On convex solutions of the functional equation
g [e(x)]—g(x) = ¢ (x).
By MAREK KUCZMA (Krakéw).

1. In the present paper I want to show the uniqueness of convex solu-
tions of the functional equation

M gle(¥]—g(x)=9¢((x)  x€la, =),
where g(x) denotes the required function, and «(x) and ¢(x) denote known
functions, and | shall not treat the problem of the existence of such solutions.
It is easy to be verified (see e.g. [3]) that the equation (1) possesses
(with the continuous functions «(x) and ¢(x)) infinitely many continuous
solutions. Their number does not even diminish essentially if we require the
regularity of the solutions.') However, if we require the solution to be convex,
then it turns out that with some hypotheses on the functions e(x) and ¢(x)
there may exist at most one such solution up to an additive constant.
This fact has been known formerly for the equation

(2) g(x+1)—g(x)=Ilogx x>0.
The unique convex solution of the equation (2) which fulfils the condition
2(0)=0, is the function g(x)=log I'(x). Thus the equation (2) may be used
for defining Euler's I" function (see e.g. [1]).

This result was generalized for the equation

gx+1)—g(x)=9¢(x)

by KRruLL [4] and, independently, by the author of this paper [5]. The present
note is a direct generalization of the above results.

1) If, for example, g(x) is an analytic solution of the equation
g(x+h)—g(x) = ¢(x),
then the functions
2
1) =)+ A sin [ x+B) +C

where A, B, C are arbitrary constants, are also analytic solutions of this equation.
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2. We call the function f(x) convex in an interval (a.b) if for every
X,, X3, belonging to (a, b) and for every 0 < 4 < 1, the inequality

JlAx, + (1 —=2)x] = 4f(x) + (1 —2) f(x.)
holds.?)

We call the function f(x) concave if it satisfies the inequality :
A%+ (1 —=2)x] = 1f(x) + (1 =) f(x.).

Lemma 1. If the function f(x) is convex (concave) in an interval (a, b)
then for each x, € (a,b) the functions

A= Lt D=1

f(x)=

are increasing (decreasing) in the interval (a, b).

Jx+x) —f(x)
Xo

The proof of this lemma is to be found in [2].
We denote by «"(x) the n-th iteration of the function «(x), i.e. we put:
a’(x) =x
" (x) = a[e"(x))].
Lemma 2. If the function e(x) is continuous and strictly increasing in
[a, =), and a(x) > x in [a, =), then for every x¢€|a, >) the sequence {«"(x)}
is strictly increasing and
lim @"(x) = oc.

n—-»o

The proof of this lemma may be found e. g. in [6].

Lemma 3. If the function a(x) is concave, continuous and strictly in-
creasing in |a, <) and a(x) > x in [a, o), then for every x,, x,€|a, o)
a(xl)_a(xl) -_:,,l
X; — X =t
«(x +a)—afa)
x

is de-

ProoOF. On account of Lemma 1 the funetion
creasing, thus there exists the limit

lim a(x+a)—-—cc(a) = q,.
X

Tr—»m

) Convex functions are often defined by the inequality :
f(xl+xi]5 J(xy) + f(x3) .
T 2
These definitions are equivalent under the hypothesis of the coutinuity of the function f(x).
It may be proved that the convex and measurable function is continuous ([7], [2]).
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Consequently there exists also the limit

o w(x) o ela4x) . [a(x+a)—a(a) . (@) |
fron o T L X x+a " x+a| =%
and according to the inequality «(x)>x, we have ¢,=1.
In a similar manner we have by Lemma 1:
a(x)
e (x;)—a(x;) > lim a'(x,)-—-a(x.,) i a(x,) i, 1O -
X;— Xy ;> ® Ay == Xp Ty > @ Xi— X > l——ﬁ

what was to be proved. :

Let us denote, for fixed x¢€ (g, e(a)): x» = &"(x), an = «"(a),

d.(x)

> 2 The immediate consequ-

du(x):xu_aa’ Au:an—a!l—ll Iﬂ(x):
ence of Lemma 3 is

Lemma 4. If the function a(x) fulfils the hypotheses of Lemma 3, then
the sequence {4,} is increasing.
Now we shall show the following

Lemma 5. If the function «(x) fulfils the hypotheses of Lemma 3, then
Jor fixed x the sequence {I.(x)} is decreasing.

ProOoF We have by Lemma 1:

Xns1— Any1 = a(xu)_a(an) - a(xu)_a(aw-l) = a(an)_a(au-l) g Apy) —An
Xn—0dn Xp—0n 3 Xn=—0n-1 = an—0an-1 Apn—On-1
Hence

Xns+1—a Xn—0a
l’a+l(x)# n+l n+l — n n

o, = e = /,(x), what completes the proof.

For further purposes we shall need also the following:
Lemma 6. If the function a(x) fulfils the hypotheses of Lemma 3 and
if moreover lim %z «, > 1, then there exist a number 6 > 0 and an index
x> o

N such that for n > N:
an-i-l +an-1 —2an = daﬂo
PrOOF. We have

ele®@] e ,

ele@)]+x_  a(x) X @+ T

2a(x) 9 &(X) v 2@, :
x
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Consequently, we can choose the numbers ¢ >0 and A >0 such that for x > A
ela(x)] + x J
2e(® ' T2
Hence for x> A:
(3) ele(x)]+ x—2a(x) > de(x).
Since lim @,= o<, we can choose the index N such that for n>N a,.,> A.

Putting in (3) x =a.-1 we obtai (for n > N):
Ans1 + An-1— 200 > 04y,
what was to be proved.

3. In what follows we shall assume that the function e(x) is concave,
continuous in an interval [a, o) and e(x) > x in [a, o). Hence it follows that
a(x) is strictly increasing in [a, o). Moreover we shall suppose that the func-
tion ¢(x) is continuous in [a, o), and that it is positive and increasing for
sufficiently great x, and that

“) lim [p(a,) —¢(@n.1)] =0.
Let us suppose that the function g(x) satisfies the equation (1) and that

£(x) is convex in [a, o). According to Lemma 1, for arbitrary x € (a, @(a))
hold the inequalities (using the notation from the preceding sections):

g(an)—g(an1) _ g(x:)—g(as)

®) A e 7

(6) g(xn()i;—(f)(ﬂn) = g(ﬂauz:g(ﬂu)
We have from (5) and (1):

(7 On(X) 9 (@n-1) = 4u [g(xn)—g(an)].
We have from (6) and (1):

®) Ani1[g(xn) —&(@n)] = du(x)p(an).
Next:

g (xn)—g(an) = g(x2)—2(x) + g(x)—g(a.) +g(a)—g(a) =
n-1 n-1
= go [g (1) —g (x)] + 2 (x)— ; [g(@rs1)—g(a)]—g(a)=

- % @(xx) + g(x)—g(a)— g ¢(a) = g(x)—g(a) +:§ (9 (xx) —(ax))-
Hence, according to (7)

dnjf)_ @(an-1) = g(x)—g(a)+ Z (9 (xx)—@(ar)],
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that is .
©) ()9 (an1) +£(0) — 2 [p(x)—p(a)] = £(x).
On the other hand we have by (8):

(x)_g(a)+z[¢(x,) —g(@) = %% o),
that is
(10)

() = g@— 3 [p(s)— (@] + 2D %) @) + 0P (@n-)— (X 9(an-1)
Denoting : i
£ 2@+ L@ P (@) — 3 [p(x)— (@),
we have from (9) and (10)

Zn(x) = (%) = gn (%) + (%) [

#(a)—9(a.-)|

n

Y, e
x, ¢(a») >0 for great n and
£n(x) = g(x) = gn(x) + In(¥) [p(an) — (@, 1))

According to Lemma 5 the sequence /,(x) is decreasing, and thus bounded.
Hence, according to (4)

According to Lemma 4

= 1. Since Qp —> 00 and ¢(x) >0 for great

lim g.(x) = g(x) for x € (a, a(a)).

Since gn(a)=g(a) for every n,
lim g (x) = g(x) for x € [a, a(a)).

Thus every convex solution of the equation (1), which assumes the value
£ (a) at the point x = a, must be in the interval [a, «(a)) the limit of the sequence
Zn(x). Since the function g(x), satisfying (1), is unambiguously determined
by its values from the interval [a, @(a)), (see e.g. [3]), hence follows the
uniqueness of the convex solutions of the equation (1).

REMARK. In the above considerations from the hypotheses on the func-
tion @(x) we used only positiveness of ¢(x) for great x and the condition (4).
Nevertheless, we shall show that if the equation (1) possesses a convex solu-
tion g(x), then the function ¢(x) (=g [@(x)]— g(x)) being positive must be
increasing for great x.
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From the condition ¢(x)> 0 for great x follows that the function g(x)
is increasing for x > A. Let us take arbitrary x, > x,> A. According to Lemma 3

a(x;)—a(XQ) =1
X;— X Sk
that is
(11) a(x) = x,+a(x)—x;.

Denoting &= «(x,;)—Xx;, we have by Lemma 1:

g(xs+h’3 —g(xs) s g(x +hz-—g(x=),

whence
g(xo+h)—g(x:) = g(x, +h)—g(x),
that is
gla(x)]—g(x) = g(x: + (X)) —X;) —g(x,).

Since g(x) is increasing, we have from above, according to (11)

gle(x)]—g(x) = gle(x)]—g(x),
that is
p(x) = ¢(x).

4. In the preceding section we established the uniqueness of the con-
vex solutions of the equation (1), which assume a given value at the point
' (x)

x==a. We shall show, however, that if lim >1, then the equation (1)

T

with the function ¢(x) fulfilling the hypotheses from the preceding section,

has no convex solutions at all. Namely, we shall show that if lim L:;‘)=

r—-»=m

—=a,>1 and 1f g(x) is a convex solution of the equation (1), then
(12)  lim [¢(a)—9(@u-1)] = lim [g(ans1) +£(@n-1)—28 ()] = o=.

The function g(x), being convex, satisfies for every x;,x.€[a, ) and
for every 0 <4 <1 the inequality:

glax,+(1—2)x] = 2g(x,) + (1—2) g (x.).

Let us put x,=a, 1, Xo=2auwn, Jim St "0, Evidently 0<Z < 1.
Ay 41— An -1
We have:
- y41—an (au+l_an—l)_(an+l_an) _
Axl—i_(l l)xg—anﬂ_a““la.._;-k An1—Qy -y i

P ! (a..+1 _an) ay -1 “I"(an""'"an—l)an +1
a'+l_an -1

= qy.
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Consequently :

(13) g2(a,) ég(ﬂ,‘.,.l)+1[g(a”_l)_g(an+l)].
Let us denote

. == g(unﬂ)—"g(ﬂ,. -1) A

an+l — -1

m

We have
' g(a""H) — mn(aal+l"‘_0u -l)+g(ﬂn..1).

According to (13)
2(@) = g(@nn)+ 21" [2(an-1)—2(@n11)] = 8(@n11) — Mu(@n 41 —80) =

Aui1—Ap-1
=g(@n+1) —Mu(@n+1 — @+ Qn-1—0n 1) = g(An+1) + Mu(@—a0-1) — 2 (An+1) +
+g(an-1) =g(an-1)+m.(a.—a.-).
Hence
g(an1) +2(an-1)—2g(a,) = ma(@nss+ an-1—2a,).
The function g(x) is increasing for great x, thus there exists an index N, > N

(where N denotes the index occuring in Lemma 6) such that my > 0. Further,
on account of Lemma 1, m, > my, for n > N,. Hence by Lemma 6, for n> N,:

£(n1) +g(an-1)—2g(as) = my,0ay,

whence the reiation (12) follows immediately.
Thus we have proved the following

Theorem. If the function e(x) is concave and continuous in an interval
[a, o), moreover «(x)> x in |a, o), and if the function ¢(x) is continuous in
[a, =), positive (and then also increasing) for sufficiently great x, and fulfils
the condition (4), then there exists at most one convex function g(x), which
satisfies the equation (1) in the interval [a, o) and assumes a given value for
x=a. The necessary condition of existence of such a solution is the relation

a(x)

lim ——=1.

z+@
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