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On Galois modules of vector spaces.
By E. FRIED (Budapest).

§ 1. Introduction.

Let L be a finite algebraic extension of the field K and G the corre-
sponding Galois group. The group algebra I of G with coefficients in K is
called the Galois module of the extension L|K. I' can also be considered
as a ring of K-endomorphisms of the vector space L over K.') The exten-
sion L|K can be discussed by the aid of the Galois module I” rather than
the Galois group G.

Several generalizations of the notion of Galois group are known. In a
general case R. BAER [1] defined the Galois group for an arbitrary vector
space L of finite dimension over a field, and proved that there exists a
Galois correspondence between the subgroups of the Galois group and the
corresponding subspaces of L.

Here we generalize the concept of Galois module I" to arbitrary vector
spaces L of finite dimension over a field K, with the intention of obtaining
a general Galois correspondence between the right ideals of I and the
annihilated subspaces of L.*) Then a vector space of dimension >1 will
have several non-isomorphic Galois modules over the same underlying field
and the complete endomorphism ring will be only one of the possible Galois
modules. The main result of this paper generalizes the so-called ,normal
basis“ theorem. As a by-product we obtain a new proof of the normal basis
theorem.?)

1) I is not the complete ring of endomorphisms unless L =K.

2) Let L be a vector space over the field K and I" a ring of operators acting on L
such that the multiplications by the elements of K commute with the operators in [, i. e.
for arbitrary A €K,u€ L and €7 we have (Au)y= A(un). (We write the operators on
the right.)

38) M. Deurina used Galois modules in the proof of the normal basis theorem, but
he made use of representation theory as well. (See [2].)
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§ 2. Preliminaries.

Let K be a field, L a vector space over K and I" a ring of K-endo-
morphisms of L. We define X[Y] as follows:

case (a): if XS L and YE T, then let X[Y] denote the set of all ele-
ments in X which are annihilated by every elemeni of Y;

case (b): if XS [I"and YES L, then let X[Y] denote the set of all ele-
ments in X which annihilate every element of Y.

For L =1I" we define X[Y] as in case (a).

It is obvious that ¥, S Y, implies

(i) X[Vi]2 X[,
(i) ViXVI=2Y,
(iii) Vo[X]2 Vi[X]

for arbitrary Y;, Y, and X in L or in 7.

Let L be a vector space of finite dimension over K and I" a ring of
K-endomorphisms of L. We speak about a Galois correspondence or Galois
connection between L and I" if the two lattices:

(a) the lattice £(I") of right ideals J of I';

(b) the lattice €r(L) of the subspaces L(J) of L annihilated by right

ideals of I')
are anti-isomorphic.

Let M be the complete ring of K-endomorphisms of L and 4 a sub-
space of L. Clearly, M[4] is a right ideal of M. The correspondence 4— M[4]
is evidently a Galois correspondence between the subspaces 4 of L and
the right ideals M[4] of M. Let d(X) denote the dimension of the vector
space X over K. It i1s easy to see that

(iv) di(d)+du(M[4]) =1
for every subspace 4 of L where dy(X)=d(X)/d(Y) for a subspace X of
the vector space Y.

§ 3. Galois modules of a vector space.

Let K be a field and L a vector space of finite dimension over K.
A subring I" of the complete endomorphism ring M of L is called a Galois
module of L if I' is a vector space over K, I'M =M and for the right ide-

als J (J#0) of I'
v) d(JM)/d(J) is independent of J.
(Here JM is the right ideal of M generated by J.)

) That these subspaces form in fact a lattice will be shown in the proof of Theorem 1.
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I" being a right ideal of itself, we have d(/M)/d(])=d(I'M)/d(I") =
=d(M)/d("), that is, dw(JM)==dr(]). '

Let K be a field, L a vector space of finite dimension over K and I’
a Galois module of L. Then we have

Theorem 1. The correspondence | + L [[] is a Galois connection be-

tween L and I', and
dr(J)+du(L[J])=1.

PrOOF. Let / be an arbitrary element of £(/°). The right ideals / and
JM have the same basis, therefore L[J] = L[/M]. From (iv) and the Galois
correspondence between the right ideals of M and the subspaces of L we obtain

1—dr(J)—du(L[]) = 1—dr(J)—du(L[JM])) = du(JM)—dr(J) =0, i. e.
(vi) dr(J)+du(L[/])=1.

Let 4 be a subspace of L and J a right ideal of 1. Applying (ii) with
a=L, Yi=4, X=1", and then with V,=1I, V,=/J, X=L, we obtain

(vii) L[I'[4]]24,
(viii) riLyn=/
respectively. (vi) and (vii) imply

(ix) di(d)+dp(l[d]) = 1.

Putting 4=L[J], from (viii), (ix) and (vi) we obtain the inequalities
dr(J)=dr(C'[L[J]]) = 1—d.(L[J])=dr()). It follows that dpr(J)==
=dr('[L[/]]), and therefore by (viii) we have

(x) J=T[L[/]).

On the other hand, using the fact that dr(I'[L[J]]) =1—dL(L[]]), we
obtain dp(I'[d])+du(d)=1 for A=L[J]. From (x) we conclude that
L[J1=LI'[L[/]]], and therefore we obtain the equality 4= L[I'[d]] for
4=L[]}

Consequently, the correspondence /— L[/] is one-to-one between the
right ideals / of I" and the annihilated subspaces 4==L[J| of L, and the
formula dr(J)+d.(L[J])==1 holds.

It remains to prove that the correspondence is an anti-isomorphism.

If nel'[4)nI'[4) and u € 4,U4,, then write u in the form u = u, + u,
(ui € 4). We obtain un=u,n+ u,n=0, that is to say,

(xi) IAn'[4) S T[40 4y).

IfueL[/]nL[)] and 7 € /U /s, then writing # in the form » =, -+ 4 (3: € /3),
we obtain un=un+un=0, i e.

(xii) AVAAVAISTANAIA!
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On the other hand, owing to (i) we have I'[4,u4,] S I'[4], whence

(xiii) I'(4,u4,)EI'[a]n I'[4),
and similarly

(xiv) L{LULIE LA L[]
Comparing (xi) and (xiii), (xii) and (xiv), we obtain
(xv) 4,0 4)=T'[4]n I'[4)]
and

(xvi) AVAYA R AVALIRAVA

respectively. Substituting L[/i] for 4; in (xv) and I'[4] for J; in (xvi), we get
LU0l =LICILIJNNCILLEN = LICILJJ LLENI2 LIV L1

and
TiAnd) = F(LIT4]0 LIT[4)) = CIL[T|4) U T[4]]) = T[4] u T[4).
Next we prove that the vector spaces L[/,n/,] and L[/,JuL[/;] have
the same dimension. Clearly, d(4,n4,)+d(4,U4,)=d(4,)+d(4;) for arbi-
trary subspaces 4,, 4, of L, and therefore

du(L[AJU LD = du(L /) +du(L[ L) —du(L[AIN LIJ]) = 1—dr () +
+1—=dr(J)—1+dr(u)) = 1—dr(in ) = du(L[/in]2]).

Consequently,

(xvii) L{/infs)=L[/JUL[]]

This completes the proof of Theorem 1.

REMARK. Let 1" be a ring of endomorphisms of the vector space L.
If dp(J)+dr(L[J))=1 for every right ideal | of I' then I' is a Galois
module of L. Indeed, using again L[/]= L[/M] and (iv), we obtain dy(/M)=
=1—di(L[JM])) = 1—dr(L[J))=dr(J]). Thus the number d(/M)/d(])=
= d(M)/d(I') is independent of J. In case J=1I"we have d(I'M)/d(I")==
=d(M)/d(I'), and therefore I'M=M, q. e. d.

Theorem 2. Let I' be a Galois module of the vector space L, and |
an arbitrary right ideal of I'. | is a Galois module of the factor module
L/L[]) if every right ideal ]’ of ] satisfies ]’ =]’]. In this case d(I")/d(L) =
=d(J)/d(L/L[]])-

PROOF. It is obvious that / is a ring of endomorphisms of L/L[J].
By hypothesis, J'I"=]'JI'S ]’ J=]’, i.e. every right ideal J’ of Jis a right
ideal of I'. We have d(J)/d(I")=(d(L)—d(L[J]))/d(L) and we know that
d()")/d(I"') = (d(L)—d(L[J']))/d(L) holds too. Hence

d(J’) , dL[J1—d(L]JD _ ' e
d(]) . 1 d(L)-—d(L[j]) =1 or d-f(j)+db‘f-[-7'l((L/L[j])[j ])‘_ L.
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Because of the Remark above, / is a Galois module of L/L[/] and, clearly,
d(I')/d(L) =d(J)/d(L/IL[]].

Theorem 3. Let I' be a Galois module of the vector space L and I (< I')
an arbitrary ideal of I'. Then I'[l is a Galois module of L[I] and d(I")/d (L)=
= d(I/1)/d(L[I}).

PROOF. It is obvious that I'// is an endomorphism ring of L[/]. Every
right ideal of I'/I has the form J/I where J(2/) is a right ideal of I". There-
fore d(L[/])/d(L)=(d(I")—d(I))/d(I") and d(L[]])/d(L)=(d(L)—d(]))/d(T).
By division we get

d(L[JD , d(J)—d{l) _ -
whence Theorem 3 follows by making use of our Remark. The proof of
d(I')/d(L) =d(I'/T)d(L[I]) is clear.

In a definite case it is not easy decide whether or not (v) holds for a
subring I" of the complete ring of endomorphisms M. Now we proceed to
an important class of Galois modules of L for which the fulfilment of (v)is
easier to decide.

Let us consider an algebra C over some field K and two subalgebras
A and B of C. Suppose C= AB, where AB denotes the product algebra
(which consists of all finite sums Za;b; (a:€ A, b; € B)). Let a,,...,,...
and 8,...,8,... be bases of A and B, respectively. Let us define the set
.oy @i, ... as the product of the bases «,,...,@,,... and 8, ..., 8, .... The
algebra C is called the semi-direct product of its subalgebras A and B, if there
exist bases @,,...,@,... of A and §#,..., £, ... of B such that their product
is a basis of C. In this case C is denoted by A(x)B. It is obvious that if
C=A(X)B, then the product of any bases of A and B is a basis of C.
It is also evident that in the finite case C=A(x)B holds if and only if
d(C)=d(A)-d(B). In general, A(x)B= B(x)A, and it is easy to see that
A(X)B = B(x)A does not imply that C = A X B, the direct product of A and B.

Theorem 4. Let K be a field, L a vector space of finite dimension
over K, and M the complete ring of endomorphisms of L. If there exist
subalgebras I' and I of M such that M=I'(X)I"', then I' is a Galois
module of L.

PROOF. I' is obviously a ring of endomorphisms of L. We have to
prove that (v) holds for I, Because of I'M2I'I"" =M2I'M we get ’'M =M.
If / is a right ideal of I, then our hypothesis implies that the product jI™
is semi-direct. Thus JM=J(L'(X)I")=]J(X)I", i.e. d(JM)=d(J)-d(I"),
g. e. d.
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§ 4. Galois modules operator-isomorphic
to the vector space.

In this section we intend to prove a generalisation of the normal basis
theorem. Let L be a finite separable and normal algebraic extension of the
field K. The normal basis theorem asserts that there exists a basis of L over
K which consists of all conjugates of an element of L. We shall prove that
if we consider L as a vector space over K, then the group algebra Ik of
the Galois group G of L|K over K is a Galois module of L, further that
the normal basis theorem is equivalent to the assertion that L contains an
element which is not annihilated by any non-zero element of I';. Hence we
shall conclude that L and I'k are operator-isomorphic with respect to I'y as
operator-domain.

Let L be a vector space of finite dimension over K, and I" a Galois
module of L. Suppose that I"'~rL, i.e. I" and L are I'-isomorphic, and let
@ be a fixed operator-isomorphism between I" and L. Thus if €' and
¢(n) € L, then ¢(nE)=¢(n)& for all §€I', and therefore ¢(n)E=0 if and
only if 7§=0. Consequently, ¢ (7)€ L[/] if and only if # € I’[/]. Hence the
operator-isomorphism implies d(I")=d(L) and d(I'[J]) ==d(L[/]). From the
hypotheses we conclude that d(I'[J]))+d(J)=d("). It is easy to see that
I'[J] is a left ideal of I'. I' being an endomorphism ring of itself, from
what has been said it results:

Theorem 5. If I' is a Galois module of L which is I'-isomorphic to
L, then U is a Galois module of itself, further, for every right ideal | of I
I'(]] is a left ideal and d(J)+d(I'[J]))=d(I") holds.

Before turning to the proof of the converse assertion, we consider some
needed lemmas.

LEMMA 1. Every simple, non-nilpotent algebra I' of finite rank over a
field K is a Galois module of itself.

Every right ideal of I" may be written in the form &/° with an idem-
potent & If 1 denotes the identity of I', then evidently I'[¢I']=1"(1—¢)
whence d(I'[el)) =d(I'(1—¢&) =d((1—&) ") =d(I")—d(eI").

LEMMA 2. Every semi-simple algebra I' over a field K is a Galois
module of itself.

By Lemma 1 this is true if I" is simple. By a known theorem, I' is
the direct sum of a finite number of simple algebras, say, of k simple
algebras. Assume that the lemma has been proved for semi-simple algebras
which are direct sums of at most k—1 simple algebras. If I" is not simple,
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then write I" as a direct sum
I'=rn+1,,

where I, I, are non-zero subalgebras of I'. I'; is a Galois module of itself
by the inductive assumption. Let J be a right ideal of I'". Because I” contains
an identity, we have /=, + /,. By direct sum property, we infer I'[J]=
=TI[/]InI'[J}). On the one hand we have I'[J,]=I[/;]+ I'., and on the
other hand I'[ /)] = I, + I';[ /o). Therefore I'[J1=I"[J]n [ JJ)= 1]+ /4]
whence  d(I'[J])+d())=d(I\[/)+d[LD)+d()+d(L)=d () +
+d(I) =d(I').

Theorem 6. Let I' be an algebra of finite rank over K, and suppose
that I' is a Galois module of itself. If I' is Galois module of the vector
space L of finite dimension over K and d(I'y=d(L), then there exists an
element in L which is not annihilated by any element of I’ different from
zero.

PrOOF. Case I: I is simple and not nilpotent. It is known that in this
case I' may be written in the form
(xviii) I'e=FXP,,
where F is a skew-field over K and P, is a complete matrix ring of finite
order r over K. Let @,,...,a, be a basis of F over K and O~uc€lL. If
Za(ua)=o (4 € K), then u(ZL-a,] 0. Since Zl‘a,EF cannot have

1=1
an inverse (otherwise we should have u=0), we obtain Z A;@;=0, hence

4;=0 and the elements ue,,..., ue, are linearly mdependent Therefore L
as a right vector space over F is of dimension 7. Choose elements ..., &;, ..

of P, such that s&;sq = Jue; where d; is the Kronecker symbol (1 =iJ k,
I =r). Then the elements &= g; are primitive orthogonal idempotents and
&+ -+-+8& =1 is the identity of I". By (xviii), Ls is a right vector space
over F. It is obvious that L — L&+ L(1—¢) and L[&I")==L(1—&). Thus
d(Le))=d(L)—d(L(1—&))=d(')—d(L[& ")) =d(&,[")=d(F)-r, i.e. the
dimension of L& over F is exactly r. Let u,,...,u, be a basis of L& over F,
and consider the elements

(xix) Uyj = U;8y; (I1=ij=0).

If 2, u;ja;=0 for the elements «; of F, then 0=0-8y= ‘; Ui @8 =
*2, U381 @i 811 —2. wey,. We infer @px—0 (1=i,k=r). By the basis
property of the u;, the elements in (xix) form a basis of L over F. Let us consider

now the element u = Z ui;€ L. Suppose that unp=0 for some element
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= Ze,,,aﬁ‘ of I' (gx€ Pr,an€ F,1=j,k=r). Owing to uién = U880 =
= Oplliey = Ojuy  we obtain 0= Z Ui 2 & @ji, = Z Ui &% Gk = Z Ui @, .

Since the elements in (xix) form a basns over F, 1t follows that a,k---O
n=0. Consequently, u has the required property.

Case II: I' is semi-simple. As in the proof of Lemma 2, we write I’
as a direct sum I'=1I,+41T, (It 0). By Theorem 3 and by I=>=I/I,
Iy>~=TI/l;, T, and I'; are Galois modules of L[I] and L[I7], respectively,
and we have d(I'))=d(L[l})), d[I})=d(L[I]). From (xvi) and (xvii) we
obtain O=L[I|=L[UD)=L[)nL[l3) and L=L[0)=L[InlY)=
= L[IJUL[ly). Thus putting L, = L[I,] and L,= L[I}] we get

(xx) L=L+L,

where I is a Galois module of L; and d(L)=d(l}) (t=1,2).

By an obvious inductive hypothesis, we may assume that there exists
an element u; of L: such that u, is not annihilated by any non-zero element
of I'; different from O (f=1, 2). Assume that for u=u,+u, (u:€L:;) and
for some element  of I, n=mn+n (€1%), we have um=0. Then
O =un=um +uyn and the directness of (xx) implies w.7 =0, whence
n=0 and n=0. Thus u is an adequate element of L.

Case III: I' is arbitrary. Let R denote the radical of /"and put D= L[R).
By Theorem 3, I'/R is a Galois module of D and we have d(I'/R)=d(D).
I'/R being semi-simple, by Lemma 2 and case Il there exists in D an ele-
ment z annihilated by no element of I'/R different from 0. For this element u we
have d(u-I'/R)=d(I'/R)==d(D) and thus D==u-I'/R. But D= L[R], so that also
D =ul. Putting /= I'[R] and applying this result to L instead of I, we obtain
that / has an element § such that /=E&I'. Then LES D since §€ I'[R]. Now
Ecl implies L[/)S L[§], consequently, L[/]=L[§]. For an endomorphism,
the sum of the dimensions of the kernel and the image is equal to the dimension
of the vector space, therefore d(LE)=d(L)—d(L[l])=d(I")—d(Ry=d(D),
because of d(L[/])+ d(/)==d(I') and d(R)+d(l)=d(I'), i. e. LE= D. Hence
there exists a v € L such that vE=u. Any element of / may be written in
the form §n (€ I'). If v(§n) =0, then O ==v(§n) = un, and so € R, En=0.
Thus O is the only element of / annihilating v.

Let /50 be a right ideal of I. R being nilpotent, there exists a non-
negative integer n such that JR" 0 and (JR")R=JR"' =0. For this n
we have clearly

(xxi) 0+ JR'SJnI'[Rl=Jnl.

In the preceding paragraph we have proved that the intersection of / and
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the right ideal / annihilating v is 0. Therefore (xxi) implies /=0, complet-
ing the proof of Theorem 6.

Let now u be an element of L whose existence is stated in Theorem 6.
If #,,...,m. is a basis of I then, clearly, us,,...,un, is a basis of L. Thus
every element of L may be written in the form u7(y € I'). It follows readily
that the mapping n— u7n is an operator-isomorphism between I and L.
This proves

Theorem 7. Let I be an algebra of finite dimension over K, and
suppose that I' is a Galois module of itself. If I’ is a Galois module of the
vector space L of finite dimension over K and d(I"')=d(L) then I'==rL.

Let us mention the following fact. Since every element of L has the
form un(n€I’), there exists an & € I" such that u = wue. Then for any n€ T,
we have un=(u&)n=u(en), i. e. u(n—en)=0, whence n—=en, & is a left
identity of I". Because of (—né&)é—=(n—mne)eE=(ne—ne)§=0 (n,5€¢I)
it follows that n—ne € I'[I'] =0, n=mn¢, and we arrive at

Theorem 8. If the algebra I' of finite runk over K is a Galois module
of itself, then I' has an identity.

We turn to derive the consequences of Theorem 6 for algebraic exten-
sion fields.

First let us consider an arbitrary group G and a field K. The group
algebra I'i of G over K consists of all finite sums of the form >, 4i0;

(4 € K, 0. € G). The elements of the group G form a basis of I'x and the
product of two basis elements is the same as their product in G.

Theorem 9. For finite groups G the group algebra I' = I'y is a Galois
module of itself.

Let M be the complete endomorphism ring of I, and & € M such that
0.6 — 0,0, (1=i,j=d(I')= n=order of G). Consequently, && —=0,& —g

(1 = j#k = n), the & are orthogonal idempotents, and > & =1 is the iden-
i=1

tity of M. It is easy to verify that the subspace D of M generated by the ele-
ments & is an algebra over K. Since d(D)==d(I"), the elements & are pri-
mitive idempotents.

Denote by o@; the right multiplication by o;; this is an endomorphism
of I and the @; (1=i=n) span in M a subalgebra I" isomorphic to I', an
isomorphism being induced by o;— 0;. We intend to show that the elements
o (1=i,j=n) form a basis of M over K. Suppose 1= > 4;0:5;==0

%

(4 € K); then 5 belongs to 'DS M. In order to verify A,,=0 for some
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fixed indices p, ¢, consider 0 = (6,4,")y = Z 10,0, )08 = Z 2(0,0;" o),

This may be written as a linear combmatlon of the o:;(0,0;" a,)e,_-a,_, if and
only if j—=g¢ and i=p, i. e. the coefficient of o, will be 4,,. Because of the
linear independence of the o; we obtain 4,,=0, and thus the @;¢ are line-
arly independent. Their number is equal to the dimension of M, whence
I'(xX)D =M. Theorem 4 completes the proof.

Theorem 10. Let L be a finite, separable and normal algebraic exten-
sion of the field K, and G the Galois group of this extension. If L is con-
sidered as a vector space over K, then I'=1I% is a Galois module of L.

It is obvious that. both L and I" are endomorphism rings of L, and
thus 'L < M, where M is the complete endomorphism ring of L. An arbitrary
element 7 of I"L may be written in the form 7 = .Z;"‘ wi(n=d(L),0:€ G,w; €L).
Let v be a primitive element of the extension L|K. If every element of L is

annihilated by n€7, then 0= (v*)n = Z(w)aiwi = 2 viwi 0=k=n—1)

where v;=vo; are the conjugates of ». Consider the equations Zv, wi=0

as a system of homogeneous linear equations with unknowns w, whose
determinant is of Vandermonde’s type. This determinant is, because of sepa-
rability, different from O, therefore w;=0 (i=1,...,n) and n=0. Now in
view of d(I")=d(L) it follows that M = I"(x)L. Combining this with The-
orem 4, the proof is completed.

Finally we prove

Theorem 11. Every finite, separable and normal algebraic extension
L of a field K has a normal basis.

Owing to Theorems 6, 9 and 10, L contains an element z such that
un=0 (n€I%) if and only if =0. This means — writing 7 € I'x in the
form n—= 2 A0:; with 4, € K, 0,€ G — that >, 2,u;—0 if and only if 4 =0

1=1

where u; = uo; are the conjugates of u. Thus the u; (i=1,...,n) form a
basis of L|K, q e.d.
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