On permutations of set products.

To the memory of my beloved teacher Professor Tibor Szele.

By ANDRÁS ÁDÁM in Szeged.

1. Introduction. The set product $S = \prod_{t \in T} A_t$ is defined as the set of the functions f(t) $(t \in T)$ satisfying $f(t) \in A_t$ for each $t \in T$. We suppose that $A_t \cap A_{t'} = \bigcap_{t \in T} A_t$ for any $t, t' \in T$, t = t', and that this intersection contains exactly one element e. In this case, one can give also an inner construction of S in the following way. Let us identify each element a of $A = \bigcup_{t \in T} A_t$ with the function $f \in S$ defined by

$$f(u) = \begin{cases} a & \text{if } u = t & (a \in A_t) \\ e & \text{if } u \neq t, u \in T, \end{cases}$$

in particular, the element e with the function f_0 for which $f_0(u) = e$ for any $u \in T$. Then the set A_t becomes identical with the subset S_t of S consisting of those $f \in S$ for which f(u) = e if $u \neq t$ $(t, u \in T)$. Thus we can regard S as the product of its own subsets S_t $(t \in T)$.

Now let be given an arbitrary group G of permutations of S satisfying the following conditions. Firstly, we require $e\alpha = e$ for any permutation $\alpha \in G$. Secondly, let be given to each $t \in T$ an $\alpha_t \in G$ such that $S_t\alpha_t = S_{t'}$ for suitable $t' \in T$ and $t \to t'$ is a permutation β of T. Then we require that the permutation α assigning to any $f \in S$ the $f' \in S$ defined by $f'(t') = f(t)\alpha_t$ ($t' \in T$, $t = t'\beta^{-1}$) be an element of G (the above identification makes clear meaning of the expression $f(t)\alpha_t$). We note that for any $t \in T$ and $f \in S_t$ we have $f\alpha = f\alpha_t$.

We shall define the following three subgroups $G_1 \supseteq G_2 \supseteq G_3$ of G. The permutation $\alpha \in G$ belongs to G_1 if and only if there exists for each $t \in T$ an index $t' \in T$ such that $S_t \alpha = S_{t'}$; $\alpha \in G_2$ if and only if $S_t \alpha = S_t$ by any $t \in T$; $\alpha \in G_3$ if and only if $x\alpha = x$ for every $x \in \bigcup_{t \in T} S_t$.

148 A. Ádám

Our results are concerned with the group theoretical building up of the abstract groups G_i (i = 1, 2, 3) defined above.

2. Results.

Theorem 1. G_1 is a splitting Schreier extension of G_2 by an unrestricted direct product of symmetric groups.

PROOF. For any $\alpha \in G_1$ the transformation $t \to t'$ defined by $S_t \alpha = S_{t'}$ is clearly a permutation of T; we call it the permutation induced by α . Calling two indices t and $t' \in T$ equivalent if and only if $S_t \alpha = S_{t'}$ for an $\alpha \in G_1$, the set T splits into equivalency classes. It is evident by the condition imposed on G that any permutation $\bar{\alpha}$ of T such that for any $t \in T$, $t\bar{\alpha}$ and t belong to the same class, is induced by some $\alpha \in G_1$ and so the group \overline{G}_1 of the permutations induced by the elements of G_1 can be decomposed into an unrestricted direct product of symmetric groups, viz. of those of the equivalency classes. Moreover the mapping $\alpha \to \bar{\alpha}$ is a homomorphism of the group G_1 onto \overline{G}_1 with kernel G_2 . Therefore G_2 is a normal subgroup a G_1 and G_1/G_2 is an unrestricted direct product of symmetric groups. Now our aim is to construct a subgroup H_1 of G_1 for which $G_1 = G_2 H_1$ and $G_2 \cap H_1 = 1$ hold. For this purpose let us consider a complete system T^* of representatives of the equivalency classes of the t's. For any $t^* \in T^*$ and arbitrary $t \in T$, $t \neq t^*$, equivalent to t^* , let us choose an $\alpha \in G$ such that $S_{t^*}\alpha = S_t$ and denote with $\varphi_{t^*,t}$ the mapping α restricted to S_{t^*} , i. e. the mapping defined by $f\varphi_{t^*,t} = f\alpha$ for $f \in S_{t^*}$; moreover, denote φ_{t,t^*} the inverse of $\varphi_{t^*,t}$. Finally, let $\varphi_{t^{\bullet},t^{\bullet}}$ be the identical mapping of $S_{t^{\bullet}}$ onto itself. Furthermore, for any two equivalent indices t_1 and t_2 , we define φ_{t_1,t_2} by $\varphi_{t_1,t_2} = \varphi_{t_1,t^*} \varphi_{t^*,t_2}$ where $t^* \in T^*$ is the index belonging to the class containing both t_1 and t_2 . Any $\bar{\alpha} \in \bar{G}_1$, hence any coset of G_1 modulo G_2 determines uniquely a permutation $f \to f\alpha^* (f \in S, \alpha^* \in G_1)$, defined by $f\alpha^* (t\bar{\alpha}) = f(t) \varphi_{t,t\bar{\alpha}}$ $(t \in T)$ such that the permutation induced by α^* is identical with $\overline{\alpha}$. The choice of the φ_{t_1,t_2} 's ensures that the permutations α^* form a subgroup H_1 of G_1 . Thus we have a subgroup $H_1 \subseteq G_1$ with the required properties.

For any $\beta \in G_2$ and $f \in S_t$, we have $f\beta = f' \in S_t$ and $f \to f'$ is clearly a permutation of S_t . We call now $f \to f'$ the permutation of S_t induced by β . Obviously, these permutations form a group G_t for any $t \in T$. Then we have

Theorem 2. G_2 is a splitting Schreier extension of G_8 by the unrestricted direct product P of the groups of permutations G_t $(t \in T)$.

PROOF. It is obvious that we have a homomorphism of G_2 onto P if we put into correspondence to each $\beta \in G_2$ the element $p \in P$ mapping each $t \in T$ onto the permutation of S_t induced by β ; the kernel of this homomorphism

is G_3 . Now, let be given for any $t \in T$ an element β_t of G_t . Define the permutation $f \to f \beta^*$ of S by $f \beta^*(t) = f(t) \beta_t$ $(t \in T)$. These permutations β^* form a subgroup H_2 of G_2 , isomorphic to P, for which $G_2 = G_3 H_2$ and $G_3 \cap H_2 = 1$ hold.

COROLLARY 1. G_1 is a splitting Schreier extension of G_3 and G_1/G_3 is also a splitting Schreier extension of G_2/G_3 .

COROLLARY 2. Let S be an algebraic structure 1) with exactly one substructure consisting of a single element of S. Let S be the unrestricted direct product of certain of its substructures S_{+} ($t \in T$). Let G be the automorphism group of S. Then G_1 is a splitting Schreier extension of G_2 by an unrestricted direct product of symmetric groups and G_2 is a splitting Schreier extension of G_3 by the unrestricted direct product of the automorphism groups of the S_t 's ($t \in T$).

(Received January 20, 1957.)

¹⁾ For the definition of algebraic structure see e. g. G. Birkhoff: Lattice theory, New York, 1948.