_n\}$ (or of the series $\sum_{n=0}^{\infty} a_n$).

Clearly the sequence $\{A_n\}$ consists of all possible finite sums of elements of the sequence $\{a_n\}$, each such sum occurring exactly once in the sequence $\{A_n\}$; the mentioned sums are ordered according to the lexicographic order. Evidently the ordinary partial sums of any

rearrangement of the series $\sum_{n=0}^{\infty} a_n$ are all contained in the sequence $\{A_n\}$. Clearly

if the series $\sum_{n=0}^{\infty} a'_n$ is a rearrangement of the series $\sum_{n=0}^{\infty} a_n$, then the sequence $\{A'_n\}$ corresponding to the sequence $\{a'_n\}$ in the same way as $\{A_n\}$ corresponds to $\{a_n\}$, is a rearrangement of $\{A_n\}$. This is worth mentioning because by rearranging a series the sequence of ordinary partial sums is in general com-

In the present paper we shall investigate how the properties of the sequence $\{A_n\}$ depend on the properties of the sequence $\{a_n\}$.

§ 1. On the limit of the arithmetic means of the powers of generalized partial sums.

First we prove the following

Theorem 1. The limit

$$\alpha_1 = \lim_{n \to \infty} \frac{\sum_{k=0}^{n-1} A_k}{n}$$

exists if and only if the series $\sum_{i=0}^{\infty} a_i$ converges; in this case we have

$$\alpha_1 = \frac{1}{2} \sum_{j=0}^{\infty} a_j.$$

PROOF OF THEOREM 1. Let us put

(3)
$$\sigma_n = \frac{1}{n} \sum_{k=0}^{n-1} A_k.$$

As clearly

(4)
$$A_k + A_{2^s - 1 - k} = \sum_{j=0}^{s-1} a_j \qquad 0 \le k \le 2^s - 1$$

we have

(5)
$$\sigma_{2s} = \frac{1}{2} \sum_{i=0}^{s-1} a_i.$$

Thus if $\alpha_1 = \lim_{n \to \infty} \sigma_n$ exists, we have also $\lim_{s \to \infty} \sigma_{2^s} = \alpha_1$ and thus $\sum_{j=0}^{\infty} a_j$ is convergent and has the sum $2\alpha_1$. This proves that the convergence of $\sum_{j=0}^{\infty} a_j$ is necessary for the existence of the limit α_1 . Now let us assume that $\sum_{j=0}^{\infty} a_j$ is convergent, and let us put

$$(6) \sum_{j=0}^{\infty} a_j = A.$$

It follows by (5) that

$$\lim_{s\to\infty}\sigma_{2^s}=\frac{A}{2}.$$

It is easy to verify the following assertion: If $n = 2^{k_1} + 2^{k_2} + \cdots + 2^{k_l}$ where

 $k_1 > k_2 > \cdots > k_l \ge 0$, we have

(8)
$$\sigma_n = \frac{\sum_{\nu=1}^l 2^{k_{\nu}} \sigma_{2^{k_{\nu}}}}{\sum_{\nu=1}^l 2^{k_{\nu}}} + \frac{\sum_{\nu=2}^l 2^{k_{\nu}} (a_{k_1} + a_{k_2} + \dots + a_{k_{\nu-1}})}{\sum_{\nu=1}^l 2^{k_{\nu}}},$$

Now we need the following elementary

Lemma 1. If $c_0, c_1, ..., c_k, ...$ is an arbitrary sequence of numbers, with $\lim_{k \to \infty} c_k = c$, and we put

(9)
$$\gamma_n = \frac{\sum_{\nu=1}^{l} 2^{k_{\nu}} c_{k_{\nu}}}{\sum_{\nu=1}^{l} 2^{k_{\nu}}}$$

for
$$n = 2^{k_1} + 2^{k_2} + \cdots + 2^{k_l}$$
, then $\lim_{n \to \infty} \gamma_n = c$.

PROOF OF LEMMA 1. It is easy to see, that the linear summation method by which we obtain $\{\gamma_n\}$ from $\{c_k\}$ is a regular TOEPLITZ method; this proves Lemma 1. A direct proof is as follows:

Let us choose an arbitrary $\varepsilon > 0$; then there can be found an integer $K_0 = K_0(\varepsilon)$ such that $|c_k - c| < \varepsilon$ for $k \ge K_0$; we have further $|c_k| \le C$ for $k = 0, 1, \ldots$ Now we have clearly

$$|\gamma_n - c| \le \varepsilon + \frac{C\sum_{k=0}^{K_0-1} 2^k}{n} \le 2\varepsilon$$

for $n \ge \frac{C2^{K_0}}{\varepsilon}$. Thus $\lim_{n \to \infty} \gamma_n = c$.

It follows by Lemma 1 and (7) that the first term on the right of (8) tends to $\frac{A}{2}$. As regards the second term, we have clearly

(10)
$$\left| \frac{\sum_{\nu=2}^{l} 2^{k_{\nu}} (a_{k_{1}} + \cdots + a_{k_{\nu-1}})}{\sum_{\nu=1}^{l} 2^{k_{\nu}}} \right| \leq \frac{\sum_{\nu=1}^{l} |a_{k_{\nu}}| \cdot 2^{k_{\nu}}}{\sum_{\nu=1}^{l} 2^{k_{\nu}}}$$

As $|a_n| \to 0$, it follows by Lemma 1 and (10) that the second term on the right of (8) tends to 0. Thus we have proved $\lim_{n\to\infty} \sigma_n = \frac{A}{2}$ and so the proof of Theorem 1 is completed.

Now we proceed to prove the following more general

Theorem 2. The limits

$$\alpha_r = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} A_k^r \qquad (r = 1, 2, ...)$$

all exist if and only if the series $\sum_{j=0}^{\infty} a_j$ and $\sum_{j=0}^{\infty} a_j^2$ are both convergent. The values of the limits α_r can be expressed as follows: let t denote a real number, $0 \le t < 1$, and let us consider the dyadic expansion¹)

$$t=\sum_{n=1}^{\infty}\frac{\varepsilon_n(t)}{2^n}$$

of t, where $\varepsilon_n(t)$ is equal to 0 or 1. Let us consider the function

(11)
$$A(t) = \sum_{n=0}^{\infty} a_n \varepsilon_{n+1}(t).$$

If $\sum_{j=0}^{\infty} a_j$ and $\sum_{j=0}^{\infty} a_j^2$ are convergent, then the series on the right of (11) is convergent²) for almost every value of t and the function A(t) belongs to any class $L^p(p \ge 1)$ in (0, 1). The limits α_r are simply the moments of A(t), i. e.

Before proving Theorem 2 we make some remarks.

Remark 1. It is clear from Theorem 1 that for the existence of α_1 the convergence of $\sum_{n=0}^{\infty} a_n^2$ is not necessary, but this condition is necessary already for the existence of α_2 . It is also clear that under the conditions of Theorem 2 we

have
$$\int_{0}^{1} A(t) dt = \frac{A}{2}$$
, because $\int_{0}^{1} \varepsilon_{k}(t) dt = \frac{1}{2} (k = 1, 2, ...)$.

Remark 2. It follows from (12) for r=2 that

$$\alpha_2 = \frac{\left(\sum_{j=0}^{\infty} a_j\right)^2 + \sum_{j=0}^{\infty} a_j^2}{4}.$$

¹⁾ If t is a dyadic rational number, $t = \frac{r}{2^s}$, we choose the finite expansion, in which $\varepsilon_n(t) = 0$ for n > s.

²) See H. Pollard, Subseries of a convergent series, Bull. Amer. Math. Soc. 49, (1943), 730-731.

This can be expressed also in the following form:

(13)
$$\lim_{n\to\infty} \frac{1}{n} \sum_{k=0}^{n-1} (A_k - \alpha_1)^2 = \frac{1}{4} \sum_{i=0}^{\infty} a_i^2.$$

Remark 3. The functions $\varepsilon_k(t)$ are connected with the well known RADEMACHER functions $R_k(t) = \operatorname{sg\ sin}\ 2^k \pi t$ as follows: $\varepsilon_k(t) = \frac{1}{2}(1 + R_k(t))$. Thus (11) can be written also in the following equivalent form:

Let us put

(14)
$$D(t) = \frac{1}{2} \sum_{n=0}^{\infty} a_n R_{n+1}(t)$$

Then we have

(15)
$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}(A_k-\alpha_1)^r=\int_0^1(D(t))^rdt \qquad (r=1,2,\ldots)$$

Clearly (13) is the special case r=2 of (15). The right hand side of (15) is evidently equal to 0 for odd values of r.

Remark 4. Note that if $\sum_{j=0}^{\infty} a_j$ and $\sum_{j=0}^{\infty} a_j^2$ are convergent but $\sum_{j=0}^{\infty} |a_j|$ diverges, the sequence A_n is unbounded, and thus not only the existence of the limits α_r but even the boundedness of the mean values $\frac{1}{n} \sum_{k=0}^{n-1} A_k^r$ is not trivial.

PROOF OF THEOREM 2. We start from the formula

(16)
$$\frac{1}{2^{\nu}} \sum_{k=0}^{2^{\nu}-1} A_k^r = \int_0^1 (S_{\nu}(t))^r dt$$

where

(17)
$$S_{\nu}(t) = \sum_{k=0}^{\nu-1} a_k \, \varepsilon_{k+1}(t).$$

To prove (16) it suffices to point out that the values of the function $S_{\nu}(t)$ are the numbers $A_0, A_1, \ldots, A_{2^{\nu}-1}$, and each of these values is taken on by the function $S_{\nu}(t)$ on a subinterval of length $\frac{1}{2^{\nu}}$.

We prove first the sufficiency part of Theorem 2.

Let us suppose that the series $\sum_{j=0}^{\infty} a_j$ and $\sum_{j=0}^{\infty} a_j^2$ are convergent and put $\sum_{j=0}^{\infty} a_j = A$ and $\sum_{j=0}^{\infty} a_j^2 = B^2$. By a well known theorem on RADEMACHER's

series³) the convergence of the series $\sum_{k=0}^{\infty} b_k^2$ implies that the series $\sum_{k=0}^{\infty} b_k R_k(t)$ converges almost everywhere to a function which belongs to every class $L^p(p \ge 1)$. It is also known that for any integer $m \ge 1$ we have

(18)
$$\int_{0}^{1} \left| \sum_{k=0}^{N} b_{k} R_{k}(t) \right|^{2m} dt \leq C_{m} \left(\sum_{k=0}^{N} b_{k}^{2} \right)^{m}$$

where C_m is a positive constant, not depending on b_0, b_1, \ldots . We may take e.g. $C_m = m^m$. It follows that we have for almost every t

$$\lim_{r\to\infty} S_r(t) = A(t)$$

and A(t) belongs to every class $L^p(p \ge 1)$. We have further for $r \ge 2$

(19)
$$\left|\int_0^1 (S_{\nu}(t))^r dt - \int_0^1 (A(t))^r dt\right| \leq \int_0^1 |S_{\nu}(t)^r - A(t)^r| dt.$$

As for any pair of real numbers x and h we have for r = 1, 2, ...

$$|(x+h)^{r}-x^{r}| \leq rh(|x|^{r-1}+|x+h|^{r-1})$$

it follows from (19) that

(20)
$$\left| \int_{0}^{1} (S_{\nu}(t))^{r} dt - \int_{0}^{1} (A(t))^{r} dt \right| \leq r \int_{0}^{1} |S_{\nu}(t) - A(t)| \left(|S_{\nu}(t)|^{r-1} + |A(t)|^{r-1} \right) dt.$$

Applying the inequality of Schwarz we obtain

$$(21)\left|\int_{0}^{1} (S_{r}(t))^{r} dt - \int_{0}^{1} (A(t))^{r} dt\right| \leq 2r \left[\left(\int_{0}^{1} (S_{r}(t) - A(t))^{2} dt \right) (r-1)^{r-1} \left(\frac{A^{2} + B^{2}}{4} \right)^{r-1} \right]^{\frac{1}{2}}$$

because by (18)

$$\int_{0}^{1} |S_{r}(t)|^{2r-2} dt \leq (r-1)^{r-1} \left(\frac{A^{2}+B^{2}}{4}\right)^{r-1}$$

and

$$\int_{0}^{1} (A(t))^{2r-2} dt \leq (r-1)^{r-1} \left(\frac{A^{2} + B^{2}}{4} \right)^{r-1}.$$

Now as

$$\int_{0}^{1} (S_{\nu}(t) - A(t))^{2} dt = \frac{\sum_{k=\nu}^{\infty} a_{k}^{2} + \left(\sum_{k=\nu}^{\infty} a_{k}\right)^{2}}{4},$$

³⁾ See A. Zygmund, Trigonometrical Series, Monografje Matematyczne, Warszawa— Lwów 1935, pp. 123—124.

it follows from (21) that

$$\lim_{\nu\to\infty}\int\limits_0^1(S_{\nu}(t))^rdt=\int\limits_0^1(A(t)^rdt.$$

Thus putting

(22)
$$\sigma_n^{(r)} = \frac{1}{n} \sum_{k=0}^{n-1} A_k^r$$

we have proved

(23)
$$\lim_{r\to\infty}\sigma_{2^r}^{(r)}=\int\limits_0^1\left(A(t)\right)^rdt=\alpha_r.$$

To deduce $\lim_{n\to\infty} \sigma_n^{(r)} = \alpha_r$ from (23), we shall need the following identity: If $n = 2^{k_1} + 2^{k_2} + \cdots + 2^{k_l}$ with $k_1 > k_2 > \cdots > k_l \ge 0$ we have

(24)
$$\sum_{k=0}^{n-1} A_k^r = \sum_{j=1}^l 2^{k_j} \sigma_{2^{k_j}}^{(r)} + \sum_{j=2}^l \left[\sum_{i=0}^{2^{k_{j-1}}} \left(A_i + \sum_{k=1}^{j-1} a_{k_k} \right)^r - A_i^r \right]$$

Thus it follows

(25)
$$\sigma_n^{(r)} = u_n^{(r)} + \sum_{\varrho=0}^{r-1} {r \choose \varrho} v_n^{(r,\varrho)}$$

where

(26)
$$u_n^{(r)} = \frac{\sum_{j=1}^{l} 2^{k_j} \sigma_{2^{k_j}}^{(r)}}{\sum_{j=1}^{l} 2^{k_j}}$$

and

(27)
$$v_n^{(r,\varrho)} = \frac{\sum_{j=2}^{l} 2^{k_j} \sigma_{2^{k_j}}^{(\varrho)} (a_{k_1} + \dots + a_{k_{j-1}})^{r-\varrho}}{\sum_{j=1}^{l} 2^{k_j}}$$

It follows by (23) and Lemma 1 that

$$\lim_{n\to\infty} u_n^{(r)} = \alpha_r.$$

As regards $v_n^{(r,\varrho)}$ we shall prove that

(29)
$$\lim_{n\to\infty} v_n^{(r,\varrho)} = 0 \text{ for } \varrho = 0, 1, ..., r-1; r = 1, 2,$$

As every convergent sequence is bounded, there can be found positive constants K_{ℓ} ($\ell=1,2,\ldots$) such that

$$\left|\sigma_{2^{\nu}}^{(\varrho)}\right| \leq K_{\varrho}.$$

It will be useful to put $\sigma_{2\nu}^{(0)} \equiv 1$ and thus $K_0 = 1$. It follows

(31)
$$|v_n^{(r,\varrho)}| \leq K_{\varrho}^{\sum_{j=2}^{l} 2^{k_j} (|a_{k_1}| + \dots + |a_{k_{j-1}}|)^{r-\varrho}} \sum_{j=1}^{l} 2^{k_j}.$$

Applying the inequality of CAUCHY, we obtain

(32)
$$|v_n^{(r,\varrho)}| \leq \frac{K_\varrho}{n} \sum_{i=2}^l 2^{k_j} \left(\sum_{i=1}^{j-1} a_{k_i}^2 \right)^{\frac{r-\varrho}{2}} j^{\frac{r-\varrho}{2}}$$

Now to an arbitrary $\varepsilon > 0$ there can be found an integer $k_0 = k_0(\varepsilon)$ such that $\sum_{k=k_0}^{\infty} a_k^2 < \varepsilon^2$. We may further suppose $B^2 = \sum_{k=0}^{\infty} a_k^2 < 1$, because if this where not so, we could consider the sequence $\{\mathcal{P}a_n\}$ with a suitable $\mathcal{P}(0 < \mathcal{P} < 1)$ instead of the sequence $\{a_n\}$. Thus it follows, taking into account that $k_j \leq k_1 - j$, that

(33)
$$|v_n^{(r,\varrho)}| \leq K_{\varrho} \left(\varepsilon \sum_{j=1}^{\infty} \frac{j^{\frac{r-\varrho}{2}}}{2^j} + \frac{2^{k_0} l^{\frac{r-\varrho}{2}}}{n} \right),$$

the series $\sum_{j=1}^{\infty} \frac{j^{\alpha}}{2^{j}}$ being convergent for any $\alpha > 0$.

As
$$l \le k_1 + 1 \le \frac{\log 2n}{\log 2}$$
 we obtain

(34)
$$|v_n^{(r,\varrho)}| \le C_r \left(\varepsilon + \frac{2^{k_0} \left(\frac{\log 2n}{\log 2} \right)^{\frac{r}{2}}}{n} \right)$$
 $(\varrho = 0, 1, ..., r-1)$

where C_r is a positive constant, depending only on r. Thus it follows that (35) $\lim_{n \to \infty} v_n^{(r,\varrho)} = 0 \qquad (0 \le \varrho \le r, -1; r = 1, 2, ...).$

This completes the proof of $\lim_{n\to\infty} \sigma_n^{(r)} = \alpha_r$, and thus the proof of the sufficiency of the conditions of Theorem 2.

To prove the necessity it suffices to mention, that according to Theorem 1 the convergence of $\sum_{k=0}^{\infty} a_k$ is necessary already for the existence of α_1 , and

according to (16)

$$\sigma_{2^{\nu}}^{(2)} = \frac{\left(\sum_{k=0}^{\nu-1} a_k\right)^2 + \sum_{k=0}^{\nu-1} a_k^2}{4}.$$

Thus $\lim_{\nu \to \infty} \sigma_{2\nu}^{(2)} = a_2$ implies the convergence of $\sum_{k=0}^{\infty} a_k^2$.

It follows evidently from Theorem 2 that we have under the conditions of Theorem 2

(36)
$$\lim_{n\to\infty} \frac{1}{n} \sum_{k=0}^{n-1} f(A_k) = \int_{0}^{1} f(A(t)) dt$$

if f(x) is any polynomial. If $\sum_{n=0}^{\infty} |a_n|$ is also convergent, i. e. if the sequence A_k is bounded, it follows by a well known argument that (36) is valid for any continuous function. If the absolute convergence of $\sum_{n=0}^{\infty} a_n$ is not supposed, we can prove (36) only for continuous functions f(x) satisfying some restrictions concerning the order of magnitude of f(x) for $x \to \infty$. We shall not go into details here, and mention only that without any restriction on f(x) the integral on the right-hand side of (36) does not exist in general. 1)

For some special continuous functions f(x) the validity of (36) can be deduced from Theorem 2. For instance if f(x) = |x-c| where c is an arbitrary real number, then (36) is valid. This implies, that

(37)
$$\lim_{n\to\infty} \frac{1}{n} \sum_{k=0}^{n-1} |A_k - \alpha_1| = \int_0^1 |D(t)| dt$$

and as the right-hand side (37) is positive unless $a_0 = a_1 = \cdots = 0$, it follows from (37) that the sequence A_n is not strongly summable except if all a_n vanish.

⁴) A sufficient condition for the existence of the integral on the right of (36) is that f(x) should satisfy the inequality $f(x) \le Ce^{\delta x^2}$ where $\delta \le \frac{4}{e} (A^2 + B^2)^{-1}$ (see Zygmund. loc. cit.).

§ 2. The asymptotic distribution of generalized partial sums.

Now we shall consider the asymptotic distribution of the sequence A_n . We shall prove the following

Theorem 3. Let $a_0, a_1, \ldots, a_n, \ldots$ denote a real sequence and put $A_0 = 0$ and $A_n = a_{k_1} + a_{k_2} + \cdots + a_{k_l}$ if $n = 2^{k_1} + 2^{k_2} + \cdots + 2^{k_l}$ where $k_1 > k_2 > \cdots > k_l \ge 0$ are integers. Let $N_n(x)$ denote the number of those among the numbers $A_0, A_1, \ldots, A_{n-1}$ which are < x, i.e. put

(38)
$$N_n(x) = \sum_{\substack{A_k < x \\ k < n}} 1 \qquad (n = 1, 2, ...).$$

Let us suppose that the series $\sum_{j=0}^{\infty} a_j$ and $\sum_{j=0}^{\infty} a_j^2$ are convergent, and let us put again $A(t) = \sum_{n=0}^{\infty} a_n \varepsilon_{n+1}(t)$ where $\varepsilon_n(t)$ is the n-th dyadic digit of t, i. e. $\varepsilon_n(t)$ is 0 or 1 and $t = \sum_{n=1}^{\infty} \frac{\varepsilon_n(t)}{2^n}$. Let F(x) denote the measure of the set of those points t of the interval (0, 1) for which A(t) < x. By other words F(x) is the distribution function of A(t). (F(x) is clearly nondecreasing, continuous to the right, $\lim_{n \to \infty} F(x) = 0$ and $\lim_{n \to \infty} F(x) = 1$.) Then we have

(39)
$$\lim_{n\to\infty} \frac{N_n(x)}{n} = F(x)$$

in all continuity points x of F(x).

PROOF OF THEOREM 3. First we prove that if x is a point of continuity of F(x) then

(40)
$$\lim_{r\to\infty}\frac{N_{2r}(x)}{2^r}=F(x).$$

This can be shown as follows: The function

$$S_{\nu}(t) = \sum_{k=0}^{\nu-1} a_k \, \varepsilon_{k+1}(t)$$

takes on the values $A_0, A_1, \ldots, A_{2^p-1}$, each on a set of measure $\frac{1}{2^n}$. Thus denoting by $F_r(x)$ the measure of the set of those values t $(0 \le t < t)$ for which $S_r(t) < x$ (i. e. $F_r(x)$ is the distribution function of $S_r(t)$) we have

(41)
$$\frac{N_2 r(x)}{2^{\nu}} = F_{\nu}(x).$$

Taking into account that if $\sum_{j=0}^{\infty} a_j$ and $\sum_{j=0}^{\infty} a_j^2$ are convergent, $S_{\nu}(t)$ tends almost everywhere to A(t), and therefore it tends also in measure to A(t), we have $\lim_{t\to\infty} F_{\nu}(x) = F(x)$ in all continuity points of F(x). This proves (40).

To prove (39) we start from the formula

(42)
$$N_n(x) = 2^{k_1} F_{2^{k_1}}(x) + \sum_{j=2}^{l} 2^{k_j} F_{2^{k_j}}(x - a_{k_1} - \cdots - a_{k_{j-1}})$$

if

$$n = 2^{k_1} + 2^{k_2} + \dots + 2^{k_l} \qquad (k_1 > k_2 > \dots > k_l \ge 0).$$

Now we need the following elementary

Lemma 2. If $c_n \ge 0$ and $c_n \to 0$, there can be found a monotonically increasing sequence l_n of integers, such that $\lim l_n = +\infty$ and

$$\lim_{n\to\infty} (c_{n-1}+\cdots+c_{n-l_n})=0.$$

PROOF OF THE LEMMA. Let us put

$$d_n = \max_{k \ge n} c_k$$

and

$$l_n = \min\left([n/2], \frac{1}{\sqrt{d_{[n/2]}}}\right).$$

Then we have

$$\sum_{j=n-l_n}^{n-1} c_j \leq \sum_{j=n-l_n}^{n-1} d_j \leq l_n d_{n-l_n} \leq \frac{d_{\lfloor n/2 \rfloor}}{\sqrt{d_{\lfloor n/2 \rfloor}}} = \sqrt{d_{\lfloor n/2 \rfloor}} \to 0,$$

which proves the assertion of our Lemma.

To complete the proof of Theorem 3 let us choose the sequence l_n in such a way, that $l_n \to \infty$ for $n \to \infty$ and $(|a_r| + |a_{r-1}| + \cdots + |a_{r-l_r}|) \to 0$ for $r \to \infty$. This is possible by Lemma 2 because $\sum_{j=0}^{\infty} a_j$ being convergent we have $\lim_{n \to \infty} a_n = 0$. For any $\epsilon > 0$ we can find an integer $k^* = k^*(\epsilon)$ such that $|F_{gk}(x) - F(x)| < \epsilon$ if $k \ge k^*$. It follows that

(43)
$$\frac{N_n(x)}{n} \le \frac{1}{n} \sum_{i=1}^{l} 2^{k_j} F_{2^{k_j}}(x) \le F(x) + \varepsilon + \frac{2^{k^*}}{n}$$

which implies that

(44)
$$\limsup_{n\to\infty} \frac{N_n(x)}{n} \le F(x).$$

Clearly we can find a value ν_0 such that if $\nu \ge \nu_0$ then $|a_{\nu}| + |a_{\nu-1}| + \cdots + |a_{\nu-l_{\nu}}| < \varepsilon$. Thus if $n \ge 2^{\nu_0}$ we have $k_1 \ge \nu_0$ and

$$\sum_{k_i \geq k_1 - l_{k_1}} 2^{k_i} \geq \sum_{i=1}^l 2^{k_i} - \sum_{r=0}^{k_1 - l_{k_1} - 1} 2^r \geq n - 2^{k_1 - l_{k_1}}.$$

We have evidently

$$\frac{N_n(x)}{n} \geq \frac{1}{n} \sum_{k_i > k_1 - 1k_-} 2^{k_i} F_{2^{k_i}}(x - \varepsilon).$$

If we choose the integer k^{**} so that for $k \ge k^{**}$ we have $|F_{2^k}(x-\varepsilon) - F(x-\varepsilon)| < \varepsilon$, it follows

(45)
$$\frac{N_n(x)}{n} \ge (F(x-\varepsilon)-\varepsilon)\left(1-\frac{1}{2^{l_{k_1}}}\right)$$

provided that $k_1 - l_{k_1} \ge k^{**}$. As for $n \to \infty$, $k_1 \to \infty$ and thus $l_{k_1} \to \infty$, further $k_1 - l_{k_1} \to \infty$, it follows from (45) that

(46)
$$\liminf_{n\to\infty} \frac{N_n(x)}{n} \ge F(x).$$

(44) and (46) together imply that

$$\lim_{n\to\infty}\frac{N_n(x)}{n}=F(x)$$

for any continuity point x of F(x). Thus Theorem 3 is proved.

§ 3. Equivalence of the (C, 2)-summability of generalized partial sums with the convergence of a series.

It follows from Theorem 1 that if the arithmetic means of the sequence $\{A_k\}$ of generalized partial sums of a series $\sum_{n=0}^{\infty} a_n$ converge to a limit α_1 , the series itself is convergent and has the sum $2\alpha_1$. In this § we shall show that the same holds for the Cesàro means of order 2 too. Thus we prove the following

Theorem 4. If the Cesàro means of order 2 of the sequence $\{A_n\}$ of generalized partial sums of the series $\sum_{n=0}^{\infty} a_n$ converge to a limit α_1 , then the series $\sum_{n=0}^{\infty} a_n$ is convergent and has the sum $2\alpha_1$.

PROOF OF THEOREM 4. Let us put

(48)
$$\sigma_n^{(2)} = \frac{1}{\binom{n}{2}} \sum_{k=0}^{n-1} (n-k) A_k.$$

By supposition $\lim_{n\to\infty} \sigma_n^{(2)} = \alpha_1$, which implies that

$$\lim_{n\to\infty}\sigma_{2r}^{(2)}=\alpha_1.$$

Now it is easy to show that, putting

$$(50) S_k = a_0 + a_1 + \cdots + a_k,$$

we have

(51)
$$\sigma_{2^{\nu}}^{(2)} = \frac{(2^{\nu-1}-1)S_{\nu-1} + \sum_{i=0}^{\nu-2} 2^{i} \cdot S_{i}}{2(2^{\nu}-1)}.$$

It follows that

(52)
$$\frac{2(2^{\nu+1}-1)\sigma_{2^{\nu+1}}^{(2)}-2(2^{\nu}-1)\sigma_{2^{\nu}}^{(2)}}{(2^{\nu}-1)} = S_{\nu} + \frac{S_{\nu-1}}{S^{\nu}-1}.$$

By (49), we have

(53)
$$\lim_{r\to\infty} \left(S_r + \frac{S_{r-1}}{2^r - 1} \right) = 2\alpha_1.$$

Now we shall prove that (53) implies

$$\lim_{r \to \infty} S_r = 2\alpha_1.$$

Clearly it suffices to show that S_r is bounded. But if S_r were unbounded, we could find a subsequence S_{r_j} such that $v_j \to \infty$, $|S_{v_j}| \to \infty$ and $|S_{r_j}| \ge$ $\ge |S_{r_j-1}|$ which would imply $\limsup_{v \to \infty} \left| \left(S_v + \frac{S_{v-1}}{2^v - 1} \right) \right| = +\infty$ in contradiction to (53). Thus Theorem 4 is proved. Similar results hold for other methods of summation too. We hope to return to the question in another paper.

(Received December 12, 1956.)