Semi-complements and complements in semi-modular lattices.

By G. SZÁSZ in Szeged.

1. Let L be a lattice with greatest and least elements¹) and let a be any element of L. It is known that if L is modular, then the set of all complements of a is totally unordered (i. e., for any two complements x, y of a, $x \le y$ implies x = y). It follows easily²) that if L is modular, then each complement of a is maximal in the (partly ordered) set of all semi-complements of a.

In this paper we firstly show that the converse is also true, moreover not only for modular, but also for semi-modular lattices (Theorem 1). Next, this theorem gives a sufficient condition in order that a semi-complemented semi-modular lattice be also complemented (Corollary). Finally, using again Theorem 1, we prove a theorem concerning the structure of a special class of semi-complemented semi-modular lattices (Theorem 2).

2. Following R. Croisot ([2], p. 85.), a lattice is said to be *semi-modular* if for any elements $a, b, c \in L$ which satisfy the inequalities

$$b \cap c < a < c < a \cup b$$
,

there exists at least one element $t \in L$ such that

$$b \cap c < t \leq b$$

and

$$(a \cup t) \cap c = a$$
.

Let L be a lattice which has a least element denoted by o. Then, by a semi-complement of $a \in L$ we mean ([5], p. 123.) an element $x \in L$ such

¹⁾ For the terminology see section 2.

²) For, if x is any complement and $y (\ge x)$ is any semi-complement of a, then by $a \cup y \ge a \cup x = i$, (see the definitions in section 2), the element y satisfies (not only the equation $a \cap y = o$, but also) the equation $a \cup y = i$; that is, y is also a complement of a. But then, by the theorem cited above, it follows x = y proving the maximality of x in the set of all semi-complements of a.

218 G. Szász

that $a \cap x = 0$. If, moreover, $x \neq 0$, then x is called a *proper semi-complement* of a. (Clearly, if x is a proper semi-complement of a, then $a \not \ge x$.) The set of all semi-complements of a will be denoted by S(a).

The greatest element of a lattice L, if it exists, will be denoted by i. The set of all elements of L, differing from the (possibly existing) elements o, i, will be called the *interior* of L and denoted by $\Im(L)$.

A lattice L with least element o is said to be semi-complemented if every element of $\mathcal{S}(L)$ has at least one proper semi-complement in L.

Let L be again a lattice with least element o. Then, by the height h(a) of an element a of L we mean ([2], p. 10.) the maximum length of chains $(o =) x_0 < x_1 < \cdots < x_n (= a)$ between o and a. When h(a) is finite, a is called ([3], p. 243.) an element of finite height.

For all undefined terms and symbols the reader is referred to [1].

3. The main result of this paper is the following

Theorem 1. Let L be any semi-complemented semi-modular lattice. If, for some $r \in L$, the set S(r) of all semi-complements of r has a maximal element m, then L has a greatest element i and m is a complement of r.

Corollary. Let L be any semi-complemented semi-modular lattice. If, for each element r of the interior $\Im(L)$ of L, $\Im(r)$ contains at least one maximal element, then L has a greatest element i and it is complemented.

PROOF. Since for the elements o, i, the assertion of the theorem is obvious, we need only consider the case that r is any element of $\mathcal{S}(L)$. Clearly, it suffices to prove that if m is a proper semi-complement of r such that

$$(1) r \cup m = d with d \in \mathfrak{I}(L),$$

then there exists a semi-complement of r greater than m.

But, if for some elements r, m, condition (1) is satisfied, then d has a proper semi-complement x. Then we have

$$(2) o < r \le d, o < m \le d,$$

and, consequently,

$$(3) x \cap m \leq x \cap d = 0.$$

Clearly, the proof of the theorem may be accomplished by proving the following two assertions:

(i) if z is an element of L such that

$$(4) o < z \le x$$

⁸⁾ Since, obviously, S(o) = L, this definition is equivalent to that of [5], p. 123.

and

$$(z \cup m) \cap d = m,$$

then $z \cup m$ is a (proper) semi-complement of r and $z \cup m > m$;

(ii) there exists at least one element z having the properties assumed in (i).

Assertion (i) may be proved by direct calculation. Indeed, m being a semi-complement of r, by (2) and (5) we get

$$r \cap (z \cup m) = r \cap r \cap (z \cup m) \leq r \cap (d \cap (z \cup m)) = r \cap m = 0$$
;

further, by (4) and (3),

$$z \cap m \leq x \cap m = 0 < z$$

which implies $z \cup m > m$.

In order to prove (ii), we consider the element

$$(6) v = (x \cup m) \cap d.$$

Then, by (6) and (2),

$$v = (x \cup m) \cap d \ge m \cap m = m;$$

that is, $v \ge m$.

If v = m, then by (6) we have $(x \cup m) \cap d = m$. Further, by definition, $o < x (\le x)$. Thus the conditions (4), (5) for z = x are satisfied.

It remains to consider the case v > m. We then show that the elements x, m, v satisfy the inequalities

(7)
$$(o =) x \cap v < m < v < x \cup m.$$

Firstly, by (6), (3) and (2),

$$x \cap v = x \cap (x \cup m) \cap d = x \cap d = o < m$$
.

Next, m < v by assumption. Finally, (6) implies immediately that $v \le x \cup m$ and, again by (6), $v = x \cup m$ would imply

$$x \leq x \cup m = v = (x \cup m) \cap d \leq d,$$

a contradiction to the definition of x. Thus the inequalities in (7) are verified.

L being semi-modular, it follows that there exists an element t such that

$$(0 =) x \cap v < t \le x$$

and

$$(9) m = (m \cup t) \cap r.$$

It follows by (8) that $t \cup m \le x \cup m$. This implies, by (9) and (6),

$$(10) m = (t \cup m) \cap v = (t \cup m) \cap (x \cup m) \cap d = (t \cup m) \cap d.$$

From (8) and (10) we see that now the conditions (4), (5) for z = t are satisfied. Hence also assertion (ii) is proved.

220 G. Szász

By the theorem, the corollary is obvious.

We remark that if L fails to be semi-modular, then Theorem 1 is in general false. For example, the lattice given by the diagram

is semi-complemented and m is a maximal semi-complement of r; however, m is not a complement of r.

Further, it is easy to see that Theorems 2, 3 in the paper [4] of the author are special cases of our present corollary.

We prove also

Theorem 2. Let L be any semi-complemented semi-modular lattice of infinite length in which every element of $\Im(L)$ is of finite height. Then, for each element r of $\Im(L)$ and for each integer $K(\geqq 0)$, there exists a semi-complement x of r whose height is equal to K.

PROOF. Earlier ([3], Theorem 2) we have essentially shown that, under the assumptions of the present theorem, no element of $\Im(L)$ has complements, even if the greatest element i exists in L. Hence, by Theorem 1, S(r) $(r \in \Im(L))$ contains no maximal element. It follows that there exists an infinite ascending chain

$$0 < m_1 < m_2 < \cdots < m_K < \cdots$$
 $(m_k \in S(r); k = 1, 2, \ldots).$

Clearly, $h(m_K) \ge K$. If $h(m_K) = K$, then our theorem is proved. If, however, $h(m_K) > K$, then let \mathcal{H} denote the (uniquely defined) index such that

$$(11) h(m_{\mathcal{H}}) \leq K < h(m_{\mathcal{H}+1}).$$

Since $m_{\mathcal{H}_{+1}}$ is of finite height, there exists a chain

$$(m_{\mathcal{H}} =) \overline{m}_0 < \overline{m}_1 < \cdots < \overline{m}_1 (= m_{\mathcal{H}+1})$$

between $m_{\mathcal{N}_l}$ and $m_{\mathcal{N}_{l+1}}$ which is maximal in the sense that $h\left(\overline{m}_k\right) = h\left(\overline{m}_{k-1}\right) + 1$ for all k $(1 \le k \le l)$. It follows from (11) that $h\left(\overline{m}_{k_0}\right) = K$ for some k_0 $(0 \le k_0 \le l - 1)$. Moreover, by $r \cap \overline{m}_{k_0} \le r \cap m_{\mathcal{N}_{l+1}} = o$, the element \overline{m}_{k_0} is a semi-complement of r. This completes the proof of the theorem.

Bibliography.

- [1] G. Birkhoff, Lattice theory (revised edition), New York, 1948.
- [2] M. L. Dubreil-Jacotin-L. Lesieur-R. Croisot, Leçons sur la théorie des treillis, des structures algébriques ordonnées et des treillis géométriques (Cahiers scientifiques, fasc. 21), Paris, 1953.
- [3] G. Szász, On the structure of semi-modular lattices of infinite length, Acta Sci. Math. Szeged 14 (1952), 239-245.
- [4] G. Szász, Dense and semi-complemented lattices, Nieuw Arch. Wisk. (3), 1 (1953), 42-44.
- [5] G. Szász, On weakly complemented lattices, Acta Sci. Math. Szeged 16 (1955), 122-126.

(Received March 30, 1957.)