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§ 1. Introduction.*)

Let S,,..., Sk be subsets of an additive abelian group G.') We say G
is the direct sum of its subsets S: if each element g of G may be represent-
ed uniquely in the form g=x,+ --- +x with x;€S8; (i=1,2,...,k). Hf the
S: are subgroups of (i, then G is a direct sum in the common sense. There-
fore we may write: G=S§,+ --- +Sx. The components S: will be called
quasi direct summands of G.

In the case of finite abelian groups G, HAJOs has considered direct
decompositions of G, G=S8,+ ---+ Sx where the §; are of the form §;=
=0, a;, ..., (ni—1)a] = [a].,. (We shall call such subsets cyclic subsets.”))
Ha)Os’ result”) states that one of the components S; is then necessarily a sub-
group of G.

It is natural to raise the question of finding a suitable generalization
of HAJOS’ result to infinite abelian groups. There are two main directions in
which such a generalization may run.

1. We consider only direct decompositions with a finite number of
components. Then we are confronted with the problem of finding a suitable

*) The results of this note have constituted a lecture held in the Seminary of
Professor KurosH, Lomonosov University, Moskow, 28th October 1957.

1) In this note we shall be concerned with abelian groups only, therefore in what
follows “group“ will mean always “abelian group*.

) This terminology differs from those used by Hajés and Retoer; we prefer this
because "cyclic” expresses the fact that we have to do with subsets generated by a single
element.

8) Cf. Hajos [1]. It is easy to see that it suffices to consider decompositions with
cyclic subsets of prime length, [a"'Pa where p. are primes. — The original proof of Hajos

has been considerably simplified by Réper and Szere.
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substitute of the notion of cyclic subsets S; such that the general theorem
shall contain the original result of HAJOS as a special case.

2. We admit only cyclic subsets as quasi direct summands. Then
we are of course forced to admit an infinity of components, and the prob-
lem consists in finding the infinite groups in which the conclusion of Hajos’
theorem holds.

We devote the present note to a discussion of both kinds of generali-
zations.

As to 1, in finding suitable subsets S;, we start with another form of
the conclusion of HAJ6s™ result. The subgroup character of a cyclic subset is
equivalent to the assertion that it is a periodic subset of G in the following
sense: a subset P of G is called periodic if g4 P= P for some g€G, g=0.
Furthermore it is clear that the cyclic subsets S; which are not periodic have
the property that the sets a;+S; and S; differ merely in the elements n;a;
resp. 0. Using this simple observation, we introduce the concept of weakly
periodic subsets: we shall call a subset Q of G weakly periodic if there is
a g€G, g=0 such that any one of g4+ Q and Q contains at most one
element not belonging to the other. Then we can prove that if G=Q,+---
<o+ Qr is a direct decomposition of an arbitrary abelian group G into
a finite number of weakly periodic subsets, then one of the components is
necessarily periodic. It is an interesting fact that the proof of this assertion
is rather easy if we assume the infinity of G, while in the finite case it is
equivalent to HAJOs’ theorem whose proof is surprisingly difficult. Thus the
essential part of the stated result seems to lie in the finite case, and there-
fore this generalization of HAjOs’ theorem cannot be considered as an essen-
tial one. Its interest lies merely in the fact that it shows: HAJOS’ theorem
admits a formulation valid for arbitrary abelian groups.

In discussing problem 2, our aim is to get a complete survey of all
groups G for which HA)J0s’ theorem holds, i. e. an (infinite) direct decom-
position G = 2'S; with cyclic subsets S; implies the subgroup property of
one of the S;. This problem has been stated and studied in some extent by
T. SzeLE in the last year of his life.f) He conjectured that the sought class
coincides with the class of all torsion groups;®) we shall show, however,
that this conjecture fails to hold, moreover, there are relatively very few
groups for which HAjos’ theorem holds. We did not succeed in completely
determining the group class in question, we did only under the restriction

4) His results are unpublished ; they are known from a letter to L. RépEL
) Szere [4).
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that G does not contain any subgroup of Priiferian type.?) Our main result
states that for a group G without subgroups of type p= HAJOS' theorem
holds if and only if G is a direct sum of a finite group and an elementary
p-group. (Note that for the second type of groups HAjOs’ theorem is trivially
true: in any direct decomposition into cyclic subsets all components are sub-

groups!)

§ 2. Decompositions into weakly periodic subsets.

By a periodic subset of a group G it is meant a subset P for which
there is a non-zero element g in G such that g+ P=P. g is then called
a period of P. Now we give a full description of all periodic subsets.

If aeP, then g+ P=P implies +g-+acP and, more generally,
ng-+acP for every integer n. Thus P contains together with a also the
coset a+ {g},”) and therefore P consists of a set of complete cosets mod {g}.
Let K be a complete set of representatives of P mod {g}, then we have ob-
viously P= {g} + K. Conversely, every set of complete cosets mod {g}, that
is, every set of the form P={g}+ K is for g==0 periodic with period g.

Lemma 1. A subset P of a group G is periodic if and only if it is
of the form P—={g}+ K for some non-zero element g and for some subset K
in G.

As a generalization of the concept of cyclic subsets we define a subset
Q of G weakly periodic if there exists a non-zero g in G such that g+ Q
contains at most one element not in Q and Q contains at most one element
not belonging to g+ Q. We call g again a period of Q.

It is not difficult to characterize all weakly periodic subsets of a group.
Assume Q is weakly periodic, but not periodic, and g==0 is a period of Q.
Consider the case when Q contains an element @ not in g4 Q, and form
the coset a+ng (n=0, +1, +2,...). The following cases may occur:

l.a4+ngeQ for n=0,1,...,m—1, but not for n=m;
2. a+ngeQ for all non-negative n, but for no negative n;

3. a+-ngeQ for all non-negative n and for n=—(m+1), —(m+2),
...(m>0).

6) The group of type p= or of Priiferian type is isomorphic to the group of all
complex roots of unity of degree p, p2, p*,.... This group will be denoted by the symbol
C(pw), while C(n) will denote a cyclic group of order n.

™) For a subset S of G, {S} denotes the subgroup generated by S.
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If there is not such an a, then there is an @ in g4 Q but not in Q and
we get the possibility :

4. a+ngeQ for all negative n, but for no non-negative n.

In all cases Q contains a “section Q" of the coset a4 {g} and if we
separate it from Q, the remaining set P is either void or is periodic with
the period g. We conclude

Lemma 2. [f Q is a weakly periodic but not periodic subset of G,
with period g, then it has the form®) Q= PuU Q' where P and Q’ are disjoint,
P is periodic with period g and Q" has either of the forms for some a€Q:

l. Q=[a,a+g,...,a+(m—1)g] (0<m<0O(g));")

2. Q=[a,a+g,...,a+ng,..]);

3. Q=][....,.a—ng,...,a—(m+1)g; a,a+g,...,a+ng,...],

4. Q =|[...,a—ng,...,a—g,al.

Obviously, if g is of finite order, then only the first alternative is possible.

In view of this lemma we see that a finite weakly periodic subset con-
sists of a finite periodic subset and a set of the form 1, i.e. the second
part Q" is of the form a+S§ where S is a cyclic subset. These play an im-
portant role among the weakly periodic subsets, as it turns out from

Lemma 3. /f Q is a weakly periodic, but not periodic subset of G and
is at the same time a quasi direct summand of ‘G, then it is of the form
Q=a+ 8 where S=|gli is a cyclic subset of G such that | divides the order
of g whenever g is of finite order.

Assume the hypotheses of this lemma and denote by g a period of Q.
For some subset K of G we have G=Q+ K whence g+ Q+K=Q+K
implies that either g4+ Q= Q (which is excluded) or both Q and g+ Q
contain elements not belonging to the other, i.e. in Lemma 2 either case 1
or case 3 may occur. We then have either (a +mg)+K=a+ Kor (a—mg)+ K
=a+ K, consequently, mg+ K= K in either case. Here m is the number of
elements in the non-periodic part Q" of Q (or O(g)= <), so that mg==0. Since
x+mg+K=x+K for any x€Q, by the directness of G = Q+ K, the sub-
set Q cannot contain x and x4+ mg at the same time whence we obtain that
the periodic part P of Q fails, and Q must be of the form 1 in Lemma 2.

In order to prove the stated divisibility, assume g is of finite order
and Q=a- S with S=|g],. Clearly, for all integers ¢ we have l{g+ K=K,
but for no r with 0 <r <! may rg -+ K=K hold. Consequently, /f can have
no remainder less than / when divided by O(g). This completes the proof.

§) U denotes joins in the set-theoretical sense.
9) O(x) denotes the order of the group element x.

D23
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Observe that we have incidentally proved: if G is a direct sum,
G = Q+ K where one of Q and K is weakly periodic, then either Q or K
is periodic.

An extension of HAjos’ theorem to infinite groups is the content of the
next result.

Theorem 1. If a group G is represented as a direct sum of a finite
number of its weakly periodic subsets Q;,

G= Qi+ +Qu,
then at least one of the Qs is periodic.

Since any quasi direct summand Q may be substituted by a-+Q for
an arbitrary a in G, there is no loss in generality in assuming 0€Q;,
O¢g:+ Q: for each non-periodic Q; of period g;. Then Lemma 3 implies
that the non-periodic Q; are cyclic subsets. Since these are necessarily finite,
it follows that if G is infinite then at least one of Q; is infinite and thus no
cyclic subset. Consequently, it must be periodic. Thus the case of infinite G
is settled.

What remained to prove is therefore the following assertion for finite
groups: G cannot be represented as a direct sum of its cyclic subsets such
that none of the components is periodic.””) This is equivalent to HAjOS’
theorem.

Let us mention the following problem. Let P be a periodic subset of a
group G and assume it is represented as a direct sum of a finite number
of weakly periodic subsets Q;. Is then one of the Q; necessarily periodic ?
If P is a quasi direct summand of G, then the answer is affirmative, but
the problem is in the general case open.

§ 3. Decompositions into an infinity of components.

Now we turn our attention 1o the second kind of generalization men-
tioned in the introduction.

Let S; (A€ A4) be a collection of subsets in a group G such that almost
all of them contain 0. We say G is the direct sum of the S, (4€4), desig-
nated by the costumary notation G=_2 S, if each element g of G may

reA

19) That a periodic cyclic subset is necessarily a subgroup may be proved as follows,
Let P==a], be periodic of period g+ 0; then P={g} + K for some subset K of G.
0€P implies g€ P, g=ka for some k (I=k=I[—1). P contains 0,a,...,(k—1)a and
therefore also the cosets of 0,aq,. .., (k—1)a mod {ka}, consequently, all the elements of
{a}. We infer that P=={a}.
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be written in a unique way as g==xy,+---+ X, (€S, x,F+0,k=0). We
shall be concerned with the case when all components are cyclic subsets.

We begin with the following theorem which states the existence of such
direct decompositions.

Theorem 2. Every group has a decomposition into a direct sum of
prime cyclic subsets,

(1) G =ﬁ€.§A‘ (@3], (p:. are primes).

We prove the assertion in three steps. First let G be an infinite cyclic
group, G ={aj. Then the following decomposition holds :™)

@) G =[a).+[—2a],+ [4a].+ [—8a),+ -

Next suppose G is a torsion group. We define a well-ordered ascend-
ing chain of subgroups G. beginning with O and ending with G, in the
following manner. Put G,=0; if G,. is defined and is distinct from G,
then pick out an element b, in some coset of prime order p. of G mod G.,
and put G.=1{Ga-1, b.}. Then the index of G.., in G. will be a prime. If

« is a limit ordinal, we set G, = |J Gg. There is a least ordinal o with G, = G.
p<ee

With the elements b, and the primes p, we havc G——:Z[b,]pn. In fact, let
a<o

0=g€G; then there is a least ordinal y with g€G,. This ¥ cannot be a
limit ordinal, so that y—1 exists, and by definition there is an integer k,
such that 0 < k, < p, and g—k,b,€G,... Now we repeat this argument for
the element g,—=g—k,b, by taking the least ordinal y, with g,€G,, etc.
Since there is no infinite descending chain of ordinals y >y, >--- we obtain
g=kyby,+ -+ +ky by, with O <k, <py. The uniqueness of this represen-
tation follows successively by taking into account that ¥ and k,, then y, and
ky, etc. are uniquely determined.

Finally, let G be arbitrary. We select in G a maximal independent set
of elements x, (#€M) of infinite order and then form H= Z {x.}. We de-
“EM

compose every infinite cyclic group {x,} into a direct sum of prime cyclic
subsets in the manner described above so as to get a desired decomposition
for H. Next we decompose the torsion group G/H as shown in the preced-
ing paragraph and replace each coset of G/H by one of its elements. If we
combine this with the decomposition of H, we arrive at (1), gq.e.d.

We shall say that for a group G HAJOs’ theorem holds if any decom-
position (1) of G contains a component which is a subgroup.

1) This has been discovered by T. Szere.
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The following lemma, due to T. SzELE, plays a basic role in investi-
gating the infinite groups for which HAjos’ theorem holds.

Lemma 4. [f HAaj0S' theorem holds for a group G, then it holds for
all subgroups H of G.

The case in which H is an elementary p-group'™) needs a separate
discussion. If for such a group H we have H= Z [as],,; then for an arbi-
trary index 4 either p, =p= O(a) in which case [a,],, = {@,} or [a],, is not
periodic. In the latter case Lemma3 implies p,|p, i.e. [a\] is again a group.
So in this case every component is a subgroup.

We may henceforth assume that /A is not an elementary p-group. Let
H=_2[a);, be a decomposition of H into cyclic subsets. In view of The-
orem 2 we take such a decomposition of G/H, G/H =Z‘[b;],,u where b}, de-
note cosets mod H. Pick out a b, in each b in such a manner that p.b.40;
since H is not an elementary p-group, a b, of this kind always exists. Then
G=Z‘[m],,k+Z'[b,;],,,l1 is a direct decomposition of G into cyclic subsets,
therefore hypothesis implies that some component [a,] or [6,] is a subgroup.
By the choice of the &,, at least one [a] must be a subgroup.

Now let us see some examples in which HAj0s’ theorem does not hold.

A) Formula (2) shows that Hajos’ theorem is not valid for infinite
cyclic groups.

B) Let G be a direct sum of infinitely many cyclic groups of prime

@

orders with different primes p;, G=Z{a.-}, O(a:) = p:. For convenience we
=l

assume p, < p, <---. Then
(3) G — [al—ag_aslp‘ + [az + as]p, '+' [as_ai —aﬁlpg + [04 + afilpi + 55
For, let O =|=g €aG. If g€ {ai}, g= kia; (O < ki< p.-), then

& = ki(@i— Qis1— Qis2) + Ki(Gin1 + Qis2)
or

g =ki(a; + ais1) + (Pir1 — ki) (i1 — Qise —Qi33) + (Pi1 — k) (Qiv2 + @isa)
according as i is odd or even. If g does not belong to any {a,}, then
g=kia; + kis1Qi1 + - - - + kinjais; with O< ki < p;, j=1, and put

g=k@+awn)+g or g=kila—am—aw)+g,
then proceed so with g” etc. It follows readily that after a finite number of
steps this process comes to an end. In order to prove the uniqueness, assume

g=lt )+ Ln(@nF--)+--=L@t )+ LEa(@GnF--)

12) A group is elementary p-group if all of its non-zero elements are of the same
prime order p. It is a direct sum of groups C(p).



On the possibility of extending Hajos' theorem. 345

with ;== 1[. If we reorder both expressions with respect to the a@;, we obtain
a contradiction, since the coefficients of a; are different, although the a; are
independent.

Clearly, in (3) no component is a group, thus for the G considered,
Hajos’ theorem fails to hold.

C) Let G be a direct sum of countably many cyclic groups of order p
and countably many ones of order ¢ where p and ¢ are different primes.
We take generators a; of these cyclic groups and arrange them so that a4ns
and a2 are of order p, a@s.s and as, are of order ¢g. Then

4) G =[a,—a—as]p+[a,+ as]p + [as—ai— @], + [ai + as)e + -+

Proof as in B), only a little complication arises in certain cases, e.g. if
p>q-+1, then

@+ 1Da,=(q+ 1)(a:+as) + (g—1)(as—a,—as) + (¢ —1)(a, + as).
D) Let G be a direct sum of a countable set of cyclic groups of order
p* where p is a fixed prime, G= 2 {a.). Then

n=l1

() G=/[a),+[pai—as}y +[ac}, + [Pas—as], + - -

and we can show that each g=~k,a,+ --- + kn.a. may be represented by ele-
ments at most in the first 2n+4-1 components. Write k; = k,,+ k,p with
0=k, kyy < p, then ka,= kya,+ k,(pa,—a,)+ k,a,, and do the same with
(k;i+ k;)a, and so on. Uniqueness follows as in B) by rearrangement with
respect to the a;, if we take into account that k,, and k,, are uniquely deter-
mined by k.

From the examples A)—D) and from Lemma 4 we can conclude that
a group G for which HAJos’ theorem holds must have a rather special struc-
ture. A) implies that G is a torsion group, B) implies that G has but a finite
number of non-zero p-components, C) implies that G has at most one
p-component G, with infinitely many elements of order p, finally, from D)
it follows that pG, contains but a finite number of elements of order p.
Consequently, G must be of the form™)

©) G=F+3€(p7)+ 2 C(p)

where F is a finite group and m is an arbitrary cardinal number.

18) G may contain but a finite number of direct summands C(p®), and the com-
plementary direct summand of G must be bounded. Cf. e. g. Kurosu [2]. — By ZA
we mean the direct sum of m copies of A. n
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The next result answers the stated question for groups not containing
Priiferian subgroups.

Theorem 3. For a group G without subgroups of type p= Haj0s
theorem holds if and only if it is of the form

(M G=F+2€(p)

where F is a finite group, p is a fixed prime and m is an arbitrary cardinal
number.

Only the sufficiency must be verified. Let G have the form (7) and let
G=2[%]p,. Clearly, ps,---ps, divides the order of {x,,, ..., X, },**) hence al-
most all p, equal p. Consider those x, which occur in the representations
of the elements of F and for which p,==p. Say, these are x,..., X». Sup-
pose in the representations of the elements of J=={x,,..., Xa} alSO Xp41, . .., Xnsx
occur. Then we prove

(8) K={xll covy Xny Xngly o -uxﬁ-i'}=[x1]m+ e +[xn]pn+[xn+1]p+ e +[xn-i-k]p-

If this were not true, then K would contain an element y of the form
y=HtXnsx1+ -+ with 0=, =p—1 and, say, t,==0. From (7) it follows
that pXus1, ..., PXnex € F whence we conclude that y€ K can be brought into
the form y=g+ nXau+ -+ + X with g€/ and 0=r;=p—1. But g may
be written as g==5X,4 -+ 4 SaXn+ Snt1 Xnt1 + ** - + SnicXnsk With 0=s;=
= pj—1 whence
$1 X+ +++ + SaXa+ (11 Snp1) Xt + +++ F (Nt Sni) Xt == i X1 + ==

If there is an index i such that ri+s..«=p, then we collect these pXnu,
form their sum (which is an element z of F) and bring it to the right mem-
ber of the equation. 2 can be represented by means of x,,...,x,, and so
we get an equality which contradicts the directness of > [x;] (f,==0!). Con-
sequently, (8) holds and a simple appeal to HAjos’ theorem on finite groups
completes the proof.

If the group contains subgroups of type p®, then the problem is un-
settled. In the special case when G itself is of type p® one can prove the
validity of HAJOS’ theorem. The following proof is due to T. SzELE.

Let > [aJ, be a direct decomposition of the group @(p=). For different
t=l1

indices i and j the elements a; and a; cannot be of the same order, since
otherwise {a;} = {a;} and therefore there is an integer {, relatively prime to p,

14) This is a consequence of the fact that ["11]+“‘+ [xak] is a quasi direct sum-
mand of {xll,. ’ .,x,*}.
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such that a;=ta;. By a lemma of REDet [3], any component [a;], can be
substituted by [fa;], whenever ({, p) =1, that is, in our present case [ta;], =
= [a;], can be put on the place of [a;],; this is impossible. Now if none of
a; were of order p, then no element of order p could be written as ka, +
4 oo 4 k,a., with 0=k, =p—1, for this element is of order max O(k:a;).

We close the paper with proving the following sharper form of HAjoS’
theorem :"°)

Theorem 4. If HAJOS' theorem holds for a group G, then in any direct
decomposition of G into cyclic subsets the components can be well-ordered so
that for each ordinal « the components of index < e represent a subgroup of G.

If G=2'[a:],, is a decomposition of G, then by hypothesis there is a
component, say, [a;],, which is a subgroup and put G,=|a,],,. Let « be an
ordinal and assume that for each ordinal less than « the components have
already been selected. If «—1 exists and G.., is the subgroup represented
by the components of index <e«—1, then the remaining components yield
a decomposition of G/G,-;. G must be of the form (6), hence G/Ga-1 is
isomorphic to some subgroup of G and therefore by Lemma 3 HAjos’ the-
orem holds even for G/G..,. We conclude that among the components having
not yet an index there is one which is a group mod G.-,; we provide this
with index «—1 and see that the direct sum of G..; and this component is
a subgroup G« of G. — If « is a limit ordinal, we set G,,—U Gp; this G, is

the direct sum of the components of index <. The ansmg well-ordering
satisfies the requirements.
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