On the general products of two finite cyclic groups
one of which being of order 7

By K. R. YACOUB (Alexandria).

A group G is said to be the general product of its subgroups A and
B if G=AB, AnB ={e} where e denotes the unit element of G.') From
this definition it follows that every element of G can be expressed uniquely
in the form ab and uniquely in the form b2 where a and @’ are elements
of A whilst b and & are elements of B. Thus to every pair of elements a
of A and & of B there exist unique elements a, of A and &, of B such that
ab=b.a,.

If A and B are given groups, it is natural to ask for a survey of all
the groups that can be represented as general products of subgroups
isomorphic to A and B respectively. This problem was first studied by
ZAPPA [3] and the general products were determined by means of permuta-
tions satisfying certain conditions. An important result due to ZAPPA is the
following theorem:

Let A and B be two groups and G be a general product of A and B.

a
ap

elements of A and to every element a of A there corresponds a permutation

( : ) of the elements of B such that

(1) (@ap=a,a, () (6b6")a==b.bs,,
("l) (aa.)o- = App (IV) (bn)n' — ba.’a. ’
where @’ € A and b’ € B.

These four relations, we have called the “Fundamental Relations” of the
general product G (Cf. [4], § 1, Theorem 1. 1).

Then to every element b of B there corresponds a permutation ( J of the

1) This definition was first introduced by Neumann [1]. Some writers (Répe: [2] and
others) use the term “Zappa—Szép product” instead of “general product”.
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The case of two cyclic groups is of special interest. REDEI [2] has
determined the structure of the general products of two cyclic groups in the
cases in which one is finite and the other infinite or both are infinite but
subject to certain conditions.

The case of two finite cyclic groups has been dealt with by DouGLAs
[5] and [6]. His results are essentially concerned with certain permutations
which we call Douglas special (Cf. § 1, Definition 4).

Later on, HUPPERT [7] studied succesfully the structure of all the general
products of two cyclic groups which are both finite. The approach of HUPPERT
requires however deep knowledge of group theory.

In this paper, the author considers a particular case of the problem
studied by HUPPERT namely that when one of the groups is of order p?,
p being an odd prime. The approach of the author is completely different
from that of HuUPPERT’s. In fact our approach is completely elementary and
requires only a rudimentary knowledge of group theory.

§ 1. Definitions, notation and preliminary results.

Throughout this paper, we use [n] to denote briefly the set of numbers
1,2, ..., n. Permutations will be written as left hand operators.

DEfFINITION 1. If a permutation ¢ is written as the product of disjoint
cycles, the cycle which contains the number 1 is called the principal cycle of ¢.

DEFINITION 2. A permutation ¢ defined on [a] by ¢@x=rx (mod n),
where r is prime to n, is called a linear permutation.

DEFINITION 3. A permutation ¢ defined on [n] is called semi-special if
gn=n and if, for every y €[n], the permutation

$yXx=¢(x+y)—g¢y (mod n)
is again a permutation, namely a power (depending on y) of ¢.

DEFINITION 4. A permutation ¢ defined on [r] is called Douglas special
if it is induced by one the generators of a general product of two finite
cyclic groups, that is if it is defined by ab—=b6%a,.; here n denotes the
order of {b}.

The following results were proved by the author in previous papers.

Lemma 1. If ¢ is a linear permutation, then ¢,=q for every u;
therefore a linear permutation is semi-special.

Lemma 2. The order of a semi-special permutation is equal to the
length of its principal cycle ([4], Lemma 4. 2).
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Lemma 3. If p is an odd prime, the non-linear semi-special permuta-
tions on [p*] can be written in the form
ax=tx+up x(x—1) (mod p?),
where t(t #1 (mod p)) and w are chosen arbitrarily prime to p in such a way
that u — pwht*-! is also prime to p, h being the order of t modp and u is
defined mod p by t*=1+up (mod p*) ([8], Theorem 4. 2).

If we put f—up=r (mod p?), then rs=1 (mod p), and
ax=rx-+upx® (modp’);

r=t—hupt'=1+4u—pht")p (mod p?

also

because
t*=1+4up (mod p?).

We have thus established the following

Lemma 4. The semi-special permutations on |p*], where p is an odd

prime are
x=1tx (mod p?),
and
wx=rx+upx* (mod p*),

where t,r (rs1 (mod p)) and p are all prime to p and r is chosen in such
a way that the u appearing in the relation =1+ up (mod p*®) (h being the
order of r mod p) is prime to p.

§ 2. Description of the problem.

Let A= {a} be a cyclic group of order m and B = {b} be of order n
and let G be a general product of A and B. Then associated with G (Cf.
[4], § 2) there exist two permutations z and e such that

(1) ab’ =b"a,., a"0=1>0,4a",

and

(2) b =b""a"",

where s is semi-special on [n] and ¢ on [m]. Furthermore, we have
(3) amx=x (mod n), e*y=y (mod m)

where x € [n] and y € [m].

Lemma 5. With the same notation
4 a"b*=b"a", x€[n],
(5) a’b" =b"a’, y € [m).
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The proof is obvious and is therefore omitted.
Retaining the above notation, we prove
Lemma 6. Let k be the order of . Then

(i) k divides m;

(ii) a number s, prime to i"k—, exists such that

(6) a*b=ba*, ks"=k (mod m),
where h is the highest common divisor of all the differences v—u,; u and v
being any numbers in the principal cycle of t;

(iii) a*b" = b*a*.

ProoF. To prove (i), suppose on the contrary that & does not divide m

and let precisely m = kt-r where O <r < k. Since k is the order of 7z, then
1=1 (mod n) and thus

Al =gl =" (7% 1)=n"1 (modn);
on the other hand zz~1=1 (mod n), by the first of (3); thus z"1 =1 (mod n)
which by using Lemma 2 shows that r is the order of -r; this contradicts

the hypothesis. Hence k divides m.
Next, to prove (ii), we put x=1,y=k in (2) and remember that

M of a,

*1=1 (mod n), so that a*b= ba, thus a®* has the same order o
L4
k

hence ok=ks (mod m) for a suitable number s which is prime to and

therefore a*b = ba**, this proves the first of (6).

For the second of (6), we use the Fundamental Relation I. Let # and
v be any two numbers which belong to the principal cycle of -z, then by a
repeated application of the Fundamental Relation I, we obtain:

k-1 k-1
(7) a:":Habﬂ‘«’ a:"= Habn’.u-
i=0 i 0

Since k is the order of -z, then by Lemma 2 the length of the principal
cycle of s is k. Moreover, since # and » belong to the principal cycle of 7,
then u, 7tu, 7u, ..., 7i%'u is a permutation of v, /tv, v, ..., i% '». Further-
more, since a ., @, ..., d k1, are powers of a they commute; hence
from (7) it would follow that
(8) a:u:a:..

Again, since st*u=u (mod n) and #*v=v (mod n), then by (2)

) a"b*=b"adl,, a'b’=0b"d.,.
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From (8) and (9) we deduce that

(10) akbr~rl= bthuak’

which by using the first of (6) gives ks* =k (mod m); this is true for all
the differences v— u and therefore true for their highest common divisor A,

thus ks*=k (mod m). This completes the proof of (ii).
Lastly (iii) is an immediate consequence of (ii) and the lemma is now

proved.
Now, since st is semi-special, then =, is a power of :x for every y.

We prove (with the above nofation) the following

Lemma 7. If n,=—n""Y, then ab’ = b™ d""""Y for a suitable number
r(y) which depends on y.

ProOF. By the Fundamental Relation II, we have

T (x+y) T g ¥V __ g ay
b - (b )‘a — b"by ba . baby b »

thus
(l 1) b: = bﬂ(ﬂm‘ﬂ':b“#z:bnuw)z.
b
Further since a,, is a power of a (Cf. [4], §2), let a,, =a¥, say, then
e = n¥x
(12) b“by=bﬂY=:b

Comparing (11) and (12) we see that Y=w(y) (mod k), where k
denotes as before the order of -z and thus Y=k r(y)+®(y) for a suitable
r(y) and the lemma is proved.

We turn now to our problem.
By Lemma 4, we have seen that the semi-special permutations on [p?]

are wx=tx (modp’) and wx=rx+upx* (modp*) where f,r and u are
subject to certain restrictions described in the lemma. We deal seperately
with the permutation srx = x (mod p*); 7ex=tx (mod p*) where 3£ 1 (mod p®
and finally with the permutations x=rx+4upx* (mod p*). Our aims are
to (i) describe all groups in terms of some simple parameters; (ii) prove
the existence of such groups for permissible parameter values and (iii)
distinguish the non-isomorphic types of groups.

§ 3. The permutation 7x=x (mod p’).

Theorem 1. If there is a general product G corresponding to the semi-
special permutation r, then it has the defining relations
(13) G={a,b;a"=0b"—e,ab—ba"}
where
(14) =1 (mod m).
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Conversely if u is any number satisfying (14), then the group G
generated by a and b with the defining relations (13) is the general product
of {a} and {b} of the desired type.

The proof is direct and is therefore omitted.
To distinguish the non-isomorphic types of groups defined in Theorem 1
we have the following

Theorem 2. Let G and H be two groups whose defining relations are
G={a,b; a"=b"—=e, ab=0ba"; u”=1 (mod m)},
H={a,b; a"=0b"=e¢, ab=0ba"; v"=1 (mod m)},

where v#u (mod m). Then a necessary and sufficient condition for G and H
to be isomorphic is v=u* (mod m) for some number A which is prime to p.

The proof of the theorem follows the same procedure used by the
author in [9] (Cf. Chapter VII, Theorem 26.4) and the proof is omitted.

§ 4. The permutation wzx=fx (mod p’), where f#1 (mod p*).

Since f# 1 (mod p*), we may distinguish the two cases namely that
(i) when (t—1, p)=1 and (ii) when (t—1, p*)=p.

Theorem 3. If there is a general product G corresponding to the
semi-special permutation st given by nwx=tx (mod p*) where ({—1, p)=1,
then G has the defining relations

(15) G={a,b; a"=b"=e, ab="b'a),
where
(16) " =1 (mod p*.

Conversely if t is any number such that t and t—1 are both prime to
p and if m is any integer such that (16) is satisfied, then the group G
generated by a and b with the defining relations (15) is the general product
of {a} and {b} of the desired type.

PROOF. Assume the existence of the general product G. If k be the
order of ¢ mod p?, then st is of order ¥ and, by Lemma 6, m is a multiple
of k; this confirms (16).

Furthermore the A2 of Lemma 6 (ii) is 1 and thus
(17 a*b = ba*.
Next, by direct calculation sr, = 7z, hence by Lemma 7
(18) ab—ba*+
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for a suitable r. Then by induction and by using (17), we find that
abz . bia:azk'rﬂ

Thus ab®™ = b"""a™ ™', which by using Lemma 5, (5) (with y=1 and
n = p*) gives at once
(19) Pkr=0 (mod m).
We remark that (19) is satisfied by kr=0 (mod m); in this case G has the
defining relations

G={a,b; a"=0b"=e, ab="b'a; "=1 (modp’).
If kr #0 (mod m), the group which we denote now by G, has the defining
relations

G.={a,b; a"=b"=e, ab="0"a"", a"b=0bd"; "=1 (mod p?)}.

The groups G and G, are however isomorphic. This is easily seen if the
defining relations of G are written in the form?)

G={cd; "=d"=e. cd=d'c; "=1 (modp?},

and the isomorphism between G and G, is in fact established by the
correspondence
a+«—¢, b+~>dc**,

where x is defined by x(f —1)=1 (mod p?. (Note that x is prime to p
since f—1 is prime to p). Thus in all cases G has the defining relations
(15) and (16).

For the converse, let A be the system of all formal pairs [x, y] where
x=0,1,...,p*—1; y=0,1,..., m—1. In this system define multiplication
by means of the formulae

[x, y] [X', y]=[x",y"),

X'=x+x (mod p?) and y'=y+y (mod m).

Then by direct calculation one can show that the system H forms a group
whose unit element is [0, 0]. Moreover, if 8 =[1,0] and a’=|[0, 1], then
b"a” =[x, y]) i.e. every element of H is uniquely of the form b5 a’, hence
H is the general product of {6’} and {a@’} and thus also of {a’} and {&'}.
The order of {a’} is m and that of {6’} is p? therefore the order of H is
p’m. Thus corresponding to the defining relations of G we have

where

auu = brp' =¥ er

) This process merely replaces the generators a and b of G by the generators ¢
and d respectively.
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where e’ denotes the unit element [0,0] of H. Furthermore @'’ = b""a’. From
this we see first that a’ induces the permutation -z, described in the theorem,
and furthermore that H is a homomorphic image of G. But as the order of
H is p*m and that of G is at most p*m, then G and H have the same
order and are isomorphic. Hence G is the desired general product.-

To distinguish the non-isomorphic types of groups defined in Theorem 3,
we prove the following

Theorem 4. Let G and H be two groups whose defining relations are
G={a,b; a"=0b"=e, ab=1"a},
H={c,d; "=d"=e, cd=d"c},

where t and t are any numbers prime to p such that t—1 and t' —1 are
both prime to p and " =1 (mod p*), " =1 (mod p*). Let k and k' be the
least possible numbers such that =1 (mod p®) and t* =1 (mod p*). Then
G and H are isomorphic if and only if k=K.

ProOOF. From the defining relations of G, it is easy to deduce that the
the centre of G is {@*}, its order is % Similarly the centre of H is {c¥}, its

order is % If G is isomorphic to H, then their centres will have the same
order, hence k=4k’. This shows the necessity of the condition stated.

Next, to show that the condition is sufficient, we point out that if
k=K, then there exists a number 4 which can be suitably chosen such that
(4, m)=1 and t=t" (mod p*) and the isomorphism of G and H is established
by the correspondence

a+c, b+d.
This completes the proof of the theorem.

We consider now the permutations zzx = fx (mod p*) when (f—1, p*) = p.

We prove the following

Theorem 5. If there is a general product G corresponding to the semi-
special permutation 7t given by mmx=tx (mod p*) where (t—1, p*)=p, then
it has the defining relations
(200 G={a,b; a"=0b"=e, ab=0b'a""", a"b=0ba"*""},
where m is divisible by p and where
(21) p(pr+1)"=p (mod m).

Conversely, if m is divisible by p and if r satisfies (21), then the group G
generated by a and b with the defining relations (20) is the general product
of {a} and {b} of the type required.

D3
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Proor. By hypothesis, {=1+4ip (mod p*) for some number i which

is prime to p, and evidently the order of - is p.
Assume now the existence of the general product G. Since s is of

order p, then by Lemma 6 m is a multiple of p and

(22) a’b=ba"

for a suitable number s which is prime to % Moreover, the 2 of Lemma 6
is p; in this case

(23) ps'=p (modm) and a”b”=b"a".
Further, by direct calculation -r;=2sr; hence by Lemma 7
(24) ab="b'a®"",

for a suitable number r. Then by an induction argument and by using (22)
and (23), we get
(25) ab° — Bl Pt 4

(26) ab"l’=blﬂ’awrﬂnntq....ﬂpq}u

(note that £=1+4p (mod p%)). Relations (25) and (26) combine together

to give
(27) ab*tv? — piEtp aypr(l-l».ﬂ-'--ﬂp'ljd-pr(l+s+-“+s=‘l)+l

Now, if we put y=p in (26), we obtain
abpa: bﬂ'ap‘ rl48rs24 - - '+sP'1)+1

on the other hand, by Lemma 5, (5) we have ab” —b"a, and therefore
(28) pPr(l4s+4s24--+571)=0 (mod m).

Furthermore, if we apply an induction argument to (24), use (27) and
remember that =1+ 4p (mod p?), we can show that

(29) azb s bl+Lp:a%r(pl)lpr(l+‘l+ﬁ+--'+sP'l)+:{pf+ll

Now, if we put z=p in (29), then compare with (22) and use (28), we
obtain ps=p(pr+1) (mod m); hence by the first of (23), we see that
p(pr+1)’=p (mod m). Thus we have shown that (20) and (21) are necessary.

For the converse, let P be the set of classes of formal pairs [x, y] where
x is taken mod p* and y modm. The pairs [x,y] and [x), )] are to be
considered identical when x=x" (modp’) and y=y (modm). Let H be
the group of permutations of P generated by the permutations « and 8 where

elx, y] =[x, y+1]
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and
Blx,yp+2)=|x+4ipz+1, (yp+z)(pr+1)+%z(z—l)pk]

where
pK= i{(pr+1)’—1} (mod m).

That 2 is in fact a permutation, can be shown as follows: If

0 X+apz +1=x+ipz+1 (modp’
and

Vp+2) (pr-- 1)+%z’(z'-— NpK=
(31)

=(p+2) (pr+ 1)+ 2—1)pK (mod m)

then from (31) it would follow (since p divides m), that 2’=2 (mod p) and
then xX’=x (mod p*) by (30). Further since 2=z (modp) and pP’K=0

(mod m) (this follows from (21)) and since pr+1 is prime to %
[because s=pr+1 (mod %) is prime to %], then from (31) it follows at
once that yp+2=yp+2z (modm). This shows that # is actually a
permutation.

Now, if & denotes the identity permutation, then by direct calculation
and by using (21) together with the fact that m is divisible by p, we can
show that

a =ﬁ"= g aﬁ:ﬂ'a’"”, af f— ﬁap(nﬂ-l)‘

From this we see first that A is a homomorphic image of G. Furthermore
no power of {«} (except the unit element) is in {8} and vice versa and thus
H is the general product of {e} and {8}. But as the order of H is p’m and
that of G is at most p’m, they have the same orders and are isomorphic.
Hence G is the desired general product. This completes the proof of the
theorem.

To distinguish the non-isomorphic types of groups defined in Theorem 5
we prove the following

Lemma 8. Let the notation be as in Theorem 5 and let t' be any
number prime to p such that (t —1, p*) = p. Then the permutation =’ defined
by A’x=t'x (mod p*) leads to the same groups as does the permutation 7t
described in the theorem.

PrROOF. Since -t and a’ are both of order p, then there exists a number
v prime to p such that #*=t¢ (mod p®). Further m being divisible by p, let



36 K. R. Yacoub

precisely m=p’M where g =1 and (M,p)=1. Choose now a number i
such that

i=v (modp’) and i=1 (modM).
This is legitimate as (M,p)=1 and the above congruences can be solved

simultaneously. Then i is prime to m.

Suppose now that G is a general product generated by a and & where
a induces the permutation n’. We generate G by a’=a‘ (note that i is
prime to m) and b and let =* be the permutation by @’ =a' on the powers
of b, we find that

0 i b e D P D s i b, 1=y (modp)

and p is the order of s/, this shows that n* == Thus =* and hence =’
leads to the same groups as in Theorem 5. This proves the lemma.

By the above lemma, it is sufficient to distinguish for isomorphism the
groups (described in Theorem 5) with the same ¢ but with different r. For
this purpose, we give the following

Theorem 6. Let G and H be two groups whose defining relations are
G={a,b; a" =b"=e, ab=0b'a""", a’b—=ba’"*""},
He={a,b; a"=0b0"=¢, ab="b'a""", a®b=0a"""""},

where t is some number prime to p such that (t—1,p)=p; m is divisible
by p and where

p(pr+1)’=p (modm), = p(pr+1)’=p (modm).
Then a necessary and sufficient condition for G and H to be isomorphic is

pr+1=(pr+1)° [mod%] for some number 6 which is prime to p.

The proof of this theorem is rather long and needs laborious con-
siderations; for this reason it is omitted. The reader, if intersted in the
proof, is referred to the method used by the author (Cf. [9], Chapter VII,
Theorem 28. 18).

§ 5. The permutation 7x=rx-+up x* (mod p°).
We show that this permutation leads to the same groups as does the
permutation described in Theorem 3. We prove the following
Lemma 9. Lef the notation be as in Theorem 3 and let m be divisible

m
by P and pH!W=2.. Then
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(i) the element ba* is of order p*;
(ii) the group G may be generated by a and b instead of by a and b,
where b’ = ba*.

PrROOF. From the relation ab=— b'a (see (15)), we see at once
(32) a’b'=b"a".
Thus
b2 = (ba") = ba*ba* — b"* o,
and then by induction
33) b1+r"+s”+~-+t (J"U’-au_

If k¥ be the order of f mod p, then from the defining relations of G
(see (16)) m and therefore 4 is a multiple of &’. Let precisely A= vk’ and
t* =1+ up (mod p?). Then

z-1 z=-1
1P o DA = D 2 — Er‘**’zx+%upvx(x—l) (mod p*)
=0 i=0

(by substitung for *=1+up (mod p?) and reducing each term mod p).
Hence (33) implies (note that the exponent of & is to be taken mod p*)

1
(34) b;.’l: e b:l:+—2-uj”'3(£-l) aﬂ’
this shows that no power of & (except the unit element) lies in {a} and
vice versa. Also
b’? = b*a”,

by (34).

Now, if (m, p’)==p, then pi=m; in this case b'" = b” which shows
that & is of order p*

Further, if (m, p*) = p* then p’A=m and by (34) we have
(35) b'? = b a™ = b*a™".
Now, if we take x-=£&" and y=p in (32) and remember that *=14up
(mod p*), we obtain a*b” = b%a", thus @ and 6 commute; hence from
(35), we see at once that & is of order p®. Thus in both cases b" is of
order p* and (i) is proved.

(ii) is an immediate consequence of (i).

Retaining the same notation, we prove

Lemma 10. The permutation nt* induced by a on the powers of b’ is
of the form n*x=tx+ upx* (mod p*), for suitable t and p.

PrROOF. By using (34) and (32) respectively, we get

abu: — abz—f——;-upv z(::-l)a:rl
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ie
=+ —l-upﬁ z(z-1) _xd+l

(36) ab” =b'"*2 a
On the other hand, if we use (34) once more, we find that

(37) bm'.t Sy bn‘z-k%upr(n‘:)(x‘z—l)alﬂ‘z

Further, by hypothesis 'urf;»”'=b""".:rb,;r where a,,. is a power of a, then by
using (37), we obtain

1
(38) ab’z s bx‘xd-?upv(n' z) {n'x-l)ala': abm .

Comparing (36) and (38) and remembering that a,,. is a power of a, we get

(39) n’x+% upv (7*x) (7 x—l)ztx-{-% upvtx(x—1) ¢mod p?).

Relation (39) implies at once n*x=tx (mod p®); furthermore n* being
determined mod p* let precisely #*x=tx-p f(x) (mod p?) where f(x) is to
be determined mod p. If we substitute for #*x in (39), we find that

tx+pf(x)+-;—upv tx(tx—1)=tx+ -;—upv tx(x—1) (mod p?.

Therefore f(x)= 5-uv t(1—f)*=px* (modp), where w=y #t(1—f)

(mod p) is prime to p because f{ and {—1 are both prime to p. Thus
A'x=tx+upx® (modp®) where f is any number prime to p such that
t—1 is prime to p i.e. such that t#1 (modp). This proves the lemma.

Lemmas 9 and 10 combine together to show that the permutations
nx=rx+upx* (mod p*) will lead to the same groups which are described
in Theorem 3.

ConcrusioN. The general products of {a} and {b} when {b} is of
order p’, p being an odd prime, are described in Theorems 1,3 and 5. The
groups defined in these theorems will be distinguished for isomorphism in
a separate note.
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