Partial integro-differential equations for stable density
functions and their applications.

To the memory of my friend Tibor Szele.
By P. MEDGYESSY in Budapest.

Several papers of the author (see e. g. [5]) have dealt with the decomposi-
tion of a mixture

F@=2AfE

(Ax >0 const.) of stable density functions fi(x) (k=1,2,..., N) (i.e. the
characteristic function of f(x) is
o) — ew*:-cim"{ L4ifsgnt. oft, @) } :

0<a=2|8=1,c>0 ye are real constants, o (f, «) =tg(we/2), o(t,1) =
=(2/m) log |t|). It has been $hown that the decomposition can be carried out
if, knowing the density function
(1) r(x)__ N}l fe-i:ee;‘nt-ekw“{1+ip-sgne.¢uu, @)} dt

2w ]
mentioned above of the mixture to be decomposed, we can construct the
mixture of density functions

N
() Bx, )= 2
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@
J- ~trt W‘,‘ (e —A)lli“{lhﬁ sgnt-e(t, @} dt
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(#(x,0)=1(x))
dependiﬁg on the parameter 4 which is, apart from the restriction 0 <4 < mkin Ck,y

arbitrarily chosen. Theoretically the construction of (2) is always possible ;
its general method based on the application of Fourier transforms cannot,
however, be applied in practice.
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Thus we have had to develop special (analytical or numerical) methods
for the practical construction of ¥(x,2). In a recent paper [4] of the author
several procedures of this kind have been presented for the case when the
parameter «, the so-called ‘“‘characteristic exponent”, occurring in f*(x) is
rational. These methods were based on the statement that, if « is rational
and certain conditions are fulfilled, the function

27T

o
ﬂ(x) - 1 Je—izteiy*tvckwﬂ{ 1+ig+sgntee(f, a)} dt Ef(x, ck)

of the variables x and ¢, satisfies a linear partial differential equation of
constant coefficients and, .consequently, &(x, 4) too satisfies a partial differen-
tial equation of the same type.

In the present paper the author’s aim is to find similar practical methods
of constructing ¥(x, 2), even in the case of an arbitrary characteristic exponent a.
It will be seen that the solution of this problem will be rendered possible,
apart from a certain particular case, by the fact that f(x, c;) satisfies a certain
partial integro-differential equation and this fact can be successfully utilized
also in the construction of ¥(x,4). As final result a numerical method will
be obtained.

The investigations are based on the following

Theorem. Let

= L ~izt yiyt-c|t|*{ 1+if-sgnt. o (a) } =L J.
3) f(x,¢) = = je e di= e w(f) dt
- -
(e+1;0<e<2,|B| =1,c>0, y const.,, w(e) =tg (we/2)) be a stable density
function of characteristic exponent e==1. Then f(x,c) satisfies the following
partial integro-differential equations :

@

¢ 1 B—sgn(x—y)\ of
4) ¢ = 2I(1—a)cos(antl2) J( x—y° )ay ay,
if0<e<l,

af 1 ¢ Bsgn (x—y)—1) 3*f
®) gc 2 (2—w)cos (e/2) f( Ix—y[ )av’dy’
ifl<e<2. =

ProoF. The simple proof may be regarded as an elaboration of a
remark of W. FELLER (see [2], p. 337.); in the present paper, however, only
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Fourier transforms will be used instead of the generalized Riesz fractional
potentials mentioned by W. FELLER.
Fi : . L af af 6 f ;
irst consider the partial derivatives T of f(x,c). Itis
easy to show that these derivatives can be obtained by dlfferentlatmg under
the integral sign in (3). Thus

L Ao R J[ (1 + i8-sgn t- 0 (@)] W) dt—

(6) e %ft"e'“"cos [(x—7)t+cBt* w(e)] di—
1]

e ﬁ‘%&l £ ¢ sin [(x—7) -+ cBt ()] dt,

@

(7 —3—5{—-——— t y(t) dt,
®) ;’—ﬁ--—jf w(t)dt,
i. e. the Fourier-transforms of af and —xf are (—if)y(t) and —2F£y(l),

respectively. Now, introduce the funchons
Kx)=|x|? K((x)=|x|"sgnx (O<p<1,0<g<1)

and ;

©) A=) k=L a,
(10) By0= (o3 2% o a.
(11) G0 = mmx_y) 2L ay,
(12) Dy(x)= QK,(x—y) My

-m
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(7)—(12) are convolutions of certain functions. At their evaluation some
difficulties arise, since K,(x) and K.(x) are not, e. g., integrable on (—oc, oc).
The interval of integration can be, however, dissected into the intervals
(—=<,x) and (x, >); then it is easily seen that (7)—(12) will be sums of
Weyl fractional integrals;') utilizing the relation between Weyl fractional
integrals and Fourier transforms (see e. g. (3], p. 80, Lemma 3 or [1], p. 182.)%
we obtfain as final result that (9)—(12) can be expressed through the Fourier
af 0

—— and { . Since the Fourier
Jax ax

transforms of the functions K(x), K,(x),
transforms of K,(x) and K,(x) are

2I'(1—p) cos [(1—p) /2] - |t[""
and
2I(1—q) sin [(1—q) 7/2] - |¢]" " sgn ,
respectively, by (7) and (8) we have

@

Ay(x) = —%") (176" sin [(x—7) t+ B w ()] dt,
B,(x)= — L._yip_) ”t’“” e cos [(x—7) t+ cBt” w(a))] dt,

0

C,(x) = -@fﬂ e cos [(x—7) t + cBt* w(e)] dt,
0

D,(x) = ——E';%ljt”” e sin [(x—y) t + cBt" o ()] dt,
0

where
Li(p)=2I(1—p)cos[(1—p) n/2]
and

Ly(q)=2TI(1—g) sin [(1—q) /2]
1) The Weyl fractional integral 8 " [f(x); y] of order u of a function f(x) is defined

by the integral transform ®, [f(x); yl= (x—y) ' f(x) dx.

@

1 |'
rey .
?) If 5 denotes Fourier transform, 8, [f(x); y]=&"[e“"? |#| ™ §[f(x); #]].
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Comparing these with (6) we obtain

7 Ca(x) e Bo(a) Au(x)
ac L() Li()

3f  Baa(x) |, Bo(e) Dsi(x)
ac  Li(e—1) L(e—1)

Hence, by (9)—(12), (4) and (5) follow.

Now, the decomposition of the mixture (1) proceeds as follows. For
&(x, A) a partial integro-differential equation will be derived: the function
g(x, A)=f(x,c—4) (42 <c) evidently satesfies the partial integro-differential
equations

O<e<i);

(1<e<?2).

@

0g 1 J’ (ﬁ-— sgn(x-—y)) g :
|5y dy O<e<);

g 2T (1—a)cos (@n/2) . x—yf@
L/ 1 Bsgn(x—y)—1 ] g
ah  2I'(2—a)cos(en/2) [ x—y[*t ) dy (1<a<2).

P(x,4) is a linear expression of terms of type g(x,4); consequently,
it satisfies the partial integro-differential equations

@

13 22— : Jn[ﬂ"‘g“(’-“y))aq’dy O<a<l);

— 2I'(1—«) cos (en/2) Ix—yl* ) ay
b 1 ¢ ﬁsgn(x—y)—l]a’qf
A B a7 Aoy @72) ) ( —ypt ) oy @Y (1<e<).

If =1, there stand fractional integrals in the right-hand side of (13)
and (14).

(13) and (14) give, however, a possibility for the numerical calculation
of @W(x, y) used in the decomposition process, if the mixture to be decomposed,
i. e. ¥(x,0), is known. Namely, consider &(x, 1) in the lattice points (k4x,
142) (k, =0, +1, +2,...; dx, 4. are prescribed small steps, [ 44 < min c).
Then we have approximately 2

Pkdx, 42)—P(kdx,0)
ax i

1 r B— sgn (kdx—y)\ @
s 2F(l—a)cos(a:r/2)_f ( [kdx—y[* ) 37 ¥(y,0) dy,
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etc. The values ¥(k dx, 0) are given by the function ¥(x, 0); having calculated

=

a—‘;c—w(x, 0), the derivative of the function to be decomposed, wen can determine

the integral in the right-hand side for every x-value k 4x. Consequently, also
the values & (k dx, 42) can be computed approximately. Then the procedure
should be iterated (i.e. we obtain F(k 4x,2 42), P(k 4x,344 . ... etc.)
until [ 44 reaches the prescribed value of 4.

For «=1, 820 we could not find an integro-differential equation. It is
remarkable that in the case ¢ =1, #==0 no practical method of decomposi-
tion has been found either during the present investigation, or in [4]. — (13)

2
and (14) have the advantage of containing only 2—?—(2—? etc. do not occur].
Consequently they involve, even in the case of a rational value of ¢, a more
simple numerical method then the partial differential equations presented
in [4]; those could be applied only with restrictions on « and 8. Here «
and # are, apart from « == 1, arbitrary.

The author expresses his sincere thanks to Prof. A. REnyi for having
called his attention to the problem.

Bibliography.

[1] A. ErpELvi—W. Maonus—F. OseruerTiNgErR—F. G. Tricomi, Tables of integral transforms, 1.,
New York, 1954,

(2] W. FeLLer, Some recent trends in the mathematical theory of diffusion, Proceedings of
the International Congress of Mathematicians, Cambridge, Massachusetts, USA,
‘August 30 — September 6, 1950. Providence (1952), 322—339.

3] H. Koser, On Dirichlet’s singular integral and Fourier transforms, Quart. /. Math. Oxford
Ser. (2). 12 (1941), 78—85.

[4] P. Mepcvessy, Stabilis valészinfiség-siiriiségfiiggvényekre fenndllé parcidlis differencidl-
egyenletek és alkalmazdsaik (Partial differential equations for stable densif:
functions and their applications), Magyar Tud. Akad. Mat. Kutato Int. Kozl
1 (1956), 489—518.

[5] P. Mepcyessy, Anwendungsmoglichkeiten der Analyse von Wahrscheinlichkeitsdichte-
funktionen bei der Auswertung von Messungsergebnissen, Z. Angew. Math.
Mech. 37 (1957), 128—139.

(Received September 10, 1957.)

D2



