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Torsion-free factor groups of free abelian groups and
a classification of torsion-free abelian groups.

By JENO ERDOS in Debrecen.

§ 1. Introduction.

One of those classes of torsion-free abelian groups to which detailed
studies have been devoted is that of torsion-free abelian groups of finite
rank. A description of these groups by certain equivalence classes of infinite
sequences of finite matrices of p-adic numbers has been worked out by
A. G. KurosH, D. DErry, A. I. MALCEV.') L. FucHs has pointed out that
these results can be generalized to all countable torsion-free abelian groups
by making use of infinite matrices.?)

In the present paper we shall give a classification of all torsion-free
abelian groups by certain equivalence classes of infinite matrices of rational
numbers (Theorem 5). Our investigations run on quite another line than the
former ones: we shall study the representations of torsion-free abelian groups
as factor groups of free abelian groups. )

In the following investigations a central place is taken by Theorem 1,
which states the existence of certain speciai bases of free abelian groups,
related to torsion-free factor groups, under a very general cardinality condition.

Theorem 2 settles the problem of surveying all representations of torsion-
free abelian groups as factor groups of free abelian groups. It turns out that
any such representation of a torsion-free abelian group is determined essen-
tially by a single cardinal number.

Theorem 3 is an analogue of I. A. GRUSHKO’s theorem on free product
decompositions of finitely generated groups.’) Our corresponding result is
concerned with direct decompositions of arbitrary torsion-free abelian groups.

1) For an account of this theory see A. G. Kurosk [3], §§ 40—41.

?) The possibility of this gencralization is due to the faci that anv countahiy gene-
rated torsion-free moduie over the ring of p-adic integers can be decor osed into a direct
sum of modules of rank 1 (see I. Kariansky [2]. Theorem 20).

3) Representations of this type have been examined by R. Barr in [1].

1) See A. G. Kurosn |3], §§ 46—47.



J. Erdés: Torsion-free abelian groups. 173

Theorem 4 is similar to Theorem 1 but the role of bases of free abe-
lian groups is taken by generating systems of arbitrary abelian groups.

It is easy to construct examples showing that none of our theorems
remains valid if we replace torsion-free abelian groups by arbitrary abelian

groups.

§ 2. Preliminaries.

In what follows by a group we shall mean always an additively written
abelian group. |G| is the cardinality of the group G.°) If H is a subgroup
of G then |G:H| is the index of H in G. If A is a subset of G then {A}
is the subgroup of G generated by A. The direct sum of groups Ga. (@€ I')

will be denoted by ZG,, another notation for a finite number of summands

is G;+---+G,. A subgroup S is a direct summand of G if G can be
decomposed into a direct sum G=S8+S'".

A subset A of the group G is said to be independent if any relation
of the form

na,+ - +r.ay=0

(r, ..., r. are rational integers, a,,...,a, are different elements of A) implies
ry==-+-+=r,==0. There exists a maximal independent subset of G. Its
(invariantly determined) cardinality is the rank of G and will be denoted by
rank G. If H is any subgroup of G then we have

rank G = rank H + rank (G/H)

rankag Ga =¢§ rank G,

for arbitrary groups G« (e € I).

G is a torsion-free group if r==0,g==0(r is a rational integer, g € G)
imply rg==0. A subgroup H of G is a pure subgroup if G/H is also a
torsion-free group. If G is of infinite rank then rank G=|G|.

The direct sums of isomorphic copies of the group [/ of rational inte-
gers are called free groups; O will be regarded also as a free group. By a
basis of a free group F we mean an independent generating system of F.
In what follows we shall make use of some well-known theorems on free
groups.

(1) Any group G is isomorphic to a factor group F/H of a free group
F; G has such a representation where rank H = |G|.

Furthermore,

%) The cardinality of an arbitrary set will be denoted in the same way.
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(2) Any subgroup H of a free group F is contained in a direct sum-
mand S of F with rank S=rank H. Specially, if H is a pure subgroup of
finite rank then it is a direct summand of F.

(3) All subgroups of a free group are also free groups.

(4) If H is a subgroup of a group G with free factor group G/H then
H is a direct summand of G.

Finally we recall some definitions concerning infinite matrices, for avoid-
ing ambiguity. By an m X m matrix (m is any cardinal number) we shall
mean always a row-finite matrix ||7as|| (@, € I') of rational numbers (i. e.
each row of which contains but a finite number of elements = 0) having m
rows and m columns. The product of the matrices ||rqg|| and ||sqs|| (e, 7€ I')

is defined by
\7ap||-|| Sagl| = H‘g_!’mswﬂ.

The matrix ||7qg|| is the unit matrix, and is denoted by 1, if res==1 or O
according as e=g or e==p2 (¢,B€I'). A matrix A is said to be right
regular if there exists a matrix A" for which AA"=1 holds. If moreover
AA'=A'A=1 then A is a regular matrix and its inverse is denoted by A™".

§ 3. A theorem on the bases of free abelian groups.

In the proof of Theorem 1 of this § we shall make use of the follow-
ing lemma which seems to be of some interest also in itself.

Lemma.") If H is any subgroup of a free abelian group F with tor-
sion-free factor group F/H, then there exists a direct summand S of F contai-
ned in H such that rank S = rank H.

PROOF. If rank H is a finite number then H is a direct summand of F.
So we may assume that H is of infinite rank.

Let B be a basis of F and consider a set B of subsets B.S B (e ¢ I'),
which is maximal with respect to the following three properties:

(1) B, is a finite set (¢ € I'),

(2) BanB; is empty if e=2(e, 8€T),

(3) SanH F+=0(Sa={Ba}, ¢ €).
The finite character of these properties ensures the existence of such a maxi-
mal set B.

%) This is dual in a certain sense to a simpler statement mentioned in § -2
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First we show that |8| = rank H. Suppose |8| < rank H. Then

| U Ba| <rank H
ael
also holds. Indeed, if B is an infinite set then
Ba e ’
|agl' | |EBI
for the B,’s are finite sets; if |B| is finite, then | U B« | is also finite, and

ael
thus

U Ba I < rank H.
ael

The group F decomposes into a direct sum F=H'+ H”, where H' =

=! U;B“‘ and H” is generated by those elements of B which do not be-
acl’

long to UPB.,. Here we have HnH”==0; indeed, Hn " =0 would imply
@€

UrB., = rank H' = rank (F/H") = rank H.
a€

Now let 0==h€ HNH"”. In the expression

h=rlbl+"'+rabn (fu---:fnﬁf;bn---,bnGB)

the elements b,,..., b, belong to H”. Therefore, enlarging the system B of

the B.'s by the finite set (b,,..., b.), we get a system of sets which posse-

ses the above properties (1)—(3). This contradicts the maximality of B;
so the hypothesis |8| < rank H is impossible.

The subgroups S.E F(a € I') generate their direct sum in F, since the

B.'s are pairwise disjoint subsets of the basis B. Let us consider the sub-

group
S= S«ﬂ EH.
2 (S«nH)

By the property Sen A==0 (e € I') we have

: k = k @ H = k a H g -

1ank S==ran ﬂg;(s nH) %ran (S.nH) = 3|
Thus rank S =rankH, i. e. rank S=rank /. Moreover the groups S.nH
(e € I') are pure subgroups of the corresponding S.’s, the S.’s and H being

pure subgroups of F. Thus the finitely generated groups S. (@ € I') have
direct decompositions

Su =S;+(S¢ n H)-
From this we infer the relation

F=H+H =a§S,+H =“§s:.+“.62:(s.nﬁ)+ﬂ =%_S;+S+H.

So S is a direct summand of F. This completes the proof of our lemma.



176 J. Erdds

Theorem 1. Let H be any subgroup of a free abelian group F with
torsion-free factor group F/H. Then there exists a basis of F which is a
complete system of representatives of the cosets of F modulo H if and only
if |F:H|==rank H.

PROOF.

Necessity. Let B be a basis of F, which is a complete system of re-
presentatives of the cosets of F modulo A. Then

|F:H| = |B|=rank F = rank H.
Now let us consider the set B, of those elements belonging to A, which can
be represented as a sum of exactly two different elements of B. It is easy
to show that any element of B not contained in H is a component of exactly
one element of B,. Therefore, if
b+ b7, ..., 6,4+ b7 (61, 6, ..., b, by € B)
are different elements of B, and
rl(b;-l_bi’)"'”'+rn(b:|+b::)=0 (rlt-'wruel)r
i. &
n i + N +rllb:l :—rlbi’—""'_"rub:l‘,
then one sees at once that
rlbf + b 4 '!_rnb:i :‘—"0,
and thus r,=..- =r,=0. This means the independence of the elements of
B,. It is clear on the other hand. that |B,|=|B| (excluding the trivial case
|F:H|=1). Hence we have
|F:H|=|B|=|B,| = rank H.
So indeed, |F: H|=rank H.

Sufficiency. We shall break up the proof of the sufficiency of the con-
dition |F:H|=rank H into several steps after making a trivial observation
and some conventions of terminological nature.

It is evident that rank F=rank H, since if H is of infinite rank then

rank F= |F|=|F:H|-|H| =rank H,

and if H is of finite rank then rank F=rank H=1. By a coset we shall
mean always a coset of F modulo H, and x=y(x, y € F) stands forx—y¢€ H.
Let B be an ordered basis of F (i. e. a basis between the elements of which
an ordering < is defined). By the components of an element x==0 of F
relative to B we shall mean the clements &,, ..., b, occuring in the expression

X=rb,+---+r.b. OFr.el;b,<---< b, €B).
Particularly, the element 6, will be said to be the last component of x rela-
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tive to B and denoted by /z(x). The zero element has no components in this
sense, but it is essential to define /z(0) to be O and regard it smaller than
any of thc elements of B.

(I) Let B* be a well-ordered basis of F with |B*nH|=rankF. The
existence of such a basis is ensured by our lemma. Let the subset B,< B*
be defined as follows: an element # of B* belongs to B, if and only if x=1b
(x € F) implies lze(x) = 6. The complement of B, in B* is denoted by B;.
The elements of the basis B® can be well-ordered in such a way that any
element of B, precedes all elements of B, and at the same time the order-
ing of B, and B, remains unchanged. This new well-ordered basis (the
elements of which are exactly the elements of B*) will be denoted by B. We
show that an element b of B belongs to B, if and only if it posseses the
Jollowing property: if x=b(x€ F) then lz(x) = b in the ordering of B.

Let us consider an arbitrary element 6€ B, and an x¢ F satisfying
x=b. It is clear thal x=0 is impossible, since /z+(0)=0 < b by definition
and b€ B, If all components of x are contained in B, then we have
Ig(x)=1Ip+(x) and by b€ B, we get Ix(x) = b in B, because the elements of
B, have the same ordering in B as in B*. If some components of x belong
to B, then [x(x) € B, too holds and by b€ B, we have /z(x) > b in B, as any
element of B, precedes all elements of B, in B.

Conversely, let b6 € B, Then there exists an element x€ F with x=b
satisfying Ig(x) < b in B, i. e. all components of x (in the case of x==0)
are <b in B". if x=0 then Ilg(x)=Ilpe(x)=0<b. If ly(x)€ B, then by
b€ B, we infer [x(x) < b in B, for any element of B, is smaller in B than
an arbitrary element of B,. If Ix(x) € B, then b€ B, implies Iz(x) <b in B,
since the same ordering is valid between the elements of B, in B as in B°.

By an ordering we shall always mean in the sequel the ordering of B.
The last component of any x € F will be related to B and denoted by I(x).

(II) We prove that any coset has a common element with the subgroup
{B,} € F.

For this purpose let us consider an arbitrary element x € F. By the well-
ordering of B there exists an element g € F congruent to x which satisfies
I(g) = [(y) for each element y=x (y€F). If g=0 then x=g=0¢€{B,}.
Let g==0. Suppose that the element b, occuring in the decomposition

g=nb+ -+ rubn OFri€l;b,<---<bm€ B)
is contained in B,. Then by virtue of (I) there would exist an element

S0+ -+ 45,0, =0, (0=s;¢€l;b,<---< b, €B)
for which b, < b,., would hold (0=b, is impossible in view of the mini-

D2
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mality of /(g)). Now. substituting
b =5,b{+ =+ + 5abn
in the expression of g, we get
x=g=g"=nb+ ++rm1bn-1+rm$ b+ -+ +r.8.b,.

This however contradicts the minimality of /(g), since /(g’) < bw. Thus b,
belongs to B,. It follows that all components of g belong to B,, as B,
contains together with any b€ B, all elements <& of B. So indeed,
x=g¢e{B,}.

(IIl) We prove that the cardinality of the set of those cosets which do
not contain common elements with B, is equal to the cardinality of B;.

It is easy to see that |B,|=rankF. Indeed, if 6 € BnH then b€ B,,
since b=0 and /(0) =0<{(b). Thus |B,|=|BnH|, and so |B,| = rank F,
as we have |Bn H|=|B*n H| = rank F. On the other hand |B,| = |B|=rank F.
Therefore |B,|=rank F holds.

Assume first that |B,| < rank F. Then the cardinality of the set of those
cosets which have common elements with B, is =|B,| <rank F. On the
other hand, | F: H|=rank H = rank F. If F is of infinite rank, these imply that the
cardinality of the set of the cosets disjoint to B, is equal to rank F. If F is
of finite rank then by |F:H|=rank H we have rank F=1 and in this case
our statement is obviously true.

Now we shall deal with the case |B,|=rank F.

Let us consider the set of all elements of the form b,4 &, where b, is
the least element of the well-ordered basis B and b ranges over B,. If
b<b’(b,b’€B,) then b,+b ==b,+0b". Indeed, if b,+ b =b,+ b” would
hold then, 4" and &” would be congruent elements, but this is impossible by
virtue of (I), since [(0")=¥b& < b”=1I(b"). Thus the cardinality of the set of
those cosets which contain elements of the form 5,4+ & (b€B,) is equal to
|B,|, and so by our assumption it is equal to rank F.

On the other hand, if a coset contains an element b,+6 (b€ B,) then
it has no common element with B,. We shall prove this indirectly. Suppose
that b,+b0'=8"(b',b” € B,). If b’ <b” then I(by+b)=0b" < b”"=I(b"), and
this is impossible by (I). If b” < & then (6" —b,) = b” <b' = I(b") which is
also impossible by (I) in view of 0" —b,=0b" If b'=0b" then b,=0; this
contradicts b,€B,, since [(0)=0<I(b,) (B, contains b, because none of the
elements of B, precedes any element of B,). Thus indeed, any coset which
contains an element of the form b,+ & (b€B,) is disjoint to B,.

It follows from the last two observations that the cardinality of the set
of those cosets which do not contain common elements with B, is = rank F,
i. e. according to |F:H|==rank H =rank F it is equal to rank F.
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(IV) Now we are in a position to construct a set which is a basis of
F and at the same time a complete system of representatives of the cosets.
First of all it is convenient to index the elements of B, by the elements of
a set I' in a one-to-one way.

Let us select for each element b.€B; («¢€I') an element c,€F such
that ca=0b. and c.€{B,}. The existence of such c.’s is ensured by (II).
There exists, also by virtue of (II), a subset A< {B,} which is a complete
system of representatives of those cosets which do not contain common
elements with B,. Then we have by (Ill) the relation |A|=|B,|. Thus one
can establish a one-to-one correspondence between the elements of B, and
A. The element of A corresponding to b.€ B, (e € I') will be denoted by a..
Now let us consider the set of all elements

ga=0a—Ca+aa (eel).
Our aim is to prove that the set B,U(g.) is a basis of F and at the same
time it is a complete system of representatives of the cosets.
First we show that {B,u(g«)}=F. It is sufficient to see that
B, < {B,u(g.)}.- For this purpose let us consider an arbitrary element
ba€B; (e€I'). Then by

ba = (ba —Ca + au) + (cu'—aa) =fa +Ca—0a

we have b, € {B, U(ga)}, since ¢« € {B,} and a.€ {B,}. Thus indeed, {B, U(g.)} =F.
We show that B,U(g,) is an independent system of elements. First let
us consider a relation

r:ga.+ g -I-an'a,,ﬂo

(ryy,....,m€l; @,...,a, are different elements of I"). By the definition of
the g.’s we get

rga,+ - +rga, = r1(ba,—Ca,+@a)+ -+ +rn(ba“—ca“+aﬂn)=

z(rlbal"i'”""!_rnbnu)"l‘xo:o:
where Xx, € {B,}. But {B,}n{B,;}=0 and the elements b, ..., b, €B; are
independent, therefore r,— -+« =r,=0. Thus (g.) is an independent system
of elements. Furthermore we have to prove that the subgroup of F generated
by the set (g.) has only the O element common with {B,}. Let x € {B,} be
an element contained in the subgroup of F generated by the set (ga). Then
x has decompositions
X=nb+ -+ Tmbm =818a,+ *** +sng¢“,
WHCIE Tiy s vsslimy Sinisas Ba C L By s vy O € 5 BDE 005« » o, &5 ATE dilcrent Ble-
ments of 7. It follows from this by the definition of the g,’s that
rb 4+ <+ rabn = $,(bs,—Ca,+ 0a,) + * ++ + Sa(ba, —Ca,, + 0a,).
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But aq € {B\} and ¢4 €{B,}, therefore
$10a,+ <+ + Snba, € {B,}.

Thus §,=--+=s,=0, for {B,}n{B,}=0 and B, is an independent set of
elements. So x=0, and this completes the proof of the independence of the
set B,U(gq)-

We show that any coset contains an element of the set B,U(ga).
Obviously, it is sufficient to see this for those cosets, which have no ele-
ments in common with B,. Any such coset contains an element of A, say
a., by the definition of the set A. As we have b.=c. by the construction
of the set of the c.’s,

gazbu_ca"l'auEaa

holds, i. e. the element g,€ B, U(g.) belongs to the coset under consideration.

Finally we have to show that two different elements of the set B,U(g.)
can not belong to the same coset. First suppose that b'=b" (b',b0"€B,),
where b’ < b”. Then the relation [(0') =b" < b” =I(b") must hold, but this
is impossible by (I). Next suppose that b=g.(b€B,,« € I'). Then we have

bEga =bm_cn+aaEaul

since b.=c. by the construction of the set of the c.’s. This is impossible,
for B, is disjoint to the cosets represented by the a.’s. Finally suppose that
Lo, =ga, (¢, €I, &1 & @;). Then the relation

gal=bc,_ca,"l'ac,Eba."_cu,"‘aa,:ga.
implies @u,=aa, in view Of bo,=cs, and b.,=cq,. This contradicts the fact
that different a.’s represent different cosets. Thus none of the cosets contains

two different elements of the set B,U(g«).
This completes the proof of Theorem 1.

§ 4. Consequences of the preceding theorem.

Theorem 2. Let F/H and F'|H’ be isomorphic torsion-free factor
groups of the free abelian groups F resp. F'. Then there exists an isomor-
phism ¢ of Fonto F' satisfying He=H’ if and only if rank H=rank H'.

PRrROOF. The necessity of the condition rank A =rank H’ is ftrivial.

Conversely, if rank /=rank H’ then there exists for any isomorphism
@ of F/H onto F’/H’ an isomorphism ¢ of F onto F’ which induces @ (thus
specially Hp= H’ since ¢ is an isomorphism). We shall prove this in three
steps of increasing generality.
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Suppose first that |F: H|=rank H. Then by virtue of Theorem 1 there
exists a basis B of F which is a complete system of representatives of the
cosets of F modulo H, and a basis B’ of F’ which is a complete system of
representatives of the cosets of F* modulo H’. Now, let '€ B’ correspond to
that b € B for which b ==>0" holds (bars indicate cosets of F and F’ modulo
H resp. H’). This mapping of B onto B’ determines an isomorphism ¢ of F
onto F’. It is easy to see that ¢ induces . Indeed, if

x=nb+++r.b.€F (s vep 1€l Uy 000, O € B),
then

X =(rb,+ -+ +1.02)¢ =r(b9) + +++ + r(b. @) = 1,0, @ + -+ + 1. b9 = X.

Next suppose that |F:H| = rank H. We may assume that H is of infi-
nite rank since in the other case F= H and then our statement is trivial. Let
F, be a free group for which |(F,+ F):H|=rank H holds. Now, in view of

(Fo+ F)/H= F,+ (F/H) =~ F,+(F'/H") >~ (F, + F')|H’,

we are confronted with the case formerly treated. Let ¢* be an isomorphism
of (F,+ F)/H onto (F,+ F’)/H’ which continues the given isomorphism ¢ of
F/H onto F'/H’. Then there exists an isomorphism ¢ of F,+ F onto F,+ F’
which induces ¢°. It is clear that F¢ — F' and ¢ induces ¢ on F/H.

Finally let |F:H| and rank H be arbitrary cardinals. Let S be a direct
summand of F containing H and satisfying rank S=rank /4, and thus
|S:H| =rank H, as F/H is a torsion-free group. The given isomorphism @
of F/H onto F’'/H" maps S/H onto a subgroup S’/H' (H'© 8’ < F’). It is evident
that S’ is a direct summand of F’ since F/S and consequently F’/S’ are
free groups. Now applying the preceding result to Sand S’, we obtain that there
exists an isomorphism ¢ of F onto F’ which induces @. This completes the
proof of Theorem 2.

Theorem 3. If ¢ is a homomorphic mapping of a free abelian group
F onto the direct sum of torsion-free abelian groups G. (a € I'), then there
exists a direct decomposition of F into the direct sum of subgroups Fa (e¢€I’)
such that Fog = Ga for each e« €I.

Proor. Let H be the kernel of the homomorphism ¢ of F onto
zGa.-First we show that the G.’s have representations G, = Fa/Hg as fac-
ac

tor groups of free groups F; with

rank Z H: = rank H.
aE

In order to prove this, let us consider a direct summand S of F containing
H, for which rank S=rank H holds, and thus |S:H| = rank H, F/H being
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a torsion-free group. Each G. has a direct decomposition Ga=Fz+ S.,
where F; is a free group and S, >~ (G9! nS)/H, since G9! /(Gap~'nS) is a free
group. Each S, has a representation S.=<Fs'/Ha (F: is a free group) with
rank Hz = m,, where m, =|Sq| or me =0, according as |Sa| > 1 or |Sa|==1. Thus

we have for the groups Fgz= Fi+ Fi the isomorphism
Ga=Fa+Sa > Fa+(Fd//[Hz) = (Fa+ Fa')/[Ha >~ Fa /|Hz,
and

rankZ_H;=Z rank Hy = > m. = |S: H| = rank H.
ae ac acl’

Now, let F* be a free group satisfying
rank |F* Hz| =rank H.
(F+ 2)

Furthermore, let ¥ be such an isomorphism of the factor group Fy/H, of
F=F'+ 2F:

modulo its subgroup
H,=F*+ 2 H:

acl

onto F/H, which maps

(F'+ rHE+F;]I[F'+ .2y H;]

ape acll

onto G.¢'/H for each @€ F. Then there exists an isomorphism ¢ of F, onto
F which induces ¥, as it was stated at the beginning of the proof of
Theorem 2. Let e*€I" be an arbitrarily fixed index. It is easy to see that
for the groups Fae=(F*+ Fgo)y and Fo=Fay (¢'==a € I') the relations
F=Fp+ D F.
a*zacl

and
Furp = G, Fop=GCGa (e’Fa€l)

are valid. This proves Theorem 3.

Theorem 4. Let H be any subgroup of an abelian group G wih
==0 f{torsion-free factor group G/H. Then there exists a generating system
of G which is a complete system of representatives of the cosets of G modulo
H if and only if |G:H|= |H|.

Proor. The necessity of the condition |G : H| = |H| is evident.

In order to prove the sufficiency let us consider a representation
G=>~F/H, of G as a factor group of a free group F with rank H, = |G|.
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Then, denoting by H’ the subgroup H,S H’'<S F which corresponds to H,

we have
rank ' =rank H,+rank H = |G|+ |H| =
=|G:H|-|H|+|H|=|G:H|=|F:H.
Now let F, be a free group satisfying
|(Fo+ F): (Fy+ H")| = rank (F, + H’).

Then, by virtue of Theorem 1, there exists a basis B of F,+ F which is a
complete system of representatives of the cosets of F,+ F modulo F,+ H".
Thus those cosets of F,+ F modulo F,+ H, which contain an element of B
form a complete system of representatives of the cosets of the group
(Fo+ F)/(Fy+H,) modulo (F,+ H')/(F,+ H,), and on the other hand, they
generate (F,+ F)/(F,+ H,). This completes the proof of Theorem 4.

Definition. 7he m X m matrices A and B are said to be equivalent if
there exist regular matrices P and Q satisfying PAQ = B, where all ele-
ments of Q and Q" are integers.

Theorem 5. Let m be any infinite cardinal. Then there exists a one-
to-one correspondence between all torsion-free abelian groups of cardinality
=m (up to an isomorphism) and all right regular m X m matrices if we do
not make distinction between equivalent matrices.

SUPPLEMENT. Let G be a torsion-free abelian group of cardinality = m.
Let G be represented as a factor group of a free abelian group F modulo
its subgroup H, where rankF —rank H=m. Let (b.) resp. (b:) (e € ') be a
basis of F resp. H. Then the matrix ||rap| (e, B€ I') of the coefficients occur-
ing in the expressions

ba:=2faﬂbﬁ (e€r, rap€l)
pET
corresponds to G.

PROOF. Let F be a free group of rank m. Any torsion-free group G of
cardinality =m is isomorphic to a factor group of F modulo a subgroup
of rank m. Indeed, G has a representation G =< F'/H’ as factor group of a
free group F’ with rank H’ = m; if F, is a free group satisfying rank (F,+ H)=m
then rank (F,+ F)=m and G =~ (F,+ F')/(Fo+ H’).

We make correspond to each subgroup H of F the factor group F/H.
By the preceding remark and by Theorem 2 this establishes a one-to-one
correspondence between all torsion-free groups of cardinality =m (up to an
isomorphism) and all pure subgroups of rank m of F, if we do not make
distinction between subgroups of F which can be mapped onto each other
by automorphisms of F.
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Now let us consider F naturally embedded in the vector space V span-
ned by (b.) (a € I') over the field of rational numbers. Then S—SnF is a
one-to-one correspondence between all subspaces S of V and all pure sub-
groups of F. It is evident that rank S =rank (Sn F). Furthermore S,nF can
be mapped onto S;nF by an automorphism of F if and only if V has an
automorphism mapping S; onto S, and F onto itself. Consequently, the prob-
lem of classification of all torsion-free groups of cardinality =m is equivalent
to the problem of classifying all subspaces of rank m ot V under the group
of those automorphisms of V which map F onto itself.

A subspace S of V is of rank m if and only if V can be mapped onto
S by an endomorphism having a right inverse. It is clear that Ve, = V&, (s, and
& are endomorphisms of V having right inverses) if and only if there exists
an automorphism e« of V satisfying a# —&,. Furthermore, an automorphism
# maps Vg onto Ve, if and only if @s,#—2¢, holds by a suitable automor-
phism e. Now, applying the usual representations of endomorphisms of V by
m X m matrices, we obtain Theorem 5.
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