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Semi-complements and complements in semi-modular
lattices.

By G. SZASZ in Szeged.

1. Let L be a lattice with greatest and least elements') and let a be
any element of L. It is known that if L is modular, then the set of all
complements of a is totally unordered (i. e., for any two complements x,y
of a, x = y implies x=y). Itfollows easily®) that if L is modular, then each
complement of a is maximal in the (partly ordered) set of all semi-comple-
ments of a.

In this paper we firstly show that the converse is also true, moreover
not only for modular, but also for semi-modular lattices (Theorem 1). Next,
this theorem gives a sufficient condition in order that a semi-complemented
semi-modular lattice be also complemented (Corollary). Finally, using again
Theorem 1, we prove a theorem concerning the structure of a special class
of semi-complemented semi-modular lattices (Theorem 2).

2. Following R. Croisor ([2], p. 85.), a lattice is said to be semi-
modular if for any elements a, b, c (€ L) which satisfy the inequalities

bne<a<ec<awvub,
there exists at least one element #(¢ L) such that

brne<t=b
and
(avwt)ymc=a.

Let L be a lattice which has a least element denoted by o. Then, by
a semi-complement of a(€ L) we mean ([5], p. 123.) an element x(€ L) such

) For the terminology see section 2.

2) For, if x is any complement and y( = x) is any semi-complement of a, then by
a.y=a. x=1I, (see the definitions in section 2), the element y satisfies (not only the
equation a ™y = o, but also) the equation a'_ y==1{; that is, y is also a complement of a.
But then, by the theorem cited above, it follows x =y proving the maximality ot x in the
set of all semi-complements of a.
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that a~x==o0. If, moreover, x==0, then x is called a proper semi-comple-
ment of a. (Clearly, if x is a proper semi-complement of a, then a 3= x.) The
set of all semi-complements of a will be denoted by S(a).

The greatest element of a lattice L, if it exists, will be denoted by i.
The set of all elements of L, differing from the (possibly existing) elements
o, i, will be called the interior of L and denoted by J(L).

A lattice L with least element 0 is said to be semi-complementied if every
element of J(L) has at least one proper semi-complement in L.%)

Let L be again a lattice with least element 0. Then, by the height h(a)
of an element a of L we mean ([2], p. 10.) the maximum length of chains
(0==) %, < X, <+++< Xn (=a) between 0 and a. When h (a) is finite, a is called
([3], p. 243.) an element of finite height.

For all undefined terms and symbols the reader is referred to [1].

3. The main result of this paper is the following

Theorem 1. Let L be any semi-complemented semi-modular lattice. If,
for some r (€L), the set S(r) of all semi-complements of r has a maximal
element m, then L has a greatest element i and m is a complement of r.

Corollary. Let L be any semi-complemented semi-modular lattice. If,
for each element r of the interior d (L) of L, S(r) contains at least one maxi-
mal element, then L has a greatest element i and it is complemented.

PrOOF. Since for the elements o, i, the assertion of the theorem is
obvious, we need only consider the case that r is any element of J(L).
Clearly, it suffices to prove that if m is a proper semi-complement of r
such that

) rom=d  with d€J(L),
then there exists a semi-complement of r greater than m.

But, if for some elements r, m, condition (1) is satisfied, then d has a
proper semi-complement x. Then we have

(2 o<r=d, o<m=d,
and, consequently,
3 x~Am=x~d=o0.

Clearly, the proof of the thcorem may be accomplished by proving the
following two assertions:

(i) if z is an element of L such that
(4) 0<2sSX

8) Since, obviously, S (0) =L, this definition is equivalent to that of [5], p. 123.
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and
(5) (zum)ynd=m,
then zom is a (proper) semi-complement of r and z'wm > m;

(ii) there exists at least one element z having the properties assumed
in (i).

Assertion (i) may be proved by direct calculation. Indeed, m being a
semi-complement of r, by (2) and (5) we get

rn(zum)y=rnrnzum)=rn(d~(2wm))=r~m=o;
further, by (4) and (3),
ZNm=xNm=o0< z,

which implies z2«om > m.

In order to prove (ii), we consider the element
(6) v=(xwm)d.
Then, by (6) and (2),

; e=(xwm)~d=m~m=m,
that is, v = m.

If v=m, then by (6) we have (x\_ m)~d = m. Further, by definition,
0 < x(= x). Thus the conditions (4), (5) for 2= x are satisfied.
It remains to consider the case v >m. We then show that the elements
x, m, v satisfy the inequalities
(M (0=)x~v<m<v<xom.
Firstly, by (6), (3) and (2),
xnv=xn{xumnd=xnd=o<m.

Next, m <wv by assumption. Finally, (6) implies immediately that + = xwm
and, again by (6), v=xm would imply

xs=xvum=y=(xvm)nd =d,
a contradiction to the definition of x. Thus the inequalities in (7) are verified.

L being semi-modular, it follows that there exists an element ¢ such
that

(8) (0=)xnv<t=x
and
9) m=(m-ut)~r.

It follows by (8) that t.m = x.om. This implies, by (9) and (6),
(10) m=(tom)~v=>GFum)~(xwm)~d=(t—m)~d.

From (8) and (10) we see that now the conditions (4), (5) for z=t are
satisfied. Hence also assertion (ii) is proved.
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By the theorem, the corollary is obvious.
We remark that if L fails to be semi-modular, then Theorem 1 is in
general false. For example, the lattice given by the diagram

is semi-complemented and m is a maximal semi-complement of r; however,
m is not a complement of r.

Further, it is easy to see that Theorems 2,3 in the paper [4] of the
author are special cases of our present corollary.

We prove also

Theorem 2. Let L be any semi-complemented semi-modular lattice of
infinite length in which every element of J(L) is of finite height. Then, for
each element r of (L) and for each integer K(=0), there exists a semi-
complement x of r whose height is equal io K.

Proor. Earlier ([3], Theorem 2) we have essentially shown that, under
the assumptions of the present theorem, no element of J(L) has comple-
ments, even if the greatest element / exists in L. Hence, by Theorem 1,
S(r) (r€d(L)) contains no maximal element. It follows that there exists an
infinite ascending chain

0 M < My< o< My <o++ (meeS(); k=1,2,...).

Clearly, h(my) =K. If h(m¢)=K, then our theorem is proved. If, howe-
ver, h(my) > K, then lét ) denote the (uniquely defined) index such that

(11) h(map) = K < h(mqg,,).
Since mqg,, is of finite height, there exists a chain
(mq;==) M < My <-++< M (= Mqq,,)

between mq, and mq,, which is maximal in the sense that 2 (m,) = h(m,_,)+ 1
for all k (1=k=1). It follows from (11) that h(m,)=K for some
k, (0 =k, =[—1). Moreover, by r "my, = r "mq,, = o0, the element my, is
a semi-complement of r. This completes the proof of the theorem.
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