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On the splitting problem of mixed abelian groups.
By JENO ERDOS in Debrecen.

§ 1. Introduction.

The theory of abelian groups is usually divided into three great parts:
theory of torsion groups, torsion-free groups and mixed groups.') The basic
problem concerning mixed groups is: how the study of mixed groups could
be reduced to the examination of torsion groups and of torsion-free groups?
This is frequently stated in the following special form: under what conditions
decomposes a mixed group into a direct sum of a torsion group and a
torsion-free group? Making further distinctions we arrive at the following
three problems:

(I) For which torsion groups 7 does the relation Ext(7, H)==0 hold
with every torsion-free group H??)

(II) For which torsion-free groups H does the relation Ext(7, H)=0
hold with every torsion group 77

(IIT) What conditions must be satisfied by a torsion group 7 and by
a torsion-free group H in order that the relation Ext(7, H)=0 be valid ?

Up to now only the first of these problems had been fully settled.
Namely, a torsion group satisfies the condition of (I) if and only if it
is a direct sum of a group of bounded order and a divisible group (R. BAER
[1], S. V. FomiN [3]). The remaining two problems are open, only partial
results are known. We mention here a partial answer to the second one: a
countable torsion-free group satisfies the condition of (II) if and only if it
is a free group (R. BAER [1]).

In the present paper we shall give a new approach to these problems,
and in this way we obtain results concerning extensions of p-groups by

1) In what follows by a group we shall mean always an additively written abelian
group. For the fundamentals of the theory of groups see e.g. A. G. Kuros [8] and
I. KapLansky [5]. Numbers in brackets refer to the bibliography at the end of the paper.

%) Ext (A, B)=0 expresses the following property of the groups A and B: any
extension of A by B contains A as a direct summand.
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torsion-free groups (Theorem 9 and Theorem 10). By virtue of these we
can solve the second problem in the case when the torsion-free groups under
consideration have countable p-adic dimension for at least one p (Theorem 11).2)
By means of our theorems it is possible to give answer to an open question,
raised by R. BAER in 1936. It is asked whether the group of all sequences
of rational integers satisfies the condition of the second problem above
(R. BAER [1]; see also I. KApLANSKY [5]). The answer is negative (§ 4).

A method of examination of torsion groups and torsion-free groups is
based on the fact that any p-group can be regarded as a module over the
ring of p-adic integers and any torsion-free group can be embedded in such
a module; in this way one obtains results for these groups by studying p-adic
modules.*) Now we set as an aim the investigation of the above mentioned
splitting problems of mixed groups by the methods of p-adic modules. This
is motivated by the relatively advantagzous algebraic and topological proper-
ties of p-adic modules.”) Our main theorems are contained in §4, but we
get over the main difficulties in § 2; the connection between the extensions
of groups and that of p-adic modules is established in § 3.

There are several ways of generalizing our propositions; e. g. by chang-
ing the class of groups, or the operator domain of modules, or the topo-
logical structure, etc.

§ 2. Extensions of p-adic modules.

In this section we settle the splitting problems of mixed p-adic modules,
supposing that the torsion-free modules under consideration are of countable
dimension.’) Throughout we shall make use of Theorem 1 which seems to
be of some interest also in itself. Lemma 2 is a consequence of a theorem
due to S. EiLENBERG and S. MACLANE [2] (cf. also R. BAER [1] and
E. SasiapA [9]). The crucial point of the whole paper is the proof of Lemma 3.
The final conclusions of this § are Theorem 4 and Theorem 5.

Theorem 1. Let G be a p-adic module without elements of infinite
height and let be given a direct decomposition of a basic submodule of G

8) For the definition of the p-adic dimension of groups see § 4.

4) For the theory of modules over the ring of p-adic integers (inthe sequel p-adic
modules or briefly modules) see I. KarLansky [5].

5) Any p-adic module having no elements of infinite height can be equipped with a
topology (p-adic topology) in a natural way: the submodules pnG(n=1,2,...) form a
complete system of neighbourhoods of 0.

6) The concept of the dimension of a p-adic module will be introduced in the pre-
sent § This is suggested by the analogy between Hilbert spaces and p-adic modules
established in Theorem 1.
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into a direct sum of cyclic submodules B, (v€I).") Then any element of G
can Oe represented as the sum of a convergent infinite series the non-zero
terms of which belong to different B, s.8) This representation is unique apart
from the order of the members of the series and apart from O terms.

Proor. First of all we remark that the B,s and the submodule
B=Z;B, inherit their p-adic topology from the p-adic topology of G, therefore
rel’

the convergence of sequences and series is understood always in the sense
of the p-adic topology of G.

The submodule B is an everywhere dense subset of G, consequently
any element g€ G can be represented as the sum of a convergent infinite
series a,+ - +an+--- the terms of which belong to B. Denote by a., the
component of a, in B,. It is easy to see that the series a;, 4+ + @y + «+-
converges to an element b, of B, for each »¢I'. The convergence of the
series @, ++++an+ --- implies that a,,...,a.,... is a O-sequence, thus
Qiy,...,0ny, ... also tends to O; since B, is a complete module, ai, 4 +--
v++4Qny++++ has a sum b, in B,. The subset of all non-zero b, s is
countable. Indeed, all components of any a, are O except for a finite number
of indices »€I’, sO @.,==0 holds only for a countable set of pairs n,»
(n is a positive integer, »€1I), i. e. all terms of the series @y, + -+« +@py + -+
are 0 with the exception of a countable set of indices »€I'. Now let b,+ ---
++++bs+--- be a series formed by all non-zero b, s in an arbifrary order
and possibly completed by zeros. We show that this series converges to g.
Let k=0 be an integer. There exists an index N with the property that
forany n=N a,+ -+ +a.—g€p*G, because a,+ - +an++-- =g. Evi-
dently a,€p*G if n> N, hence an €p*G (n>N,v€I). Thus we have
Qi+ +am—0,€p*G forany v € I'. Let @, +---+an€ By, +--- +B,,; it
is clear that b, € p*G if v==v»; (i=1,...,r). If m is a number large enough
then the non-zero members of b,,, ..., b, occure among b,, ..., bm; therefore
we get

byt e+ ba—g=b+ -+ +ba— (@4 -+ ax) + @+ + ax)—g=
—b4+03, 4 -+ + 0, — (@i, + -+ 1) oo+ @+ -+ aw,)] +
+ @+ +an)—g =040, — @i+ - +aw)] + -+ +
+[65,—(@w,+ -+ am) ]+ @+ -+ +ay—g € PG

7) A pure submodule B of G is a basic submodule if it decomposes into a direct
sum of cyclic modules and G/B is divisible. Any p-adic module has basic submodules
and all these are isomorphic. For the concept and properties of basic submodules see
L. Ya. Kuuxov [6], [7], L. Karoupnine [4], T. Szere [10].

%) The convergence of series is understood in the sense of the p-adic topology of G.
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(here b denotes the sum of those ones of b,,...,b. which differ from
by, ..., b;,). With this we proved b,+ - +by+--- =g.

In order to prove the uniqueness let us consider representations

g=0b"+ - +bV+-- and g=b"+ - +b0+ -

of g € G, where in both series the non-zero terms belong to different B, s.
We may suppose that by and &9 belong to the same B, for each index n;
this can be done always by reordering the series and by completion with
zeros. To show this the following remark is sufficient: if g, 4 -+ +gn+--- is
a convergent series of clements of G then any series obtained by reordering
from the former one converges also to the same element of G. We shall
omit the proof of this simple fact. Now from the above representations of g
we get

G —b) + -+ (B — )+ --- =0,
Thus for any integer k =0 one has

6" —b6P) 4 oo + (B —0D) € PG

if n is large enough. This implies 5%’ = 6% for every index n, from which

the desired uniqueness follows.

Lemma 2. Let A" be a factor module of the p-adic module A, and B’
a submodule of the p-adic module B. Then Ext,(A, B)=0 implies
Ext, (A’, B')=0.9) :

ProoF. Let B be represented as a factor module F/F, of a free module F; the
elements of F/F, will be indentified with the elements of B. Let F* S F be the
submodule for which F'/F,= B’ holds. The condition Ext,(A, B) =0 is equiva-
lent to the following one: every homomorphism of F; into A can be extended to a
homomorphism of F into A (the corresponding statement for groups is a
simple consequence of a theorem of S. EILENBERG and S. MACLANE [2]; one
proves the analogue of this corollary for p-adic modules by similar consi-
derations). Accordingly, in order to prove the relation Ext,(A’, B')=0 it is
sufficient to show that any homomorphism ¢ of F, into A" can be extended
to a homomorphism ¢’ of the free module F’ into A’. Let x, (¥€I') be a
basis of the free module F, and choose a representative a, € A from each
coset x,¢ of the module A. The correspondence x,—a, (v € I') defines a
homomorphic mapping v of F,into A. The condition Ext,(A, B)=0 implies
that v can be extended to a homomorphic mapping of F into A, and a

%) Ext,(A, B)=0 expresses the analogous property of the p-adic modules A and B
as Ext (A, B)=0 for groups, but extensions are understood in module-theoretical sense
(see footnote 2).
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fortiori to that of F’ into A; this will be denoted by wv’. The mapping v’
induces a homomorphism ¢ of F into A’. It is clear that ¢’ continues ¢;
thus, indeed Ext,(A", B)=0.

Definition. By the dimension of a p-adic module we mean the (com-
mon) rank of its basic submodules.® )

Lemma 3. Let H be a p-adic torsion-free module of countable dimen-
sion and T—= 2 C(p*). Then Ext,(T, H)= 0 implies that H is a free module.\")

PrROOF. First of all we show that H does not contain elements of infi-
nite height (0 is excluded of course). Suppose the contrary. Then H has a
divisible torsion-free submodule A of rank 1, because H is a torsion-free
module. By Lemma 2 Ext,(7, H)=0 implies Ext,(7, A) =0. The completion
T" of the module T contains elements of infinite order, for example the sum

of the series > p"cs. where ¢, is a generator of the cyclic module C(p™)
occuring in the decomposition T=ZC(p"). It follows that 7* has sub-
modules 77 and 7 containing 7 for which
r'/T=(T/T)+(T"T)

and 7'/T= A hold, since 7*/T is a divisible module. Now by Ext,(7, A)=0,
T is a direct summand of 7': T'=T+4A". Thus T contains a divisible
submodule A’~ A. But this is impossible for 7* is a module without elements
of infinite height. So indeed, A has no elements of infinite height

Let B be a basic submodule of H and @ an arbitrary homomorphic
mapping of H/B into T'/T. We shall prove that there exists a homomorphic
mapping ¢ ot H into 7* which induces ¢, i. e. hg—h e holds for every
element h € H (bars indicate cosets of 7* modulo T or those of H# modulo B
according as the element under consideration belongs to 7 or to H’). The map-
ping ¢ will be constructed by introducing the following module G. Let us choose
for each element A€ H an element f; € T satisfying the relation #;=h g;if
h € B then we set f; =0. Let G be the subset of 7°+H consisting of all
elements of the form f+#i+h (te¢ T,h€ H). G is a submodule of T"+ H.
Indeed, if g, =t 4+ +h, and g,=t,+ t,+ h, are arbitrary elements of G
and r,, r, are p-adic integers then by making use of the relation

Nt + rafn, =f:f_r:, + sz_ﬁ, :rl(El 5)4"‘3(5.’ E’) =nh,+ rzﬁ;‘;‘_’ — Elhd-f:ﬂs

10) The cyclic group of order p» (denoted by C(pv)) is considered here as a p-adic
module.
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we get
ng +rg=nlt+6,+h)+nb+6,+h) =

= (nti+nt) + (nth,+ nth) + (nh +rhy) =

:(rlfl+r-;fg+t)+t:,hl+r,h,+(rlh|+rﬂh2)6 G
where € 7. It is obvious that 7< G. Moreover G/T =~ H, because the map-
ping t+f+h—h (t€T,h€H) is a homomorphism of G onto H with kernel
T. Therefore by the condition Ext,(7, H)=0 we conclude that T is a direct
summand of G: G=T-+H’". Clearly, BEG. Let b,,...,b.,... be a basis
of B and &, ..., b;,... be the sequence of those elements of A’ for which
bn—b,=1t,€T hold. By virtue of Theorem 1 any element of H can
be represented as the sum of a convergent series rb,+ <+ +7aba+---,
where r,,...,7,... is a O-sequence of p-adic integers. Let the element
nty+ -« +rut.+++- of T* correspond to the element rb,+ -+ rubp+«--
of H; this is a homomorphic mapping ¢ of H into T* (nf,+ -+ +rufu+ -
is a convergent series since r,,...,7,... is a O-sequence of p-adic integers
and 7" is a complete module). We show that ¢ induces @. The homomorph-
ism t4+-fi+h—h (t€T,hc H) determines an isomorphism of H’ onto H
under which the image of &; is b.. Therefore if r,b,+ -++ 4 raba+--- has a
sum h in H then r,b{+ <+ +r,brn+--- is a convergent series in H’. Thus,
taking into account that the p-adic topology of a submodule is at least so
strong as its relative topology, we get

hq;-|-.h = (r,_{l + e rata+ “’)+(f1b1 + e 10l + ...)=
=nlh+b)+ - +rltat+ba)+ - =nb+ - +rbi+-- eHESG,

where the convergence of the series is understood in the sense of the p-adic
topology of 7*+ H. Hence by th+he€ G we have ho—th=(he+h)—
—(fi+h) € G. On the other hand by hg € T* we have hg—1t; € T*. But
these can hold simultaneously only in the case when hg—# € T, since, as
it is easy to see, any common element of G and 7* belongs to 7. From
ho=1t and ti—h ¢ we infer hgp —h ¢; thus indeed, ¢ induces ¢.

Finally we prove that H is a free module. First we show that the set
of all homomorphic mappings ¢ of the module H/B into 7°/7 has cardi-
nality = 2", where m is the rank of H/B. The module H/B is divisible and
torsion-free, consequently H has submodules H, containing B (» ranges
over a set I'" of indices having cardinality m) for which

H/B =,§ (H,/B)

and H,/B=>=A (v€I') hold. Let us consider for each » ¢ I" either an iso-
morphic mapping of H,/B onto T'/T=A or the 0 homomorphism of H,/B
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into T*/T; in this way we get a homomorphism of H/B into T*/T. The set
of all homomorphisms of this kind and a fortiori the set of all ¥ s has
cardinality = 2". On the other hand the set of all homomorphisms ¢ of the
module A into 7* which induce the g s is of cardinality = 2%. In order to
prove this we have only to remark that B¢ & T and ¢ is determined uniquely
by the sequence b;¢g,..., b.¢,... of elements of 7 (since B is an everywhere
dense subset of H); the set of these sequences is of cardinality = N*=2".
Now it is obvious that the induced mapping ¢ is determined uniquely by
¢, thus we have 2" = 2* i.e. m = N,. Therefore H, as a module of count-
able dimension, is countably generated. From this it follows that H is a
free module because H is a torsion-free module and has no elements of
infinite height.
This completes the proof of our lemma.

Theorem 4. Let H be a p-adic torsion-free module of countable dimension
and T a p-adic torsion module. Then Ext,(T, H)=0 holds if and only if at
least one of the following two conditions is satisfied.

(1) T is a direct sum of a module of bounded order and a divisible
module.

(2) H is a free module.

PrOOF. Suppose Ext,(7, H)=0 and at the same time condition (1) is
not satisfied. Then the basic submodule B of 7 is not of bounded order.
Indeed, in the contrary case 7 would be the direct sum of B and a divi-
sible module, as B is a pure submodule of 7 and 7/B is divisible. So

2 C(p) is a homomorphic image of B. On the other hand B is a homo-
morphic image of T (cf. T. SzeLe [10]), thus > C(p") is a homomorphic
image of 7. Making use of Lemma 2 we have Ext,,(ZC(p“), H)=0. This

implies by virtue of Lemma 3 that H is a free module, so condition (2) is
satisfied.

Conversely, if one of the conditions (1), (2) holds then Ext,(7, H)=0,
as it is well known. '

This completes the proof.

Theorem 5. Let H be a p-adic iorsion-free module of countable dimen-
sion. Then Ext,(T, H) =0 holds with every p-adic torsion module T if and
only if H is a free module.

The proof is clear by Theorem 4.
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§ 3. p-adic closure of groups.

In this section the p-adic closure of groups is defined; the uniqueness
and the condition for the existence are established in Theorem 6 and in Theorem 7.
By Theorem 8 we can carry over the results of § 2 without difficulty to groups.

Definition. A p-adic module G'P containing the group G is a p-adic
closure of G if the following two conditions are satisfied:

(1) G?is generated by the group G.

(2) Any independent subset of the group G is an independent subset
of the module G'. 1)

Theorem 6. Let G resp. G be a p-adic closure of the group G,
resp. G,. Then any isomorphism of the group G, onto G, can be extended
in one and only one way to an isomorphism of the p-adic module G\” onto G$*.

PrOOF. Let ¢ be an isomorphism of G, onto G,. First let G, be a
finitely generated group. Then by virtue of the fundamental theorem of
finitely generated groups, G, has a basis a,,...,a., and so a,9,..., a.¢
is a basis of G,. According to the definition of p-adic closure, a,,...,a, is
a basis of the module G and a,9,...,a.¢ is a basis of G . It is easy
to see that the correspondence a;—a:¢ (i=1,...,n) determines an isomor-
phic mapping of Gi” onto GY. It is clear that this is the only possible
extension of ¢.

Now let G, be an arbitrary group. Any subgroup A, of G, generates
in G its p-adic closure A{”, since Gi” is a p-adic closure of G,; simi-
larly, A,— A, generates in G5” its p-adic closure AS”. If A, is a finitely
generated group then from the formerly treated special case of our proposi-
tion we conclude that there exists one and only one isomorphism ¢, of
A onto A’ which is equal to ¢ on A,. Throughout the proof of this
theorem A, denotes a finitely generated subgroup of G,. Now let us define
a mapping ¢* in the following way: if g is an element of a submodule
AP S G then g¢* —ggps,. We show that ¢ is the required extension of ¢-
The mapping ¢° is defined for every element of Gi”’ since G, generates Gi”.
Furthermore ¢* is a single valued mapping. Indeed, if g belongs to
AP S G and to AP S G{” then, denoting by A, the subgroup of G
generated by A and A;, the image of g under ¢, and ¢ Ay 1S &9, since
by the uniqueness of Pu and ¢, the isomorphism ¢, continues ¢, and

11) § is an independent subset of the group (p-adic module) G if any relation
ray + -+ +r.a,=0, where a, ..., a, are different elements of S and r,, ..., r, are rational
(p-adic) integers, implies rya,=-.. =r,a,=0, and 0 ¢ S.



372 J. Erdés

Par- It is clear that ¢ is an isomorphism equal to @ on G,; these follow

from the corresponding properties of the mappings ¢, . Finally GP ¢*' =G,
for G is generated by G,. Thus ¢* has the desired properties. It is easy
to see by the uniqueness of the ¢, s that any extension of ¢ coincides
with ¢, on A{”, and so with ¢* on the whole Gi”. Therefore ¢* is the only
possible extension of ¢, as it was stated.

Theorem 7. A group has a p-adic closure if and only if its torsion
subgroup is a p-group.

PrOOF. First let G be a divisible group the torsion subgroup of which
is a p-group P. Then G can be decomposed into a direct sum

vel

where the G, s (v€I") are isomorphic to the additive group of rational
numbers. We show that the module

G(}J) e P(P) Gi‘ P
+’g;

is a p-adic closure of G, where the Gi” s (v€I") are copies of the field of
p-adic numbers, regarded as a p-adic module, and P is a p-adic module
having P as its additive group. It is clear that G generates G, Let a,,...,a.
be independent elements of the group G. Each a; can be expressed as a sum

aj=al,<+n-+a..j+a} (j=1,...,ﬂ)

where a; € Gy, (i=1,...,m; v;€I') and a;€ P. We may restrict our consi-
derations to the case when a,,...,a, are not contained in P. The indepen-
dence of the group elements a,,...,a,. means that the system of equations

[auxl + -4 x, =0

...........

1)

amlxl + P +amnx1| =0
ax,+---+ax, =0
has only trivial solution in rational integers. This implies that the system

of equations
auX;+ -+ @ X, =0

[+ O S (£ S Ve el

has only trivial solution in rational integers. Indeed, in the contrary case one



On mixed abelian groups. 373

could get a non-trivial solution of (1) by multiplying the non-trivial solution
of (2) with a suitable power of p. Therefore the matrix

(an vie v e )
Am1* - * dmn

has a non-zero determinant of order n. But this implies that (2) and so (1)
has only trivial solution in p-adic integers. Thus a,,...,a, are independent
elements of the module G'®. This proves that G* is a p-adic closure of G.

Now let G be an arbitrary group the torsion subgroup of which is a
p-group. It is easy to see that G can be embedded in a divisible group G
the torsion subgroup of which is also a p-group. By the formerly treated
special case of our proposition, G has a p-adic closure G®. The submodule
of G» generated by G is a p-adic closure of G.

Conversely it is evident that the torsion subgroup of any subgroup of
a p-adic module is a p-group.

This completes the proof of our theorem.

Theorem 8. Let H? be a p-adic closure of the torsion-free group
H and P be a p-group. Then Ext(P,H)=0 holds if and only if
Ext,(P, H»)=0. '?)

ProoOF. Suppose that Ext(P, H)==0. Let the module G® be an
arbitrary extension of the module P by H®; the elements of G®@/P are
identified with the elements of AH®. Let G be the subgroup of G®»
for which G/P== H holds. Then by our hypothesis P is a direct summand
of the group G: G=P-+H. We shall prove that G® = P H'(®, where
H'® is the submodule of G generated by H'.

First we show that Pn H'®=0. Let g be an element common to P
and H'(®, There exists a finitely generated subgroup A’ of A’ in such a way
that g is contained in the submodule of G® generated by A’. By the fun-
damental theorem of finitely generated groups, A’ has a basis a,...,aa.
Clearly, a,, ..., a. are independent elements of the group G/P (bars indicate
cosets modulo P) since Pn H' =0. Therefore @,,...,d, are independent in
the module G®/P, for the module G»/P is a p-adic closure of the group
G/P. It follows that a,,...,a, are independent in the module G®. Now,
taking into account that a,, ..., a, are of infinite order and g € P belongs to
the submodule of G(® generated by a,, ..., a,, we get g=0, i. e. Pn H'» =0,

We have to prove that P and H'® generate the module G®. By the
relation G= P+ H’ it is sufficient to show that G generates the module

12) In the latter relation P is considered as a p-adic module.

D25
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G, Let us take a submodule M of G containing G. Then M/P = G®»/P
since G/P= H generates the module G?/P= H®, Thus indeed G® is
generated by G and so G = P+ H'», i. e. Ext,(P, H?)=0.

Suppose that Ext, (P, H”)==0. Let the group G be an arbitrary
extension of the group P by H. By Theorem 7 there exists a p-adic closure
G of G. %)

First we show that P is the torsion submodule of G'». Let P(» be the
torsion submodule of G®. Clearly, PS P®. Conversely, let g be an element
of finite order of G®. There exists such a finitely generated subgroup A of
G that g is contained in the submodule of G® generated by A. By the
fundamental theorem of finitely generated groups, A has a basis a,,..., @,
Then g can be represented in the form

g=na,+ - +rna, O<i<-<in=n)
where, excluding the trivial case g=0, we may suppose that r,....,r, are
p-adic integers different from 0. The element g is of finite order, so
a,,...,a;, have finite order too. This implies g€ P. So indeed P®» =P,

Now we prove that the module G'?/P is a p-adic closure of the group
G/P. The module G*/P is generated by G/P. Indeed if M/P contains G/P
(M is a submodule of G'» containing P) then GEM, thus M= G». On
the other hand, let a,,...,a. be independent elements of the group G/P.
It follows that a,, ..., a, are independent in the group G. Therefore a,, ..., a.
are. independent in the module G, for the module G'» is a p-adic closure
of the group G. Taking into account that a,,...,a, are of infinite order,
the independence of 4, ..., d, in the module G(»/P is established. So indeed,
G?/P is a p-adic closure of G/P.

It follows from this by Theorem 6 that G'”/P==H. Therefore by
our assumption P is a direct summand of the module G and so of the
group G. With this we proved Ext (P, H)=0.

§ 4. Extensions of groups. The main results.

In this section we are dealing with the splitting problems of mixed
groups, making use of the results of the preceding § s. Theorem 9 and
Theorem 10 are analogues of Theorem 4 and of Theorem 5; p-adic torsion
modules are replaced by p-groups and p-adic torsion-free modules by tor-

sion-free groups. Theorem 11 solves the second problem of § 1 for groups
having countable p-adic dimension for at least one p. Finally we give answer

to a question of R. BAER.

13) The letters used in the second part of the proof have naturally another meaning
than before.
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Definition. By the p-adic dimension of a group we mean the dimension
of its p-adic closure (if it exists).

Theorem 9. Let H be a torsion-free group of countable p-adic dimen-
sion, and P a p-group. Then Ext(P, H)=0 holds if and only if at least
one of the following two conditions is satisfied.

(1) P is a direct sum of a group of bounded order and a divisible group.

(2) The p-adic closure of H is a p-adic free module.

The proof is clear by Theorem 4 and Theorem 8.

Theorem 10. Let H be a torsion-free group of countable p-adic
dimension. Then Ext (P, H) =0 holds with every p-group P if and only if
the p-adic closure of H is a p-adic free module.

The. proof is clear by Theorem 9.

Theorem 11. Let H be a torsion-free group having countable p-adic
dimension for at least one p. Then Ext(T, H)=0 holds with every torsion
group T if and only if H is a free group.

ProoF. Suppose that Ext (7, ) =0 holds with every torsion group 7.
Then by Theorem 10 the p-adic closure H'” of the group A is a free module.
Since H® is a module of countable dimension, H is a countable group.
Making use of the assumption Ext (7, H)=0, we conclude that H is a free
group (see R. BAER [1]).

Conversely, if H is a free group, then, as it is well known, the relation
Ext (T, H)=0 is valid for any group T.

This completes the proof.

Solution of a problem raised by R. BAER.

The question under consideration is the following: does the relation
Ext(7, H)=0 hold with every torsion group T if H is the group of all
sequences of rational integers? (R. BAER [1]). Our answer will be negative
even in the case when 7= D' C(p").

First of all the followiné statement is an immediate corollary of Theo-
rem 4, Theorem 8 and Lemma 2.

Let H be a torsion-free group and P a p-group. If Ext (P, H)= 0 holds
then either P is a direct sum of a group of bounded order and a divisible
group, or every submodnle of countable dimension of the p-adic closure of
H is a free module.

So it is sufficient to prove the existence of a subgroup of the group
of all sequences of rational integers the p-adic closure of which is not a
free module and its dimension is countable.
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Let G, be the group of all sequences r,,...,r,,... of rational integers
which have the following property: the sequence of p-heights of r,,....m,...
tends to infinity. Let G, be the group of all sequences of rational integers
the elements of which are all O at most with a finite number of exceptions. Let
GY” be a p-adic closure of G, and G§” the submodule of Gy generated
by the subgroup G,E G,.

First we prove that Gi” is a basic submodule of G{”. It is obvious
that Gi” is a free module, for G§” is a p-adic closure of G,. We show
that G$” is a pure submodule of G'”. Suppose that for an element g € G
~a relation p*g € G holds. G, has a finitely generated subgroup A in such
a way that the submodule of G'” generated by A contains g and the sub-
module generated by G,n A contains p*g. It is clear that G,/G, is a torsion-
free group, thus G,n A is a direct summand of A. Therefore by the funda-
mental theorem of finitely generated groups, A has a basis a,,...,a, some
members of which generate G,n A. From the representation

g_‘zrlal_l_ R o 21/
where ry, ..., r, are p-adic integers, we obtain

prg =pna,+ -+ praa..
In the latter sum the coefficients of those a; s which do not belong to G,
are 0 s since a,, ...,a, are independent in the module G;” too. This im-
plies
g=na+ - +ra € G,
i.e. G is a pure submodule of GP. Finally we have to show that G{"/G{"
is divisible. In order to prove this let us consider an arbitrary equation
pE=F (g€ GY; bars indicate cosets modulo G” ). The element g can be
expressed as a sum
g=na,+ - +ra. (@,..., 8. €Gy)
where r,,...,r. are p-adic integers. It follows by the construction of G,
and G, that p(G,/G,) = G,/G,; thus there exist elements x; € G, (i=1, ..., n)
satisfying
pxi—a; € G,S G,

i. e. pX;=a;. Therefore r,x,+ ----+rax, isthe required solution of px=g.
So G/G” is a divisible module, and this proves that G{” i a basic sub-
module of G

Clearly, G5 is a module of countable rank, thus, by the former part
of the proof, G},”’ is of countable dimension. On the other hand, it can be
easily seen that the rank of the group G» and so that of the module G is
not countable. Therefore G!” is not a free module. This proves by the pre-
ceding remark that Ext(7,H)==0 even in the case when T=;C(p“).
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