Functional equations and algebraic methods
in the theory of geometric objects.

By MIKLOS HOSSZU in Miskolc.

Introduction.

Elements x of a set X are called geometric objects if they correspond
to the points P of any space E such that using a (coordinate resp. point)
transformation P=e« Q in E,

y=xea=F(x, a),

corresponding to Q, is a function of x, corresponding to P, and a functional
of P=eQ in a neighbourhood of P resp. Q. If the transformations P=«aQ
and Q=§8R are composable:

«(BR) = (¢P)R,
then also

) (xe)8=x(apB), x€X; a,P€@

holds'). E and X are usually n- resp. k-dimensional euclidean spaces and
then x is called an n-dimensional geometric object with k components. If the
dependence of F(x,«) from « can be described by its depending on the
parameters

0P dP d"P
P’ ,(_"_)=—1-°-1 ’

then x is a special geometric object of m-th class. It is enough to examine
the purely differential objects [5], where F(x,a) does not depend on the

1) Here we write right operators and not the usual left ones. We shall see that this
covariant notation makes the numerical computations easier. Dual theorems hold for the
left operators. We shall transscribe our results also in the conventional contravariant form,
using the notation ex = xa~!, because if there exist inverse operators, ax is a left opera-
tor, if and only if xa—! is a right one:

a@x)=(x3 e =x(8 "« ") =x (af)” = (ad)x.
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coordinates of the fixed points P and Q:

dP d"P
== Xt == F{x, =F[x, T )
y=xe=F(x,@0) = F|% gg. s om
The binary operation «g in (I) is determined by the differentiation of
the composite function P= «(3R), e.g. in the case where n=1, considering
the real valued functions e«(¢), #(f) with

e«={a,a,...,an}, ;= a?(0),a(0)=0;
B=1{p, P, ..., Bu}, Bi= £9(0), £(0) =0,

B = {“udu 82+ @fy, .85+ 38,5+ @, .. }

by differentiating «[8(f)] and putting {=0.

We denote the set of transformations (operators) of X by ©. This is
a semi-group which contains a group §. The set X of geometric objects is
characterized by the transformation law y— xe. Therefore, the general solu-
tion of the functional equation (I) gives the complete classification of geo-
metric objects. The object of this paper is to reduce the problem of the
solution of (I) to a structural examination of the given © resp. G, and to
fulfil this examination in some special cases. We shall prove in Chapter I
that the solution of (I) in a given parameter group & and the listing of all
conjugate subgroup classes of G are equivalent problems. Especially, the
enumeration of solutions xe, which are invertible’) on a normal subgroup
S G, may be reduced to the seeking of certain endomorphisms of G. We
treat in Chapter II the 1 and 2 parametric subgroups of the parameter group
Gt as an example®), and give the solutions of (I) on Xi (k= 3) and on G
which are invertible on a subset of G.

Chapter IlI deals with the algebra of objects. A set X of objects forms
an algebra if a binary operation xy is defined in X the endomorphisms of
which are induced by the operators «¢ € O:

(xy)e = (xa) (ya), x,y€EX;a€l.

We give the solutions of this functional equation (without restriction (1))
proving that every algebra X, is isomorphic to an Xi, in which the operation
is x+ y(y—x), supposing that some regularity and differentiability condi-

we compute

?) F(x, a) is called invertible on 9, if, with x a constant,
«(€ N) «— F(x, a) (€X)
is a 1-to-1 correspondence on the whole of 9 and X. The problem of seeking these solu-
tions was raised by ]. AczéL [1).

3) We denote the parameter group of n-dimensional geometric objects belonging to
the mth class by @ .



296 M. Hosszi

tions of the first order are fulfilled. We give also the twice differentiable
solutions xe on X, proving that every algebra X, is isomorphic to an al-
gebra the operators of which are linear transformations X=ax+b (a=a(«),
b= b(«)) (affinity). The notion of algebra of objects may be generalized
[7—9] supposing only that
(xy)a =H[K(x, a), L(y, @)]

holds but here xe, K(x, &), L(x, &) resp. xy, H(x, y) are not identical. Then
X. and X; are not isomorphic but isotopic in terms of the quasi-groups [2].
These generalizations can be reduced to more simple cases, if general in-
vertability conditions are fulfilled.

CHAPTER L.

FUNCTIONAL EQUATION OF THE TRANSFORMATION LAW
OF GEOMETRIC OBJECTS.

§ 1. Notations.

We use the well known terms of the elementary theory of groups. We
say that the elements of a set O are operafors on the set X (not necessarily
a structure) if they operate on the elements x € X so that xa € X (a € ) and

(1) (xa)b=x(ab), x€X;a,bc0

holds. A group § of operators (or generally a set ©) is fransitive on X, if
there exists at least one x, € X for which x;,§G=X. Then also xG=X is
true for every x € X, because

xG=(x0)G=x(a§)=x.§=X.
If X is unitary, i.e., xe=x holds for the unit element e ¢ ('; and fot
all x¢€ X, then X consists of disjoint transitivity sets X:=x.§
X=X,

on each of which § is transitive. The elements x, form a generator system
of X. The sets X, are disjoint since a transitivity set is generated by any
one of its elements. The generality is not restricted by supposing X to be
unitary since xa is uniquely determined in a unitary part X=X, of X:

xa =x(ea) = (xe)a = Xa, B .
xe=(xe)e =x(ee) =xe=X, X—+x=xecX=X,,

therefore in what follows we suppose that X is unitary. In our investigations
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@ will be a continuous greup the closure of which is ©. We shall consider
the solution of (1) only in one transitivity set. The general solution can be
composed then by these (cf. example 1).

We can make a distinction between the number k of components of
geumetric object x€ X, and the number k' of essential components, the
dimension of the transitivity set x§ in Xi.

The elements s of § leaving invariant a fixed x. € X will be called
stationary operators of x,. The non-empty set § = . « of stationary opera-
tors of x, is a subgroup of § (in general a substructure of ©), the stationary
group of x,, since with s,f€ 8 also st,s'€8 and e€ 8 hold:

X (st) = (xs8)t = x,d = X,
xe =(x:8)e =xi(se) =x$=x,
X85! =(x8)s 1 =x, (35 )= x,0 = x,.

Every 1-to-1 mapping x«-x" of X onto X’ is an operator isomorphism,
briefly o-isomorphism. u € © can cperate also on X’ if its effect is defined by

x' o a = (xa), x€X a€l.
x' o a is determined by xa and vice versa. The o-homomorphism can be defined
similarly by the mapping x — x" (one valued but not necessarily invertible).
Then also x’ o a satisfies a composition law of operators similar to (1):
(1) (X" 0@) o b=(xa) o b= [(xa)b] = [x(ab)] =

=x’ o (ab), X€EX;a,b€0,
but here xa is not uniquely determined by x’ o a.-Clearly, every mapping
x—x" is an o-homomorphism, if an only if

"=y implies (xa) = (ya), a€o,

i.e., if X’oa=(xa)’ determines x’oa independently from the choice of x.

By an o-isomorphism every (simply connected) transitivity set X, being
a k’-dimensional surface in X, can be mapped (topologically) onto the whole
of Xi-. Thus we may restrict ourselves to the case where each component
of x is essential in X.. i.e., X, is covered by a transitivity set X;.

§ 2. Reduction to structural examination.

In terms of §1 we have

Theorem 1. A given semigroup © is an operator set working on itself
and on its o-homomorphic images, and only there, if it is transitive.
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The first part of the theorem is evident; proving the second part, let
us consider the mapping -
¢(€EQ) - =x (€ Xi=x,0)
by which we get
¢'a=xa=(x,«)a = x,(e¢a) = (za)".
The theorem states that (1) has the general solution
xa=c¢'a=(ca), acg®
on a transitivity set X,= x,©9), where
a(€0Q) »a'=x (€ X")
is an arbitrary o-homomorphism of the given © onto X,. Thus the general
solution of (1) will be obtained by the o-homomorphisms of ©, and so the

problem is reduced to the examination of the structure of ©@. This structural
problem can be solved easily for a group §, namely we hawe

Theorem 2. Let § be a subgroup of G, futher, let % be a system of
representatives of all right cosets 8a (a € §). Then

e=a'@ (€§)—@ (€%)
is an o-homomorphism which defines the transformation law
©) Goa—=ad, a€G
uniquely. § has no other o-homomorphic map up to o-isomorphisms %

The first statement is obvious since « oa is defined by (2) indepen-
dently from the choice of e, as

a=p implies eza—=pa, ac§.
Further, we prove that every o-homomorphic map §° of § is o-iso-

morphic to a representative system % of rigth cosets §a (@ €@) of one 8.
Supposing the existence of the o-homomorphism

«(€§)—e’(€G)

e’ o a= (aa),
we have suitable § the stationary group of a fixed elemernt, e.g., of e. This
§ is not empty since

which defines

eoe— (ee) =¢'.

¥) Theorem 2 can be formulated as the representability of a given transitive per-
mutation group by a permutation group operating on the cosets of any subgroup [10]. The
equivalence between these formulations can be seen immediately, but the present direct
proof is also very simple and more apt to give the explicit form (2) of the transformation
law than the one mentioned. For Theorem 2 see also [3].
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The mapping
a(€N)—rar=e o (€§Y)
is an o-isomorphism between I and §°, because every @€ ¥ is mapped to
a unique
a*=¢e'oa=¢0(8a)= (€08 o«

and, conversely, every a'€ q’ is corresponding to a unique « € X as

efoa=¢"0f '
implies

elo(aﬁ'l) = (ef o a) o ﬁ-l =e‘l‘
and -
ep'e8, wesf a=24.
Finally, (2) can be verified immediately by the o-isomorphism

a > a=a"

which defines
coa=c"oa= (¢ oa) = (ea)" =«aa,

completing the proof.

Remark. The stationary groups of fixed elements belonging to o-iso-
morphic sets X, X’ are conjugate to each other, since, for x=x.c and

8 = Gy ot
X' ot8c=(x:c) o c ' 8c= (%001 8c) =(x8¢) =(xt) =X
implies
c18c S Gurat
and similarly also
. cGruc 'S8
holds, proving the statement.

Conversely, there belong o-isomorphic representative systems to the cosets
of conjugate stationary groups § and 8§ =c¢'8c; a suitable 1-to-1 corres-
pondence is

8a++8'ctac=c'8ac.
In particular, the different representative systems of cosets of one stationary
group are o-isomorphic.

Thus the necessary and sufficient condition for o-isomorphism is that
the stationary groups of the fixed elements be conjugate [3], [5].

Corollary. The following problems are equivalent: to solve (1) for xa
on a given § and to find all conjugate subgroup classes of §. In a transiti-
vity set X;=x.( the general solution is given by (2) up to an o-isomor-
phism, where « —@ is an arbitrary mapping (o-homomorphism) of § onto
the representative system of right cosets of a subgroup § @ (stationary
group, e.g. of x;).
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If § contains a normal subgroup I of §, then S is a stationary
group of each element x € X since
XN = (x:a) N =xaN = x.Na=x.a =X,
hence xa is characterized by its behaviour on the factor group §/9 [5]. We
do not make this distinction, we shall examine the general solution on the
whole of §, not separately on factor groups, and so the normality of sub-
groups can be neglected.

§ 3. The tansformation law invertible on a complex.

To find all the subgroups of a group §G is a very difficult problem,
therefore, next we shall consider the solution of (1) also from another point
of view, looking only for the solutions for which

x=x:5 (€EX)«>x=E§ (€C)
is a 1-to-1 mapping of X onto a complex €S . Such a complex exists
certainly for a transitivity set X—=x.O: a minimal one of the complexes C
having the property x.©=X. € can be choosen arbitrarily but it should be
choosen so that the calculations become easy. In J. ACzEL’s investigations [1] @
is often a subgroup (normal or not). The general algebraic methods are
applicable also for this case: let @ be defined as an operator set working

on € as
X' o a==(xa), X €C,aco.

Then also the composition law (1°), i. e.,
(x’0a)ob=2x"o(ab), xX€C:a,bed
is satisfied. x<«—» x’ being invertible, there exists an e € € such that

Xel =Xy, Xe == ¢
holds. Thus we hawe
eol=xtol=(x.F) =§ E€C.

Now we introduce the mapping
a— ta@=eoa=Xx;0a=(x.a)
of © onto @, by which we get
Eoa=(eok)oa=ceo (Ea)=n(Ea), E€C,act.
Here a — :ta satisfies
&) nt[(rea)b) = n(ab), nE=E5;  a,b€O;E€C

as
(eca)ob=eo(ab), eo&E=E.
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Therefore, replacing & by we, &oa can be written as
(me) o @ = nt[(ra)a] = n(aa)

and this means that € is an o-homomorphic map of ©. Conversely if =a
satisfies (3), then it is an o-homomorphism and defines & o @ uniquely which
is a solution of (1'):

(§oa) o b= n|[n(§a)b] = nw(Eab)=Eo (ab).
In order to solve (3) we suppose that € is a group. Then

(ma)ke G, Ec@
and (3) becomes
(7wa)s = 7(ak)
for b=E€C. If O=Q is also a group, then, forming the left cosets

G=aCbe,...
every a € a'C takes the form

by which we obtain
na=n(a'a)=(na’)a = (na)a’ 'a.
Let y be defined by
nta = (xa')a,
then, comparing this with the formula above, we see that it depends only on a’:
za'=(xa)a’-.
Taking (3) into account, we get
{xl(za)b] "} (xa ) ab=[x(ab) ' ]ab,
i. e.,, by cancellation and writing new variables,
x2la(wb ") '] b = x(ab).
In the case where € =9 is a normal subgroup, also a’-'=(a-')’ holds and
[a()) =[ada(n)"] =d,
thus

a—ya=ya' = y(@dN)=(a’ *)a' (€ Na)
satisfies
xaxb=x(ab),
i.e., it is an endomorphism of §.
Conversely, if y is an endomorphism, then

ta=(xa'')a (€N)
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satisfies (3), therefore in this case the solution of (1°) is

Eoa=n(ta)=[y(Ea) |ta=(ya")ta
and we have the

Theorem 3. Let © be a given structure, operating on a set X, with
a complex CS O the 1-to-1 mapping

x=XE(€ X) > x'=§(€©)

onto X of which exists at least for one fixed x. € X. Then the general solu-
tion of (1) is given by
(xa)’ =E& o a = n(ka), x€X,a€ld,

where a— ma (€ ) is an arbitrary mapping satisfying
&) mt[(rxa)b]) = rr(ab), wE=E; a,bec@;EcC.

Furthermore, if O=§ is a group with its normal subgroup €=\,
then we have

4) (xa) =&o0 a=(xa")&a, x€X,a€§
and here

®) a—za=y@dN)  (cad)

in an endomorphism of G:

(6) zayb= y(ab), a,be@.

Remark. In general € cannot be choosen arbitrarily. If 9=@§ is a
group, then, according to Theorem 2, € must be a representative system of
right-cosets of a subgroup § &@§. Conversely, the mapping

a=a'a(€§)—ma=a(cc), ae€s
then satisfies (3), because

ib—=8ab—a ab=ab.

§ 4. The endomorphisms of a factorizable group.

In the preceding § we have reduced the solution of (1) to the more
simple functional equation (3) resp. (5)—(6). In the present § we show a
method for solving (5)—(6) in the case where the group § has the fac-
torization

(7) C?=($|@n=€n@|=@|U(gu
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as a product of subgroups @, @, not necessarily without repetition. Then
®) oa = ya = o(a M) (€a d), a; € G,
| oa,=yai=o(ad) (€a,d), MNi=GnN
are also endomorphisms defined on G resp. G,. We can observe that ¢ and
o are not independent of each other, since, with
a=qaa=aea, ai,a€G;

we have

0= yaqyaq = yaya,
or in another form

9 ya=o0aq0aq,=0a,0¢,.

We prove the following

Theorem 4. y is an endomorphism of the form (5) on a group §
with the factorization (7), if and only if (9) is satisfied by the endomorphisms
0,0 of the form (8).

Corollary. The general solution of the functional equations (5)—(6) is

the same as that of (8)—(9) with endomorphisms e, o on the given G having
the factorization (7).

Part of the theorem was proved previously. To prove the rest, let us
consider first (5):
za = y(aay) =oa0a,=pe(ad)o(a1dl) =
= x(@d,a,d) = x(ad) (€ adladly=adl)
holds, since, 7, = §, N being a normal subgroup of G,
a0, 9= ad,INay=ada,=aa,dN =adl
is true, because &&= & is involved by

MOLEINN=N
and

NI, 2N, evedl, =(@. ndN)u (@1, n é)t)=(C§, U 6}.,) n @Z=@ n<N=N.
Now, in order to show that y is an endomorphism, let

a=aa, b=bb, ab=ce,
then we have
a,b,b,= a7 (ab) =ai"¢icy

and, refering also to (9), the sequence of equations
xaxb=eaca,0b,0b = 0a o(aiby)ob = ¢a x(awbnb) =ea x(ai¢cic;) =
=oao(ar’c)oc,=paear" ococ,= x(cc,) = x(ab),
by which the proof of Theorem 4 is completed.
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Remark. The present reduction is useful in the particular case where
one of ¢ and o can be determined easily and then we can determine the
other by (9). Since every endomorphism of the form (5) is a homomorphism
of § onto a subgroup § isomorphic to the factor group §/9, every solution
of (5)—(6) is given by a factorization

G=IN=3NF
without repetition, where § is a subgroup. Theorem 4 states that, in a G of

the form (7) this factorization problem is equivalent to the similar problem

of factorizations
Qi;_'gimh I='s ”l

where also
§=§|§u m3]-||$|
holds.

CHAPTER II.
GEOMETRIC OBJECTS IN X,.

§ 1. Examples.

Chapter Il treats only one-dimensional geometric objects. In the present
§ we see several examples illustrating some notions introduced in Chapter I.

1. Let [6]
V= Xx\/a,

" h=x0,
Ys = X; @i + as|a, — 3/2(as/a,)’

be the transformation law of a geometric object x = {x;, x;, x;}, then a tran-
sitivity set is the hiperbolic cylinder

X, X, = (constant).

The number of essential components is k' = 2, although, x lies in X;. The
transitivity sets are two-dimensional surfaces in X,;. x can be partitioned
into two geometric objects: one of them is x"={x,, x;} and the other is
x’={x,} a function of x': x"={¢/x,}.

2. Let the transformation law he

(10) xa=Cx+r, or ax=xa"'=C"'(x—r)
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linear transformation laws can be mentioned :

(13)

(14) 4

|-}’1 X, 4y

Vol | X%

Vs | | X0 —x, k30,4 as—3/2ai/a,
[ Y4 X@; + X;2aa,— X1 koa, ay— X, ksai/a, + ai/a; + 3(as/a,)’ —4a,a,/ai |

[ x,a,
X, @, + a,/a,
X3

These objects are linear. The following examples of objects with non-

H

| x(a]—x;[2a,+ 15a"/a, + 3a,a,(c, X, 4 6 X,)] — x, 405+ au/a, —6a, ay/at |

-

X

X,0, + ay/a,

X3

| x,01—xy(2a5+ 15a3/a,) —x318a,a, 4+ a,/a,—6 a, as/a}

Problem. Can every one-dimensional differential geometric object be
linearized by an o-isomorphism ?
The number of esential components is ¥ =4,3,2,2,2,2,1,1,1,3,3, 2,
respectively.
Here the role of § is played by G with m—4,4,4,3,3,2,3,2,1,4,
4, 4, respectively.
The stationary groups are conjugates to groups which consist of ele-
ments of the form

r F¥ 7] al [a T F1
i 0 0 a, a,
1o |’ |0 |’| 3/2d/a, |’ | 3/2a3—k.a, |’
L 0 i 3031/0? o |4y
Voo 4.1 g 1 &
0 0 a, 0
Of’'la | |32aa,|’ |as]|’
| a, ] La, | a, J La;
By 1 1 a,
a,. a, 0 0
as |’ 3/2a3+ ksa. g as 2 a |’
; | a, | 3a;+5k;a3+ kia, ¢.a; 0

respectively. All these examples can be generated from the first by .o-homo-
morphisms :
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| X 1 1
o X/ X, 0
Y 5 X/ |7 | x/x,—3/2(xs/x,) i

| x, x/x, Xo/%— 3(%o/ %)} — 43 %3/

P I3 X,
0 Xo/X, Xa
Xg/X, — 3/2(-\'2/1:1)2 + ks x, g Xa/X, ; oy

| 0 [ 0 0

1 & SN X
0 Xaf X} 0

J 2
L3 xx—32cxy | 1o " o |

| 0 0 | 0

g
0
XS/X:_—3/2(x1/x1)j—-K3x2 !

| Xu/X; 4 3(Xo/X: ) — KX, X — 4 X X/ XT — Ks X3/,

[V ot 1
Xo/ X, Xo/ X,
0 i ¢

| Xo/ X, — €y X5 — 6%, X5/} X4/ X — 62, %:/x3

and by completing the geometric objects with ¥’ <4 components thus obtained
to objects with k=4.

One sees often that geometric objects can be characterized by the sta-
tionary group of a fixed element more easily than by their transformation law.

3. The transformation laws

3 X; @, V 1 + ca(as/a, + 3x,a5/x,)/(x@,)° ]
| (x,a; + x,a)) V1+ cs(as/a, + 3 x.a0/X%,)(X, a) |’

-1 - -1

i a, 1 1 a
N
| ks 3/2a}/a, k. X3 as
REEREREIEE
Ca 0 Gy X, a|,
| 5] | 0 Cx % a,

[x,a, + c,a;/a, ]
[ €:(x185+X:01) @/ (x,47) + X185+ X 00+ K (@o/ay)* + Ko xa @b/ay + K X aya,)”

K= (1/2)a(ck—3), Ko=3/2(c.k,—1),

y=
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where [ : ][} ] means the multiplication in Gi, are invertible at x = {x;, X,, X5} =
={1,0,0} on the complexes consisting of the elements of the form

1 1 a,
0 ] a? ] 0 ]
a, as a,

respectively. The last of these is a subgroup of §i and 2,3-th are normal
subgroups, the first however is not a subgroup. The stationary operators in
the last case are of the form

1+t
an —t—af
2(t+ ) + K + K + kit

This is however, no group, but only a semi-group which can degenerate
into two different subgroups as ¢,=0 and ¢,==0:

1 [ K £
—t » | Ve(s—s®).
3/28 + kit K,/c‘(s-—-sa)—-ch-s(s—-s“")
These elements are conjugate to
1 a;
(18) a.
3/2 a—k, af2

respectively, since the inner automorphism a—»cac" maps one of them on

the other, with
1
£== [ 1/,
—Ki/c

The geometric objects having this last transformation law are o-iso-
morphic, or by another term [5] equivalent to such objects, the stationary
group of which belongs to the same conjugate subgroup class, i.e., to one,
having the transformation law (10) with (11,,), 12,,) (without x,) resp. (115), (12;).

§ 2. Structure of the parameter group §;.

1. In the introduction before Chapter I a topological group G Wwas
defined with the operation ab —=c¢ where
a={a,a,...,an}, c¢;=c"0), «(0)=0,
b={B,8,..., 0}, Bi=5890), A0)=0,
c={ri, 128 rm) 7i=790), 7(0)=0
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are m-dimensional vectors such that
7(t) = a[3(f))

holds for the real valued functions e, 8, 7. E.g., the group operation in G is
explicitely

al b a,b,

Y b | a,b,+a,b;

(19) ap= a by | | aybs+ 3a.b,b,4 a,b}

a,. b, a,b,+ 3a.b:+4a,b,b,+ 6a,b:b, + a, b}

using column-vector notations. The topology in & is the usual topology of
a vector space.

In Chapter [ it was proved that the general solution of (1) for xa is
given by listing all conjugate stationary subgroup classes of §. If xa depends
on a continuously for every fixed x, then all the stationary groups are closed
in §; since any sequence s; in a stationary group of a fixed element x, has
a lamit s for which also

XS == lim X, 8; = X,
is satisfied. Therefore, supposing the continuity, we may restrict ourselves
to the listing of all subgroups closed in G [3].

If the solution xa of (1) is known on a discrete group ® and on a
simply connected topological group §., then the general solution can be com-
posed by these also on the product §=®¢.. E.g., §i is decomposable into
two groups G, D consisting of elements of the form

a, 0.3
a, 0
& (a, >0) resp. 0
a, 0

Since every a € G has the form
a=da,_, de®D;a, €@

we get

xa=(xd)a, =(yx)a,,
where @x is an arbitrary function with properties

ppx=1x, (px)a, =¢(xda+d-l)

(see [1]). In what follows, we shall consider only simply connected subgroups
closed in Gi.

2. Since every simply connected one-parameter group is topologically
isomorphic to the real additive group, in order to determine the subgroups
of this kind we must solve the functional equation

(20) s(u)s(v)=s(u+v)
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for the continuous function
s,(u)

it s $(ut) = zgg €8, (5>0).

s,(u)
Writing (20) explicitely by means of (19) we have
s(u)s,(v) = s (u +v),
8, (1)s,(v) + s, ()8, (v) = s, (u + u)
(21) $1(u)55(v) + 38:(u) s (v)5: (V) + 55() 81 (0)° = s5(u + v),
ls, (11)54(v) + 3s:(u)s:(v)* + 45, (1) s, (v)ss(v) +
+ 65;()s:(v)’s:(v) + su(u) 5, (v)* = s, (u + v).
The general continuous solution of (21,) is
s, (u) =e,
where ¢, is an arbitrary constant. By the symmetry it follows from (21,), (21,),
(21,) that

Sy = Cao(S,*—51),
Ss=C3(8,"—8,)—36.°(8,* — 1),
Si=C4(8,' —51)—6a23(5,"— 1) + 156° (5" —5,) — 4 coc (5°—s)
— supposed that s,==1, i.e, 6,20, — or
Sy(t) + 8:(v) = su.(u +v),
(22) § s5(u) + 382 (u)$:(r) + 85(v) = 85(u +-v),
si(1) + 35:(u) 5:2(v) +48:(v) + 45:(u) 53() + 655()$2(1) + 54 (v) = s, (u - 7)
in the contrary case, that is, for ¢, =0.
The general continuous solution of (22,) is

So(u) = kot
@(u) = s,(u)—3/2K 02,
(22,) gives again Cauchy’s functional equation
g(u)+ () =g u+v)
Ss(u) =3/28;+ k;s..

Si =38+ 5k i+ kise
holds, if we suppose that 5,==0, i.e., k, 5=0.
Further, if s,==0, then the system is reduced to
sy (u) -+ 85(v) = ss(u+v),
Si(u) 4 54(v) = si(u +v),

and, by introducing

from which we have

Similarly also
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from which we get
Sy == (533, if s$s==0.

In this way we get the one-parameter subgroups consisting of elements
following of forms:

s

ca(si—51)

cs(s1—s)—3ci(si—s,) :
| ¢,(si—8,)—605c5(s1-—-8,) + (1562 —46465) (ST —,)
(1 1 1

Sy 0 0

3/2 53+ kS, 15 110

| 353+ 5kssi+ kis, C5Ss Sy

The first of these is, hower, conjugate to

S
0
s=lo|
0
namely, the automorphism

1
c
s«>csct!, c=|*
Cs
Cs

maps one of them on the other.
In §1 of Chapter Il at 2. there are listed geometric objects having
stationary groups of this kind.

3. It is known in Lie’s theory that every two-parameter Lie group is the
product of its one-parameter subgroups. The product of two different one-
parameter subgroups 8, and §, is a two-parameter one, if and only if 8,8, =
=§,8,. So the following non-conjugate two-parameter groups can be ob-
tained by our one-parameter subgroups:

S Sy 1 1 $
S 0 0 Sz 0
3/2sys, |’ ss|’ S|’ 3/28i+kisy |’ 0
3 Sg/ 31’ 0 S 8y S,

All these and all those transformation laws which have conjugate stacionary
groups of this kind are listed in § 1 of Chapter Il at 2.

We show an example for the construction of geometric objects the sta-
tionary groups of which are conjugate to one of the above groups. Theorem 2
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states that such a transformation law of geometric objects can be gene-
rated from

IS: «a, «,ac @;
by the o-homomorphism
a:a'E(EC‘}f)—bE(E?f), « €8
where ¥ is a system of representatives of all right cosets 8a (a € ;). The-
refore we must choose a % system: using (19) we have

S «, 5 1
= 0 (12} §51@s a!/al
— -l — o, = —_
e . Sy @y S1as+33a¥ 0
0 a, s,y +6 s; iy aa,—6 ay,a/al
by which we calculate
1 1 a, a,
_ =%l _=_|%]|]|a]|_|xeta _
ciiaam bioasr B Bl oty T a; | | 3xa,0,4+a =
X0 %1l a 3x,a3+4x.a,0;+ x.a} +a,
B 5
X, @, + as/a,
anl O el
2
|_3xn ag/al +4x,0,+ x,a3 + a,/al—-ﬁ pich-do (jaxaalaz +a)
’ —
1
__ | mai+aia,
0

X,ai—Xxy(2a; 4+ 15a3/a,) — x3 18 a,a; + a,/a,—6 a,a5/a;

For the contravariant form @ o x=x o a! of this transformation law we
refer to [6].

Problem. Can these two-parameter subgroups of & be determined
without supposing differentiability ?

Remark. 1 have proved that it is enough to suppose the continuous
differentiability only in first order for the listing of two-parameter subgroups
of Gi without using Lie’s theory. J. ACZEL and L. KOVACs have determined
all two-parameter subgroups of G; having the form

5
[Sﬂ }.
f(sl » Sg)

without supposing any further condition.
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§ 3. Transformation law invertible on a complex © of §.

Theorem 3 reduces the solution of (1) to that of the fuctional equation
3) 7t[(wa)b] = (ab), n&E=E; a,b€§; 5€C
if the existence of a complex € is supposed for which
xC=X
is onefold, i.e., for which
x=x5(€X) > x'=E(€C)

exists. In the present § we consider the solution of (3) in the special case
§—Gi, where ©; consists of the elements of the form

ol <] (L ]

respectively (i=1, 2, 3, 4).
1. €, and @, are normal subgroups of @, therefore, by Theorem 3, in
case i=1,2 we have the general solution
aa=(xa)a,

where
a—ya=yx(aC) (€a®), (i=1,2)

is an endomorphism of &;:
xaxb=yx(ab), a, beG;.

Since the endomorphism a — ya maps the group & onto its subgroup
a,
xa=x@C)=yx\|a

consisting of the elements of the form
1 a,
G| | = Z:(at) (€ aeﬁ)
as |l asl. xs(a)

a, 1
ga=c|0 |, c=]c
0 Cs

on @, similarly as in § 2 of the present Chapter, but without supposing
continuity or any further condition.
In the same way we obtain

we conclude that

.a]
_}:s(anai)
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“on @,. Since every a € @} has the factorization
a,/a}

il ]

the premissae of Theorem 4 are fulfilled and it follows that

a, A 1:11
xa=yx ‘ l [a,ja,] [ay’a*J . =o(a)0(a, a,) = o(a,/al)e(a,),
where
rﬂl a,
e(a)e(b)=e(a: b,), 0(a;)=|0 l= 0 y
os(@) ks(ai—a;)

o(a)/ad)e(a,) = o(a))o(a)a,).

Putting a,= a,, this last formula gives

1] 1
a(lfa.)==o(al)0(l)9(1/a.)=9(al)41 9(1/ﬂn)_—“o(as)[l ]Q(I/m),
0
if 1/a,=0, and we have 9
1 1
0(0)=xlO]= 0]
0 0
in the contrary case, y being an endomorphism.
So we compute
]/as 1 a, 1
o(a,) =10 1 J 0 =|a,
ks (1/a3—1/as) | ys |1 ks(a3—as) }’sass.

which is an endomorphism if and only if y;= 3/2.
Finally, we obtain the general solution

a, 1 a,
xa=o¢(a,)o(a/a,)=|0 a./a, [ a, ]
ky(ai—a,) ) | 3/2 a3/a} 3/2 aj/a, + ks (ai—a,)

on G,.

These endomorphisms of @ onto the cosets a@, resp. aC, give trans-
formation laws which are invertible on ©, resp. ©,. For the explicit form of
these transformation laws we refer to (16;), (16,).
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2. Let @=2E,, then
a, m
T =7t|a, |=| 1 | (€ )
as 0

and, by putting b;=b,=0, (3) gives
b, byma b,t,a T (ab)
a[(wa)b] = {(a)|0 | = x| bima |=|bima|=|m(abd) |,
, 0 0

0 0
i. e,
a ba,
';m[a,}=:rt.- bla,|, i=1,2.
as b?as_
Choosing b, = 1/a,, we get
1
ma=aim:| alal |, {==1,2.
as/aj |

So we know how sza depends on the component a,. Therefore, in what
follows, let a,, b, be constants for which a,= b, 1. Then (3) becomes

AR

In the special case

1
a,-{-b, .
as+ 3a,b, + by

Ta
ma+ by a =7
by7,a+ 3b, e

a;+ 30,0, 4+ b;=0
1 1
7| @y +by | = ay+ b, |.
0 0

1
ma—a,ma=0. anlaj].
a.

we have

We show that

The proof will use an indirect method. Considering the set of elements
a for which the statement does not hold, for these elements we choose b,
such that
. asma
= 3(na—ayma) ’

b,
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or, what is the same,

b‘l-"-r]a <+ Sbgfr;{a = (—aq—Bﬂng):’l‘lﬂ “l‘ Sbgi‘-r;za — 0,

ma
a-+b,ma|=
0

consequently

1
ag+62], :T;a—El, Tad=4Aa,
0

were true in contradiction to the indirect supposition.
Therefore we conclude
g
0 == a,ma, a—|02

as |
and

JT

ma 1 ]
(a:+ b)) a =st|ay+ b, .
(b+3ab)mal  lag+3a,b,+ by

By choosing a,=b;, =0, we get

1
i lo J: ﬂl[b'z“ =f(03)
as a|

independently from &,. This function f must satisfy the equation

J(@3)f1(b;+ 3a:6:)/f(a:)'] = f(as + 3a,0,+ bs),
or, what is the same, by introducing new variables and notation,

(23) gugp(vipu)=g(u+v), ou=f(u).

If pu==1, then v can be choosen such that

u-+v=vlpu=
holds. Then we have
QUGW = QW

and consequently
2

=
O)=0 or 0o
w .

for a value w. But this is not allowable on the complex C; of the group
&, therefore we can only have,

pu=f(u)y=1,

(Pw=(ﬂ1
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by which the solution of (3) takes the form
TR e e ;
ma a, 7| wy/a; a,f(m,/aﬁ a,

| a;/a}
1
ma==|\ma|=|aim, | al/a; ||=|aia/aif |==|a-|.
| a,/ai
i 0 4 P
Remark. The general invertible solution of (23) is
(24) gu=1+4cu

where ¢==0 is an arbitrary constant. Namely,

ow=0 or oc
implies _

w=1u/pu=u/(1 —eu) = constant
and
pu=1—1/wu=1+4cu

for the case ¢pu <1 (that is u==0), moreover if we put »=0, (23) gives
¢0=1. Therefore, @u has the form (24) for every u. On the other hand,
(24) with an arbitrary constant ¢ satisfies (23):

-L.

(1+cu)(l +cl+cu
(24) gives the following solution of (3):

a, )1+ c,a./a}

]= 1+c(u-+v).

wa=|a)1+ca/a

0
by which we obtain

& V 1 +cs(as/ay + Bgﬁa‘l/gl)/(.sl al)i
toa=n(Ea)=| (Ea+Ea)|---
0
(see (16,) in § 1 of Chapter II).

3. Let us consider the solution of (3), where the complex €=,
consists of the elements of the form

a.
0

as|.
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@, is a subgroup of §i, therefore, similarly as in the proof of Theorem

3, we have
a=(rwa)d, a=da, a€eC,,

where a’ is the representative of a:

Rl P 1%

Thus we get
ﬂ:l(a?/an) a, a4,
ma=|0 0|=|0
7!'5(0’2/0;) as Q3 7T, + @} 7,
and
a,b,m,
(rra)b =\ a,b,7,
albaﬂl'{"a;bzft}_'*‘asbsﬂg

So the left side of (3) becomes

M(L) a, b,

a,bim,
7t[(7ea)b] = |0 0

:Ts( a, ;?:rl]_ f‘b’”‘ + a;bim + ai’b?ﬂ:i

and the right one is

a,b; + a, b}
w20 ) ||
ab)=|0 0

m(i+ﬁ) a,bs+ 3a;,b,6, + a;b}

Finally, if we put

a,
- s S Sl

and compare the components of one side of the equation with those of the
other, m,, s, are determined by the system of equations

@5) i s () = -+ o),

@) (50 ) m@ +m( s ) er = B0+ ma+ o
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where we have the initial condition
(27) m0)=1, ,(0)=0

since al m(O) ”
(33) T - 0 .

n,(O) as
The general non vanishing soluhon of (25) is

m(u)=1,
so introducing

y(0)=F (W) — 5,
F@)+7@) = fla+),

by which we now have the general solution of (3)

1 Nla 1 [ a,
na=(na'}&=(n[a,/a¥]){0}=[O ] 0]
. L0 as f(a,/al)—3/2ai/at || as

where f is an arbitrary additive function. This gives the transformation law

-

(26) gives

[E;] E. [Euﬂ:
(28) 0 |loca=E&oa= () ca=n(§a)=m| §a, ==
&. §,a;+ &aj |

1 §a,

0 0

»

LA (]| s

which is, in general, not continuous for the geometric object in question.
If we require also continuity,
S(u) = ksu

holds and (28) becomes

[F a ]

Eoa=|0

§ai + & (a; — 3/2a3/a, + ks a,a48;)

(see (10), (11y), (12,) with x,=§&,, x;=§&/&, x,=0 in §1 of Chapter IL).

Remark. The general solution differentiable in first order of (25), (26) and
27) is
(v)=14qv,
‘ 715(v) = K3’ + Kyv*+ Ky,

(29) 1 3
Ky= 56 (ak—3), Ki= 73 (cki—1)



320 M. Hosszu

In fact, differentiating (25) with respect to # and keeping u=0

constant, we have
m)=¢, m@w)=14cqv

in accordance with (27). Further, substituting this into (26) and differentiating
with respect to u, in case u=0 we obtain an ordinary inhomogeneous linear
differential equation of first order, from which (29) follows if we take also
(27) into account. The restrictions (29;) on constants follow from (26).

So the general differentiable solution of (3) is

a, + ¢ a)/a,
mTa= 0 »
€10.a,/a} + a; + Kydifay + K, a3/a, + kia,a,
Ky =3/2(c,ki—1), K;=1/2(c.ky—3),
on €=@&,. By this we obtain the transformation law (16,) (see §1 in
Chapter II).
Let us compute here the stationary operators e.g. of e. They are
characterized by the property
eos=m(es)=ms =e.
Thus we have
s =n(a'5)=(na)§=e, 5= (na’)"', (s=a's)
for a fixed
ac¥ (G=%C).
From this it follows
§= | a'§= U a'(xa),
a' €9 aeW

consequently, §(= 8"") consists of the elements belonging to the form (17):

1kl

14+at
—f—C;f’
3+ at)+ K+ K;t‘—}—k f

(ma')a’ ' = :'rla,/al ][a,/a“

1+c¢t
==| 0 —r
KB+ KE+kt

3r
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CHAPTER IIL.
ALGEBRA OF OBJECTS.

§ 1. Topological algebras with endomorphisms in X.

A set A in the space X; is said to form an algebra with endo- (resp.
auto-) morphisms x— xu = F(x,u), if there is defined a binary operation
z2=0(x,y)=xy in A such that z€ A and
(30) (xYu=(xu)(yu), x,yEASXi; u€®<SEan
hold where E,, is an m-dimensional euclidean space. We shall consider only
the case where an identity e of the transformations xu exists :

: xe=X, X€EA
and every neighbourhood Ul of e is transitive on a neighbourhood of every
X € Xi, i.e., dim (xf) = k. This implies that m = k. An algebra A will be
called topological, if G(x,y) is a differentiable (topological) function of
variables x=={x;, Xo, ..., X} and y={y,,...,} and also F(x,u) is

differentiable in the variables u;(i=1,2,...,k), i.e,
31) C(z)=a...F(z,e)=(65) et 5 )
A U; Ju=e

is a regular matrix. Under certain integrability conditions this C(z) defines
a regular vector-to-vector function 2*= f(z) by the following differential
equation '

(32) d:f(2) = C[f(2)].
Now we show that z—2* is a local isomorphism as
(33) G y)=SI'(x,y) (=x"y'=(x0y)")
holds and here we have
(34) rxy)=x+y(y—x)=y(x—y)+y (=x0Y).

To show this, we differentiate (30) with respect to u:(i=1,2,..., k) and
keep u =e constant, and so we consider

0uF(G, &) = (3:G)0uF (x, ©) + (3, G) 8. F (3, €),

C(0) = (6:6)C(x) + (3, G) C ().
Substituting x* and »* instead of x resp. y and taking the definition
of f into account, we get

CIG(X", Y)] = 020 G (X", ¥") 8:1(X) + 0y G(x*,¥") 04 f (),
or, by the definition of I,
ClADN=orf(N)o:I"+arf(D)o, T = C[f(D)]oI"+ C[ (o T

LB
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Since C is a regular matrix, we obtain
1=09.I'+6,r,
where 1 is the unit matrix. This last equation shows that
0:[(x, x+2)—x] =0
thus I'(x, x4 2)—x depends on z=y—x alone:
r'x,x+4+2)—x=1y(2)
and this asserts (34).
So we have proved the following

Theorem 5. Every topological algebra in X with an operation G(x,y)
in first order continuously differentiable with respect to the components of x
and y having endomorphisms x — F(x,u) with properties
(35) F(x,e)=x, |0.F(x,e)|=0
and for which also a mapping z— z* can be defined by (31), (32) is isomorph-
ic to a topological algebra the operation of which is a I'(x,y) having the
form (34).

A suitable isomorphism is z— 2*.

By another term, the solution of the functional equation (30) is given
by (33), (34) if the conditions of differentiability of the first order and (35),
and further, the integrability conditions®) for the differential equation (32) are
fulfilled.

§ 2. Endomorphisms of a topological algebra in X,.

In the present § we consider the solution of the functional equation
(30) for F(x,u)=xu, in the special case k= 1. If the hypotheses of Theorem
5 are fulfilled, then the general form of G(x,y) is up to an isomorphism
z— 2* by which (33), (34) hold. Here the mapping z— 2" is 1-to-1 as the
supposition |a,f(z)| 50, that is, (35,) implies the strict monotony of f. By
this mapping we have an isomorphic algebra with the operation I'(x,y)=xoy
and with the operator @(x, u)=x o u defined by

(36) Xu=(xou)  (=F[f(x), u] =f]P(x,u])
which satisfies also a functional equation of the distributive type
(37) (xoy)ou=(xou)o(you)

similar to (30), since
[(xoy)ouf=(xo0y)u=(x"y)u=("u)(y't) = (xou)'(you) =
= [(xou)o(you)).

%) In the special case k =1 such a condition is the continuity or boundedness.
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Now, putting /" into (37), we obtain
(38) {p[x'{"/(y""x)’ "] = ¢(xr u)+7[¢>(y, u)_d)(x» H)]

Let u be keept constant. Denote by @(x) the function @(x, z). We can
restrict ourselves to the case where 7(0)=0 holds. Namely, in the contrary
case we consider $(x)=y(x)—y(0) instead of i(x) which satisfies both
$(0)==0 and
(38) x4+ 3py—x)]= @x)+9I9[P(y)— D(x)]
since, by putting y=1x, (38) gives

B[x+7(0)] = D(x)+7(0)
hence (38’) follows from (38) by substracting ;/(0) on both sides.

In order to solve (38), let us differentiate both sides of the equation

with respect to x and with respect to y, then, by putting y =x, we get
O’ (x)7 O)[1 =7 (0)]— 2'(x) 7" (0) = —7"(0) @' (x)".

Suppose that
(39) 9:G, 3,G=FE0 for y=x.

Then, accordingly to (33), (35) also

0.0 =1—7(—x), 3, =y (y—x)=%0
holds for y==x, consequently,
YO —7©0)]+0

and our differential equation

BURY. L N b S
S T ) it

can be integrated immediately as
log @'(x)=c[x— P(x)]+ log a,
D'e® =qe=")
Two cases are possible :
1) 77(0)=0,
2) 7'(0) 0.

6) More exactly, we have

@ e — asign @' e~
since

g
] dx =log |®'| = log (&' sign &').

But the continuity on the left side of the equation involves that a sign @’(x) can be replaced
by a constant a independent from x.
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In the first case our differential equation
D(x)=a

D(x)=D(x,u)=ax+b
and in the second case we get

has the solution

e? =ae~+ b,
where a=a(u), b= b(u) play the role of constants of integrations.
Thus the isomorphism
z—=2'=f(2), if 7"(0)=0

z—et=ef®, if y"(0)=0
transforms F(x, u) into a linear function and we conclude

resp.

Theorem 6. Every topological algebra A in X, with operation G(x,y)
Jor which differentiability conditions in second order and (39) are fulfilled
and which has twice differentiable endomorphisms x — F(x,u) satisfying the
conditions (35) is topologicelly isomorphic to a topological algebra which has
as endomorphisms certain linear transformations

x—+Xx=ax+b, a=ua(u), b=>b(u).
Remark. The linear transtormations
xX—+X=ax+b
are endomorphisms of an algebra which has the operation
H(x,y)=cx+cy+¢s

cGa@a—1)=(+c;—1)b.

For c¢;(c,+c;—1)==0 this operation H cannot be transformed by an
isomorphism to the form x+ y(y—x). This fact does not contradict Theorem
5 since here the suppostion
(35,) |6, F(x, €)| 2= 0
does not hold as

with

i=ax+_c1—+—_cci——_l_(a_l)’ (a=a(u))

is independent from & at x = c/(1 —c,—¢y).
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§ 3. Generalized functional equations of distributive type.

1. Two algebras A and A’ are called isofopic resp. one of them is called
the isotope of the other, if they exist three 1-to-1 mappings
X(€A)« Dx, ¥x, Ax (€ A)
such that there holds
(40) D(xy)=Pbx-Ay, X, y€A.
In a similar sense we shall say that a homotopism A-— A" is induced
by the mappings x— ®@x, ¥x, Ax (not necessarily 1-to-1). If a system

x— F(x,u)=F.,x, K(x,u)=K.x, L(x, 4)==L,x, uee

of mappings is considered, then (40) yields a generalized functional equation

(41) FIG(x,y), ul=H[K(x,u), L(p,w),  x,y€A; u€d
of distributive type.

The terminology is coming from the theory of quasi-groups [2]. An
algebra Q is called a quasi-group, if the left and right inverses can be
uniquely determined by

2=Xxy, Xu=zyl, yum-ixz, X,y 2€Q.

In the theory of geometric objects H. PIDEK [7—9] has dealt with
detailed special kind of isotopisms where K==L and G= H. It might be
remarked that (41) can be interpreted also in the nomography as the representa-
bility of a function 7(x,y, u) of three variables by scales with and without
repetition of scale u.

It might be observed that if (@, %, A) induces a homotopism Q — Q’,
then (&, @, A) induces a homotopism of the right quotient algebra Q, in
which the right inverse operation xy-' is defined. Namely,

B(xy )= Ddx-(4y)™

is equivalent to (40). This can be seen immediately by substituting xy
instead of x and multiplying on both sides by A4y. A similar statement holds
for (A,%, @) in connection with the left quotient algebra Q. If @, &, A are
invertible, i. e., they induce the isotopism Q — @, then the isotopism Q' — Q
is induced by (@', &', 47") since
O (x-y) =P "'xA"y, xy€Q.

The problem of the solution of (41) can be considered from two points
of view: to look for isotopic resp. homotopic algebras A, A" with the system
(Fu«, K., L,) of isotopisms resp. homotopisms, further, to look for an isotope

A’ and isotopisms (F., K.,L.) of a given A. In both cases the following
reduction is useful :
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Theorem 7. (F., K., L.) is a system of isotopisms of an algebra A if
and only if

-1 - ! Ty o
(42) @.;—-Fe Fu, ipu. m Xu: Au Le Lu;

PP x= A, Xx=—x

with an arbitrary but fixed element e € © is a system of isotopisms of A
onfo itself, i. e.,

(43) D,(xy)=P,xA,y, X, y€EA;ued®

holds.

Corollary. (41) ard (43) are equivalent functional equations, i. e., they

determine the same solution G(x, y), further, if G is given, then, by (42), the
solutions @, W, A give the general form of

(44) Fu=¢®,, Ki=v®,, Ly—iA,,

where @, W, A are arbitrary I-to-1 mappings (an isotopism of A) by which
also H(x,y)=x-y is determined, as

(45) P(xy) =yx-2y, x,y€A

necessarily holds.

PROOF. The equivalence between (41) and (43) can be seen immediately,
e. g. by substituting both sides of (43) into the (invertible) function F,:

F¢ mu(xy) = Kewux‘LeAuy-

One of the statements of the corollary is evident. In order to prove
the rest let us consider (®,, &,, 4,), a system of self-isotopisms of A and
@, ¥, A arbitrary 1-to-1 mappings which define x-y by (45). Then F,, K., L.
having the form (44) in fact satisfy (41) as

F“(xy)=¢¢"(xy)= ‘P(anx/fu_}’) =!PwuX'iduy=Kux-Luy.
It might be observed that the invertability of F,, K., L. was used only

at u—=e, further,
(D, TG, L2 )= (FP'F., K31, Koy L3 L)

is also a system of self-isotopisms of A. If G is not given in (41) but His,
then the solution will be given by reducing (41) to

(43) D, (x-y)=W,x- A,y
and not to (43), but here @, &, A are defined by
(42) ®,=F.F.', ¥,=K.K,', 4.=L.L}".

This is obvious as (F.', K.', L.'") induces the isotopism A'— A.
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2. We shall consider the system (®., &,, 4,) of self-isotopisms of a
given quasi-group in the special case where te mappings x— @, x, ¥, x, 4.x
have a universal fix element
(46) D, x0 =¥, xo= A, Xo = Xo, u€o.

We show that @,, &,, 4, are endomorphisms of a quasi-group with
the operations

5’ Gi(x%, ) = (xx7)(T'X%0Y),
(47) Gi(x, y) = (xx0) ("'yx0) 7,
2 Gs(x, ¥) = "% x7)(%.3),
respectively. Really, we have
(48)  D.Gi(x-y)=F(xxi) A('xy) =[Px(4x) ][ (¥x,) Py] =
= [(Px)x;"](7x @y) =G (P.ux, DuY)
and in the same way
(49) B,Gy(x,y) = Go(W.x, B.y), 4.Gs(x,y) = Go(Aux, A.3).
So we conclude

Theorem 8. Every system @,, ¥., A. of mappings having a universal
fix element x, is a system of endomorphisms of a quasi-group with operation
G, resp. G, resp. G, defined above at (47), if they induce a system of self-
homotopisms of a quasigroup with operation xy = U (x, y).

Corollary. The most general solutions @, P, A of (43) satisfying (46)
are solutions of (48)—(49) too, where G; is given by (47).

It is a disadvantage of hypothesis (46) that it contradicts the pro-
position
(35.) 0. F(x,€)| 40
of Theorem 5. However, by Theorem 5 one can solve (43) on A—Xx, and
the solution thus obtained can be extended to the whole of A.

3. In the special case ¥ =— 4 we show a general reduction without
supposing (46). Considering

(50) P[G(x, y), u] = G[F(x, u), B(y, u)], P(x,e)=P(x,e)=x;

x,y€Q; ued,
where Q is a quasi-group with operation G(x,y), we prove
(51) P[M(x,y), u]l = M[P(x, u), ¥(y, u)], M(x, x) =x,
where M(x, y) is defined by
(52) M(x,p) = (xy)x7", G(x,y)=G(M, x),

or, in another case, by
(53) ' M(x, y) =""y(xy), G(x,y)=G(y, M).
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M(x, y) thus defined is idempotent evidently in both cases and invertible
with respect to the first resp. second variable. For this M we obviously have
(51) as

PM(x,y)=P[(xy) x| = PxY)(@Fx)" = (LxPy)(Fx)" = M(Px, &y).

Naturally, M defined by (52) or (53) depends on x resp. y only if

G(x, y)= xy is not symmetric, namely, for the symmetric case, e. g., (52) gives

xp)x=0x)x" =y
and then (51) does not determine & since it holds trivially. However, in
the symmetric case we can prove a similar reduction under another supposition.
If the mapping
x <+ ux = G(x, x)

is invertible, then it defines an M by
(54) #MEG(M, M)=G(x: y)! M(x,y)m(xy)l"‘=,u"(xy)
for which we have

M(x,x) =p ' G(xx)=u'ux=x (=(xx)")
and
D(x yy* =[B(xy)" Blx )" ={P[(x )" (x ) " = [@(x))]* = (L xPy)"
that is (51). Thus we conclude

Theorem 9. If the mappings ®@,, ¥, = A,(P.x=P,x=Xx) induce
a system of self-homotopisms of a quasi-group Q with operation G(x, y) = xy,
then x —®P.,x is an endomorphism of an idempotent algera with operation
M(x,y) defined by (52) or (53) resp. (54) for an invertible u. M(x,y) is
invertible with respect to the first resp. second resp. both first and second
variables according to its definition.

Corollary. Every solution x— ¥.x of the functional equation (50)
satisfies also (41), where M is defined by (52) or (53) resp. (54) (if these defini-
tions are possible at all).

In the case where M is defined by (54), the quasi-group properties of
Q were not used and then (50) and (51) are equivalent funtional equations
that is they determine the same solutions. In fact, then, if we put y=x,
(50) and (54) give

Du=u®, O=uPu',

A function @ of this form and G=uM with an arbitrary invertible x in
fact satisfy (50) as

uBuG(x, y) =uPM(x,y) =uM(@x, Py) = G(Lx, Ly).
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It might be observed that a similar reduction can be applied to solve
(43), if, e.g. A= ®. Namely, then (¥, @, @) induces the isotopism

Q. — Q,, efc.

The method can be used not only for binary algebras but also for the

functional equation

¢ F[G(x’ y:“'); U]:G[K(x, U),K(y, H),..-]
etc.

Bibliography.

[1] J. Aczéw, Beitrige zur Theorie der geometrischen Objekte 1—V, Acta Math. Acad. Sci.
Hungar. 7 (1957), 339—354, 8 (1957), 19—64.

[2] R. H. Bruck, Some results in the theory of quasigroups. Trans. Amer. Math. Soc. 55
(1944), 19-52.

[3] J. HaanTjes—G. Leman, On the definition of geometric objects I—II, Nederl. Akad.
Wetensch. Indag. Math, 15 (1953) 208—215, 216—222.

[4] M. Hosszu, On the functional equation of distributivity, Acta Math. Acad. Sci. Hungar.
4 (1953), 159—167.

[3] A. Nyennuis, Theory of geometric object, Amsterdam, 1952.

[6] J. E. Pensov, The classification of geometric differential objects, Dokl. Akad. Nauk.
SSSR 80 (1951), 537—540 (Russian).

[7] H. Pioex, Sur les objets géométriques de la classe zéro, qui admettent une algébre,
Ann. Soc. Polon. Math. 24 (1951), 111—128..

[8] H. Pipex, Sur un probléme de l'algébre des objets géometriques de classe zéro dans
'espace X;, Ann. Polon. Math. 1 (1954), 114—126.

[9] H. Pipex, Sur un probléme de Il'algébre des objets géometriques de classe zéro dans
I'espace X,, Ann. Polon. Math. 1 (1954), 127—134.

[10] A.Speiser, Theorie der Gruppen von endlicher Ordnung, Berlin, 1923.

[11] B. L. van per Waerpen, Kontinuierliche Gruppen. (Lectures.)

(Received September 11, 1957.)



