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On a construction of Hosszi.

By SHERMAN K. STEIN (Davis, California).

M. Hosszu’s method of constructing selfdistributive quasigroups from
groups') provides a meeting point for various investigations in groups and
quasigroups. Relations between right distributive quasigroups, special auto-
morphisms of groups, complete functions and characterizations of abelian
groups, exhibited in part by his construction, will be discussed here.

In what follows, G will be a finite group, Q a finite quasigroup. An
automorphism of G leaving only the unity, e, fixed will be called special.
If f:Q—Q is onto Q and so is g:Q— Q, defined by g(x)= xf(x), then
f is complete.

Theorem 1. The following statements concerning w: C— G are equi-
valent:

(a) w is a special automorphism;

(b) the function f: G — G, defined by f(x)=w(x"") is a complete anti-
automorphism,

(c) the groupoid R(o) defined by xoy = w(x)w(y')y is a right distri-
butive quasigroup, and w(e)=e.

PrOOF. We prove only that (c) implies (a).

(The equivalence of (a) and (b) is clear, and the implication, (a) implies
(c), describes Hosszu’s construction). Since R is a quasigroup every element
ot R is of the form w(x) and also w(y1)y.

Since R satisfies

(@aoc)o(boc)=-(ach)oc

G satisfies
w(w(@w(c)yw(c ' (w(B) ' (w(c)) Ywd)wir Ne=w(w(@w(b')b) w(c)e.
Cancelling and setting b=e, we obtain

(M ww(@w(c)eyw(e ' (wle')) ') = w(w(a))

1) See §2 in [3] and Theorem 1 (c) of the present paper.



Sherman K. Stein: On a construction of Hosszu. 11

But for any x, y € G the simultaneuous equations
w(@w(c)e=x
cr(w(et)'=y
have unique solutions a,c. Equation (1) then implies that for all
x,y € G,w(x)w(y)=w(xy). Thus w is an automorphism. Since every element
of G has a unique representation in the form w(y')y,e=w(y')y implies
y=-e; that is, w(y)=y implies y=e, so w is special. Thus (c) implies (a).
It might be mentioned that S,, for example, has no special automor-
phism (since every automorphism of S, is inner) but does have a complete
function ([2], p. 544).
Since B. H. NEUMANN ([5]; p. 4) gives an example of a special auto-
morphism of a finite non-abelian group, the Theorems 1 and 2 of Hosszu
{3] provide a negative answer to question 3 in [9] (p. 253) in the form of

Theorem 2. There exists a Q which is right-but not left-distributive.

From HosszU’s construction and the fact that there are no right-dis-
tributive quasigroups of order 4k-+2 ([9]; p. 236) we deduce

Theorem 3. A group of order 4k+2 has no special automorphism.?)

BURNSIDE ([1]; pp. 90, 334) was the first to study special automorphisms, w.
He proved, among other things, that if w*—1 then w(x)=x"! and that G
is therefore abelian. B. H. NEUMANN (in [5]) generalized this result to infinite
groups:

A group in which every element has a unique square root and which
possesses a special automorphism w with w* =1 is abelian and w(x)=x"

It is well known that a group is abelian if and only if the function
x—x"! is an endomorphism or the function x— x* is an endomorphism.
In this direction F. W. LEvi ([3]; p. 5) proved that the function x— x* is an
endomorphism of the group H if and only if for every pair of elements
a,beH

[[a, 8], b] = [a, b =e

Related to these results is:

Theorem 4. If in a group H the function x— x* is an automorphism
then H is abelian.®’)

2) This result is actually a special case of the following theorem proved by HaiL
and Pace ([2]; p. 548) in a study of orthogonal quasigroups: If G is a group of even
order and its 2-sylow subgroups are cyclic then G has no complete function.

3) Compare to part 3 in the proposition of E. Suenkman and L. T. Wape [8]. Note
that the map x - x3 is an automorphism of the group with two elements.
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ProoFr. Forx, y € H,(xy)’=x*y*. Cancellation yields (yx)*=x**. Replacing
x by x ' and y by y! be obtain (xy)?2 =x2y-2. Thus the function x—x-2
is a homomorphism. Hence the function x— (x?)"?=x* is also a homo-
morphism. Thus x*y*=(xy)'=(xy)*xy = x*y* xy. Cancellation implies xy*=
=)*x and that H is therefore abelian.

By a method employed in [6] (p. 2) one can establish

Theorem 5. If w is a special automorphism of G and w"=1,n=2
then for all x€ G, xw(x)w*(x)..w*!(x)=e.))

The proof follows easily if x is written in the form yw(y).

For n=2 one obtains BURNSIDE’s result.

DerFINITION. If w is an automorphism of period n of the group G such
that w' is special for 1 =i=n—1, then w is called a regular automorphism.

Theorem 6. If w is a regular automorphism of period n of the group
G, then the n quasigroups Q;,0=i=n—1, are mutually orthogonal ([T] p.
245.), where the law of composition of Q; is defined by

XQiy=w(x)w(y ")y l=i=n-1
xXQiy=xy! =0,

PrROOF. To show that Q. is orthogonal to Q;, 1=i<j=n—1, it is
sufficient to exhibit solutions to the simultaneous equations
4y w(x)w(y)y=a
(2 wi(x)wi(y)y=>b
for any a, b€ G.

Let j=i+ k. Then from (1) follows
(1) wi (x) wi (y ) w*(y) = w*(a).

Equations (2) and (1°) yield

b wh @)=y w ()

an equation having a unique solution for y. Then determine x from either
(1) or (2).

To show Q, is orthogonal to Q:, 1=i=n—1, consider the simul-
taneous equations
3) xXyt=a
@ w (x)wi(y')y=2b.
Clearly y then satisfies wi(a)y = b; then either (3) or (4) determines x.

i) It is interesting to compare this theorem with the following, due to Pawce [7]:

A necessary condition that G possess a complete function is that there exist an ordering
of the elements of G such that g, g,... g,=1 (g; €G).
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It is a long standing conjecture®) that if the integer m has the factori-
zation into primes m==IIp;, where the p; are distinct primes and ¢=1,
and if p" is the smallest of the p;/, then there are at most p°—1 mutually
orthogonal quasigroups of order m. In accord with this conjecture is.

Theorem 7. If G is a group of order n = IIp;', e; > 0, the p; are dis-
tinct primes, and T:G— G is a regular automorphism of period e then

e|pii—1 for each i.

Proor. If the theorem were established for e equal to a prime power
then it would follow for arbitrary e. For if e— IIg}/, f; >0, the g;'s being

distinct primes, then for each j let U;=T%. U, is a regular automorphism
of period ¢ so ¢li|pii—1 for eachj. Thus e|pii—1. So it is now assumed
that ¢ = g}. Let there be s; p;-Sylow subgroups of G. Let S; be this set
with s; elements. Then 7 induces a permutation 7,:S;—S:. Since (7,)" =
identity, the number of elements of S; in any orbit of 7, divides e = g}.

If there is an orbit of 7, with only one element, say H, then T(H)=H,
and H—{1} is union of orbits of 7. Thus it would follow that e|pi—1.

If each orbit of 7, has more than one element then ¢; divides the car-
dinality of each such orbit. Thus g;|s;. But si|n; thus g¢;|n. On the other
hand g;|le and e|n—1. Thus g;|ln—1. Since ¢; >1 this is a contradiction.

Theorem 10 puts a severe restriction on the regular automorphisms that
can operate on G. For example, if G is non abelian of odd order and
ged {pii—1};,=2 then G possesses no regular automorphisms.’)
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