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On linear differential geometric objects of the first
class with one component.

By MAREK KUCZMA (Krakéw).

The purpose of the present paper is to determine all differential geo-
metric objects of the first class with one component which have linear laws
of transformation :

(1) X =f(AV)x+g (A).
From the group property of the transformation rule we obtain that the
functions f and g have to satisfy the system of functional equations

} f(BE AX) = F (A F(BY)
| g(BY AY) =g (A)f(B) +2(BY).
Using matrix notation, we can write the above system in the short form
@ f(BA)=f(A)f(B)
' g(BA)=g(A)f(B)+&(B),
where A=||A)|, B=||By|| and BA denotes the product of the matrices

B and A.
We shall prove the following

Theorem 1. Functions f and g satisfying the system (2) for regular
A and B have to be either of the form

3 f(X)=1
) | g(X)=1In|g()),
or of the form
o | F)=9()
| g(X)=c[p(4)—1],

where 4 denotes the determinani of the matrix X, ¢ is an arbitrary constant,
and @(u) is a function satisfying the equation

(5) ¢ () p(v) = @ (uv).

If the equations (2) are postulated also for singular A and B, then the solu-
tion must be of the form (4) with (5).
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Proor. The first of the equations (2) has been solved by M. KuCHaA-
RZEWSKI [2], who proved that the general solution of this equation is of the
form

6) f(X)=94)
where ¢(u) is a function satisfying (5). Thus in the sequel we shall only
consider the equation

(M g(BA)=g(A)f(B)+g(B),
where f(X) is a function of the form (6).

At first we shall consider the case ¢@(u)==1. Then, of course, also
f(X)=1, and the equation (7) reduces to the form

g(BA)=g(A)+g(B).

Denoting
@®) h(X) = exp g(X)
we see that the function A(X) must satisfy the equation
9) h(BA) = h(A)h(B)
of KucHARzEwsKI. The solution of the equation (9) is of the form

h(X) = g(4)
whence, according to the relation (8)
&(X)=In|p(4)|.
Thus in this case we have obtained the formulae (3) as the solution of the
system (2). The special case

f(X)=1,g(X)=0,
can be derived from both formulae (3) and (4). If we take into account also
singular matrices (i.e matrices with vanishing determinant), then this is the
only possible solution for f(X)=1.
. In the sequel we shall assume
(10) fX)#1, o) #1.
Let E;(u) denote the matrix obtained from the identity matrix by replacing
the unit in the i-th row and the i-th column by u. Next, let Ei(u), ik
denote the matrix obtained from the identity matrix by replacing the zero in
the i-th row and the k-th column by u. We put
glE(w)] = (),
glEx(u)]= Bi(u).
According to (6) we have
(11) FIE(u)] = p(u),
(12) fIE @) = 1.
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The matrices E.(u) and Ei(u) satisfy the following matrix equations:

(13) Ei(u)E: (v) = Ei(uv),
(14) Ei(u)Ei(v)= Ei(u+v).
From (14) and (7) we have, according to (12):
(15) Bi(u+ v) = Bu(u) + Bi(v).
From (13) and (7) we have, according to (11):
(16) ei(uv) = ai(v)p(u) + ai(u).
Interchanging in (16) u and », we obtain

amn ai(vu) = ei(u) g (v) + ei(v).

By comparison of the right sides of (16) and (17) we obtain
() g (v) + @i(v) = @(v) 9 (1) + @i(u),

whence
(18) a(u)[9(v) —1] = «i(v) [ (u)—1].
By (10) one can find a v, such that ¢(v,) == 1. Denoting
o %)
o p(w)—]

we obtain from (18) (putting v=1,):
(19) (1) =g (u)—1].
Now | shall prove that gi(z)=0. From the matrix equality
E!(2u)— E(2) Ei (u)E; (%]
we have by (11) and (12)
(20) fen) = | 9@+ 9@ 5@ + ).
From (19) and (5) we have
«[4)s@+ @ =clo( 4] —1]p@+elp@—11—0
whence
@1) 8i(2u) = 9(2)Bi (u).
Similarly, from the matrix equality
E} (2u)— Ei (%] Ei(4) Ex(2)
we obfain
(22) geu—g (3]s,
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Since fi(u) satisfies the equation (15), we have

Bi(2u) = 26i(u),
whence, by (21) and (22)

285 (1) = ¢(2) Bi (1)
(23)

2ﬂ§(u)=cp(%] Bi(u)
follows. In view of (5) one of the inequalities

¢(2) 42 qo(%)aez

must hold. Thus we have by (23) the required relation
(24) Bi(u)=0 (for every i and k=~i).
Now we shall introduce the notion of elementary transformations of
matrices. By elementary transformations of a matrix we shall mean the fol-
lowing operations on the rows or columns:
T,: The operation of adding to the i-th row (column) the k-th row
(column) multiplied by wu.

T,: The operation of multiplying the i-th row (column) by a constant
u 50, and simultaneous multiplying of the k-th row (column) by the con-

stant l i
u

It can be proved (see e.g.[l], pp. 44—45) that the transformation T,
can be effected by multiplying the matrix on the left by Ei(z) (on the right
by Ef(u)), and the transformation 7, can be effected by multiplying the
matrix on the left by Ek(%] Ei(u) (on the right by E;(u)E; [%D

From (24) and (12) it follows that the transformation 7; applied to a
matrix A does not change the value of the function g(A). In my paper [3]
I have shown that it is possible to interchange {wo arbitrary elements on
the main diagonal of the matrix in the diagonal form by successive appli-
cations of transformation 7;. Hence it follows that

_ gEi(u)) = g[Ex(u)],
1. €.
ai(t) = ay(u).

Thus the function e;(z) does not depend on i and we may write in the
sequel simply e(u) instead of «;(u). In view of this fact we obtain from (19)

(25) @ (u) = c[g(u)—1].
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Now | shall show that the transformation T, applied to A does not
change the value of the function g(A). In fact, by (25) and (5) we have

gl (L) E@a| =g B () E@] +e|E (1) Ew@] =
= | (L) riEwi+aE@ir|a (1] +e a4 =

=gy (Hfr(u) +a(u)¢(%) +e (%) -

— W) +clp@—1lg () e (L) —1]|=gca.

Similarly
g|4E@E (L || =s.

Thus we can apply the transformations 7, and 7, to a matrix A without
change of the value of the function g(A).

In my paper [3] I have shown that one can, using only the transfor-
mations 7, and 7,, reduce an arbitrary matrix A with unvanishing determi-
nant 4 to the form E,(4). Hence

(26) g(A) =g[Eu(d)] = a(d) =c[p(4)—1].
Thus we need only to show the validity of the formulae (4) for matri-

ces with vanishing determinant.
M. KucHARzEWSKI has shown in [2] that in the case (10)

(27) ¢(0)=0.
From (27) and (7) we obtain for an arbitrary matrix B with vanishing deter-
minant

&(BA)=g(B)

where A is an arbitrary matrix. Putting in the above relation A =0, where
0 denotes the matrix all elements of which are zeros, we obtain

(28) g(B)==g(0)=k,
for every matrix B with Det B=0. In order to determine the constant k, we
shall take in (7) arbitrary matrices fulfilling the conditions

Det A=0,
Det B= 4 0.
We have, according to (26) and (28)
k=kg(d)+clp(d)—1],

= —

whence, by (10)
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which proves that the formulae (4) are valid also for singular matrices. This
completes the proof of the theorem.
As an immediate consequence of Theorem I we obtain the following

Corollary, Every linear differential geometric object of the first class
with one component must be either of the form

X' =x+In|g(d)],

X' =gd)x+clg(4)—1],
where A denotes the determinant |A} |, ¢ is a constant, and ¢(u) is a function
satisfying the equation (5).
Besides the linear objects we can also consider quasilinear objects, i. €.
objects equivalent to linear objects'). We shall prove the following theorem:

or of the form

Theorem Il. Every quasilinear differential object of the first class with
one component is equivalent to the object with the law of transformation
X' = @(d)x,
where ¢(u) satisfies the equation (5).
Moreover, if we consider only measurable transformation laws, every such
object is equivalent either to the density

X == 4x,
or to the Weyl density

X' = |4 x,
or to the biscalar

x'=sgnd-x.

PrOOF. Let y be a quasilinear object and z a linear one. Then there
exists an invertible function v(x) such that

y=v(2).
We can write the transformation rules, occurring in Theorem II, in the form:
e =q(d)e

and
Z+c=g¢(d) (z+7c).

If we put x=e*resp. x=2-+4c¢ we shall have a transformation rule for x:
x'=q@(d)x.

1) We say that an object y is equivalent (cf. A. Nijennuis [4]) to an object x if there
exists an invertible function w(x) such that the relation

y=v()
holds independently of the coordinate system.
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Since the functions €' and z-c¢ are invertible, and the superposition of in-

vertible functions is an invertible function, we have proved the first part of
our theorem. The second part follows immediately from the first in view of

the fact that the measurable solutions of the equation (5) are of the form

¢ (u)=|ul®,
¢(u)=sgnu-|ul*, d= constant,
¢ (u)=0,

and that the function sgn x-|x|? (d5£0) is invertible. (The scalars x’ = x and
x'=0 are not of first class but of class 0.) This completes the proof.
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