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On semi-special permutations on [2pe].
By K. R. YACOUB in Alexandria, Egypt.

In an earlier paper [1] on general products of two finite cyclic groups,
certain permutations called "semi-special®, played a certain role. The permu-
tation st of the numbers 1.2,..., n is semi-special’) if tn=n and if, for
every yé€|[n],

m,x=m(x+y)—zy (mod n)
is again a permutation namely a power (depending on y) of .

Examples of semi-special permutations are the linear permutations defin-
ed by wx=¢x (mod n), where ¢ is prime to n. As | have shown [2], the
linear permutations do not by any mean furnish all the semi-special permu-
tations. If n is a prime number, then all semi-special permutations on [n]
are linear ([1], Corollary 4. 13); if n is composite, this is not always true.

However, it is of particular interest, though not always possible, to
determine those permutations which are not linear. For this purpose, | made
a general survey for the theory of semi-special permutations [1], [2].

As an application to the results in [2], § 3, | obtained the non-linear
senri-special permutations on [n] when n is the product of two (equal or
distinct) prime factors ([2], §4). Further, in [3], I dealt with the case n=p*
when p is an odd prime and e >1.

In the present note, I obtain the non-linear semi-special permutations
on [2p°] where p is an odd prime and ¢=1. In order that the paper may
be self contained, I collect in § 1 the results that will be required here.

§ 1.

We start with the following tneorem:

To every semi-special permutation st on [n] which is not linear, there
corresponds a number s (1<s<n) dividing n, such that -v;— st and the per-
mutation induced mod s is linear ([2], Conclusion 2. 3).

1) We write permutations as left hand operators and denote the set of numbers
1,2,...,n by [n].
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We remark that, with this value of s, sty = 7 for every multiple s’ of
s ([1], Theorem 4.4) but s is not necessarily linear mod s’. This suggested
to me the following definition.

Definition. The maximal divisor s of n for which ;=7 and 7 is
linear mod s is called the principal number of 7 ([2], Definition 2. 4).

We require further the following two theorems.
Theorem 1. If there is a non-linear semi-special permutation -t on [n],

with principal number s, and if 7t induces mods the identity permutation,
then 7t can be written in the form

(1) ax=x+si(l+w+ -+ o**') (mod n),
where A is a number prime to N, N 2%. and where

2) w*—1=0 (mod N), w—15=0 (mod N).
Conversely, if A is prime to N and if w satisfies (2), then (1) defines
a non-linear semi-special permutation of the desired type ([2], Theorem 3.1).

Theorem 2. If there is a non-linear semi-special permutation 7 on [n],
with principal number s, if zt induces mods a linear permutation other than
the identity and if swx1=t, then t is prime to n and =t can be written in
the form

(3) X = tx+ sy(x) (mod n)
with

z-1
(4)  ¥(1)=0 (modN), zp(x)ERg(x—i)G‘" (modN), x=2,
where R is prime to N, N :%, and

(5) 1464..-4+6"=0 (mod N).

Moreover, if h is the order of t mods, and u is defined mod N by
t* =1+ us (mod n), then

(6) u—|—§ th-i-ly(t) is prime to N;
(7 a(ff'—l)Egf“““‘{'1ff(2f")—(*5’wL Dw(')} (mod N);
(8) Z‘t"""(l+8+---+0“"1)2(0""——0')=—:0 (modN), r=1,...,s.

Conversely, if t is prime to n, R is prime to N, and if 6,t, R are chosen
such that (5—8) are satisfied, then (3) defines a non-linear semi-special per-
mutation of the desired type ([2], Theorem 3.10).
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§ 2.

In this section we describe briefly our problem. Let p be an odd prime,
« be a positive integer and let ;v denote, if any, a non-linear semi-special
permutation on [2p°]. If s is the principal number of -7, then by the defini-
tion, given in § 1, s is a proper divisor of 2p*; therefore s may have the
values 2, p# with 1=8=« and 2p* with 1=#<a«. We have thus three cases
2p°
s

to consider. In the following sections, we put N=

§ 3. The case s=2, N=p-.

In this case, -z induces mod 2 the identity permutation and by Theo-
rem 1 a number o exists such that
®*—1=0 (mod p®), o —1==0 (mod p%),
i. e. such that @ =—1 (mod p*). Thus if Z is prime to p, then by Theorem 1,
st can be written in the form
n(2x)=2x, #(2x+1)=2x4+1+424i (mod2p°).
We now have
Theorem 3. If = is a non-linear semi-special permutation on [2p®]
with principal number 2, then it is of the form
w(2x)=2x, T(2x+1)=2x+1424 (mod 2p°),
where A is prime to p.

§ 4. The case s=p°, N=2p*¢% (1=F<a).

We have two possibilities:
(i) If = induces mod p® the identity permutation, then by Theorem 1
there exists a number @ such that

o —1=0 (mod 2p=-%), o—1==0 (mod 2p*).

These congruences cannot be satisfied simultaneously unless a—@g>1, i. e.
unless #<a—1; in this case, it is not difficult to see that
9 o=14+282p¥ (mod 2p*-F),
where £2 is prime to p; y=1,...,e—p—1 if 2=« and y=«—25,...
cvya—@—1 if 28<e. Thus if #<e—1 and @ is given by (9), then by
Theorem 1 -z has the form

ax=x+ipP(1+ o+ - +w*') (mod 2p°),
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where 4 is prime to 2p. On substitution for w, we find that

ax=x+ip? ;I m (22pY)! (mod 2p).

(ii) Next, we show that -z cannot induce mod p# a linear permutation
other than the identity. This is easily seen because equation (5), in our case,
reduces to

1464 +67"=0 (mod 2p°-*),

which has no solution.
We have thus shown

Theorem 4. There is no semi-special permutation on [2p*] with prin-
cipal number p? for 8= «—1, «. Further, if 7t is such a permutation with
1=8=a—2, then it is of the form

AX=x+AipP § (ﬂ (282pY)i! (mod 2p*®),

where 2 is prime to 2p, 2 is prime to p; y==1,...,a—B8—1 if 28=e and
y=aa—28,...,a—p—1 if 2f<a.

§ 5. The case s=2pf, N=p*Pf (1=8<a).

(i) Suppose first that sz induces mod 2p? the identity permutation, then
by Theorem 1 a number @ exists such that

(10) w2’ —1=0 (mod p*?#), @—1=0 (mod p*-#).

Now since #<e«, then by the first of (10) @*=1 (modp), i. e w=+1
{mod p). Let ®=1 (mod p) or precisely. w =1+ 2p* (mod p*-#) where 2 is
prime to p and y=1. The second cf (10) requires y<e—g i. e. a—g>1,
and by the first of (10) we see that y=1,...,e—pf—1 if 2=« and
y=a—2p,...,a—pf—1 if 28<e. Thus, provided that g<e—1, if 4 is
prime to p, then by Theorem 1, -z can be written in the form

X=X+ 2pP4 ;l‘ [f] (RpY)! (mod 2p@).

Next, let @ =—1 (mod p), or precisely @ = —1+4£2p® (mod p**) with
£2 prime to p. By the first of (10), we see that d=1,...,¢—pg if 2=«
and d=e«—28,...,a—p8 if 28<e. In this case w?==1-4p* (mod p*-F) say,
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where 4=—28 4 £2°p® (mod p*#-%). Then
l+w+ - +o* ! =(1+o)(14+ o+ - +(*)F")

e g X T po

and 14w+ ---—|—w2’5!3p"§[?)(dp‘)"‘ + (1 4+ 4p%* (mod p=-¢).

Thus if 4 is prime to p, then by Theorem 1 and by using (11), we see that
7t is of the form

7(2%) = 2x + 2482 ph+ Z] (ﬂ (dp®)-' (mod 2p°),

=

wA2x+1)=2x+ 142482 pb+s Z,' (T) (4p?) -1 4-24p° (14 4p°)* (mod 2p°).

We have thus shown

Theorem 5. If st is a non-linear semi-special permutation on [2p”]
with principal number 2p° (1=8< a) and if v induces mod 2p®? the identity
permutation, then it is of the form

AX=x+2pfa > (T] (£2pY)-! (mod2p*), provided 8 < a—1;
i=1
or

7(2X) = 2X + 2482 pP*® § (f] (@p’)-' (mod 2p9),

w@2x+1)=2x+1 +2mpﬂ+6§ (f] APyt + 24 pP(1 + Ap?)(mod 2p°),

where A and §2 are any numbers prime to p, 4= —252+£2*p° (mod p*-F-9),

and where

y=1,...,a—pf—1; d=1,...,ea—p, if 28=ea;

and ,
y=a—26,...,a—f—1; 0=a—26,...,a—pf if 28<ea.

(ii) Next, suppose that sz induces mod 2p# a linear permutation other
than the identity. Then, by Theorem 2, there exists a number 6 such that

(12) 1464 .- +61=0 (mod p=-F),

i. e. such that #* —1=0 (mod p* #) and so 6==+1 (mod p).
If 6=—1 (mod p), we show that conditions (6) and (7) (of Theorem 2)
contradict each other. This can be easily shown if*) we take y(x) mod p

2) This is available since N is a power of p.
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in (6) and each term mod p in (7). In this case (see Theorem 2, (4))

z-1
YR)=R 2 (x—i)(—1)~! (mod p),
and thus -
(13) ¥(2x) = Rx (mod p), ¥(2x+ 1)=Rx (mod p).
It is convenient, here, to remind the reader that, in the case under
consideration, f is prime to 2p, {==1 (mod 2pf) and that A is the order of ¢

th—1__
1 =0 (mod p).

Now by using (13) and remembering that # is odd, we have

mod 2pf, and accordingly

h-1 h-1
Ut S PCy(E) =ut 5 R 3 - (E—1) (mod p),
E-U—I—%—R’ht""—-%( (mod p),

=u+ —;—Rht"-l (mod p),

t—1
to p. Furthermore (7), with each term reduced mod p, gives

because

IEO (mod p). Hence (6) is secured if u+%}?ht“-' is prime

h-1
—2u=R 2, t**'¥ (mod p), i.e. 2u+ Rht*'=0 (mod p);

this contradicts (6). Thus 6==—1 (mod p).

Now, it remains to discuss the case 6=1 (mod p). Let 6=1+ @pv
(mod p=-F), where @ is prime to p and y=1. This value of & satisfies (12)
provided that 26=« and y==1,...,a—@. In this case (see Theorem 2, (4)),
if we substitute for 6, y(x) can be written in the form

z-2
(14) Y =R 2 a.«(Op") (modp™?), x=2
Moreover, from (4), we deduce
(15) Yx+1)—ypx)=R(1+6+--- +6") (mod p=-#).

In (15), if we put 6=1+ @p~ (mod p*-F), substitute from (14) for y(x)
and (x4 1) and compare the coefficients of (@ p*) on both sides we obtain
X

f'+1)' i=01,...,x—2;

(16) e i— = |
and
(17) ﬂ:+l,z-l=1-
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Now, if we write down (16) for x=i+2,...,y then add together and use
(17) with x==i+41, we obtain

i+2 y y+1 : X
e i '+(x+1)+'”+(i+l):(f+2]’ B “’-"=(:‘+2)’
and thus

z-2 X
(9) =R 3(, ;) @) @odprs), xz2

Now, we turn to the conditions of Theorem 2. Since N is a power of p,
(6) will be secured. if v(x) is taken mod p. From (18), we see that

Y(x)= Rx(x—l) (mod p),
and, as we have done before, (6) is thus secured if
(19) u—%Rht"-‘ is prime to p.

Further (7) may be written

h-1 h-1
u +§i"“’"¢(!")‘ #—1) E%t""“{w(m‘)—%p(t‘)} (mod p=-#).
Using (4) and substituting for 6, we get

Y(R2x)—29(xX)=R(1 +60+4--- 46
(1) o i
— 2 (1+ 1)(@1“")’! (mod p**).

Then by substituting for w(#) from (18), for yw(2#)—2y(#) from (21);
putting 6=1-+ @p> (mod p*-f) and remembering that y¥(1)=0, ¥v(2)=R
(mod p“-f) (see Theorem 2, (4)) (20) will become

u@p*+RZ et tZ: ( = 2) (Op)™

=1

(22) ot s :
—~R1’”+RZ ks 2 ( -t 1](eanw)"z (mod p=-9).

=1

(20)

Laslly, (8) on substitution for @, requires that

2r¢'

@) | t"**',;(} L)@ SN~ (f@mr=o moap-s,
r=1,...,2p°,

r
where (8) is the usual binomial coefficient when s=r and is zero otherwise.
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Thus, by Theorem 2, if ¢ is prime to 2p,t=E1 (mod 2pf); R, @ are both
prime to p and are chosen such that (19), (22) and (23) are satisfied, then

st will be of the form e

nl=t, ax=ix+2p'R, (I: 2) (@p7) (mod2p%), x=2.
We have thus shown Rt

Theorem 6. [f there is a non-linear semi-special permutation 7t on
[2p°], with principal number 2pP, and if st induces mod 2p® a linear permu-

tation other than the identity, then % =p<e, and 7t is of the form

1=, anrx+2pﬁR§(.x ](Op‘f)‘ (mod 2p%), x=2,
=42

with y=1,...,«—B; where t is prime to 2p, t==1 (mod 2pf) and ®, R are
both prime to p and are chosen such that (19), (22) and (23) are satisfied,
h being the order of t mod 2pf and u being defined mod p*-¢ by t"=1+
+2p%u (mod 2p%).

Conclusion: Theorems 3, 4,5 and 6 supply us with all the non-linear
semi-special permutations on [2p“).

We remark that Theorem 4 does not furnish such permutations unless
a@=3; Theorems 5 and 6 unless ¢ = 2.

We conclude by describing the non-linear semi-special permutations on
[2p°] when e=1, 2, 3.

By the above note, if « =1, the non-linear semi-special permutations
on [2p] are described in Theorem 3. We now have

Theorem 7. The non-linear semi-special permutations on [2p] are of

the form
n(2x)=2x, 7(2x+1)=2x+1+422 (mod 2p),

where 2 is prime to p.
 Next let «=2. Then (see the above note) the non-linear semi-special

permutations are described in Theorems 3, 5 and 6.

By Theorem 5, there is one value for 8, namely 8==1; this yields d =1
but no y and the corresponding permutation is of the form

7(2x)=2x, 7(2x+1)=2x+1+42pi (mod 2p%),

where 1 is prime to p.

Further, by Theorem 6, we have £=1, y=1, and the induced permu-
tation is given by

l=t, :rerfx—}—ZpR-%x(x-—l)(mod2p‘), X=d
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i.e. b
: y x=tx+pRx(x—1) (mod 2p?,

where f is prime to 2p, and R is prime to p and are chosen such that (19),
(22) and (23) are satisfied. Since y=1, e—@=1, then (23) is satisfied
identically. Further, (22) reduces, in this case, to
0= R+ f_‘,‘ (mod p),
which is also satisfied since & is the order of £ mod 2p and #==1 (mod p).
We now have

Theorem 8. The non-linear semi-special permutations on [2p*] are:
(2x)=2x, 7(2x+1)=2x+1+24 (mod 2p%;

. n(2x)=2x, w2x+1)=2x+14+2pi (mod 2p%;
an
wx=tx+pRx(x—1) (mod 2p%,

where A is prime to p, t is prime to 2p (t==1 (mod 2p)), R is prime to p
and are chosen such that a—%Rh -1 is prime to p, h being the order of t
mod 2p and u being defined mod p by t*=1+2pu (mod 2p%).

Lastly, let « =3. Theorem 3 supplies us with the permutations
(24) w(2x)=2x, 7n(2x+1)=2x+1+22 (mod 2p%),
where 4 is prime to p.

Further, Theorem 4 gives =1, y=1 and the corresponding permuta-
tions are

(25) aX=x+Ap

x—}—]?x(x—l)«Z.Qp! (mod 2p%),

where 4 is prime to 2p, and £2 is prime to p.

Also, Theorem 5 gives #=1,2. If f=1, we have y=1, d=1,2;
while if §—=2, we have =1, but no y. Then the permutations described
in Theorem 5 will be

(26) TX=Xx+2pA :x+%x(x——1)9p! (mod 2p%);

(2x)=2x+ 2282 p*x (mod 2p°),
(27) g w(2x+1)=2x+ 142482p°x+24p(1 + xd4p) (mod 2p°)
=2x+14+2ip—2282p°x (mod 2p°);
because 4=—252 (mod p);
(28) w(2x)=2x, w(2x+1)=2x+1+24p (mod 2p%);
(29) (2x)=2x, w(2x+1)=2x+1+421p* (mod 2p°);
where in (26), (27), (28) and (29), 4 and £ are both prime to p.
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Moreover, Theorem 6 gives #= 2, y=1, and the induced permutations
will be

(30) rI={, nxztx-}—Zp“R--%—x(x—l) (mod 2p%), x=2,

where f is prime to 2p (with {==1 (mod 2p?) and R is prime to p, and are
chosen such that (19), (22) and (23) are satisfied. Now, since a— =1 and
y =1, then (23) is satisfied identically. Furthermore, (22) in this case redu-
ces to

D ppd (mod p)
which is also satisfied since A is the order of t mod2p* and t==1 (mod p)

(note that # is odd). Thus # and R must be chosen such that u—%Rht""

is prime to p.

To sum up, we observe that the permutations given by (26) can be
obtained from (25) if we put 24 instead of 4 and £2 instead of 2£2. More-
over the permutations given by (28) and (29) can be obtained from (24) if
/4 takes all possible values which are less than p’. We now have

Theorem 9. The non-linear semi-special permutations on [2p°] are
(2x)=2x, n(2x+1)=2x+4 1424 (mod 2p%), 1=4<p’;
X =X+ pAx+x(x—1)p*A82 (mod 2p°), A and $2 being prime to p;
7(2x)=2x+2482p*x (mod 2p%),
a2x 4 1)=2x41424p—248p*x (mod 2p°)
and

A and $2 being prime to p;

zx=1tx+ p*Rx(x—1) (mod 2p%),
where t is prime to 2p (t==1 (mod 2p®)) and R is prime to p and are chosen

such that u—%th"“ is prime to p, h being the order of t mod 2p’ and u
being defined mod p by t" =1+ 2p*u (mod 2p°).
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