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Nilpotent products of groups with amalgamations.
By JAMES WIEGOLD (Keele, Staffordshire).

§ 1. Introduction.

The contents of the following pages represent an attempt to combine
something of the ideas of the theory of generalised free and generalised direct
products of groups with amalgamations (SCHREIER [12], HANNA NEUMANN [10],
[11], B. H. NEUMANN [9]) with those of GoLovin ([2], [3]) and MoORAN ([6])
on regular products. One is naturally led to think about ‘“regular products
of groups with amalgamations”, or more accurately to try to generalise the
definitions of some subclass of the class of regular products so that the
constituent groups of a product from such a subclass intersect in possibly
non-trivial subgroups. This I have done for the nilpotent products of GoLovIN
and the verbal products of MORAN, and so the generalised free n-th nilpotent
Golovin product of groups with amalgamations and the generalised free
V-verbal product of groups with amalgamations are defined. It is inconvenient
to give the precise definitions at this point, and the reader is referred for
them to § 4 of the present work.

Sections 2 and 3 are of an elementary and preliminary nature, containing
as they do most of the definitions and simple or known resuits that are
necessary for the subsequent investigation. In § 4 we define the generalised
n-th nilpotent and the generalised V-verbal products, and explain what is
meant by free products of this kind. This section also contains some results
which are fundamental for the rest of the paper. In § 5 we enlarge upon the
contents of § 4 and state which of the very large number of problems arising
from the definitions we tackle in this paper. It is namely a discussion of
conditions necessary and sufficient for the existence of the generalised free
second nilpotent products (one arising from the work of GoLoviN and one
from that of MORAN) of two groups with an amalgamation. This will be the
central theme of the paper after § 6, though incidental results are derived
throughout. Section 6 itself is devoted to a comparison of the ‘“freeness” of
certain pairs of the defined multiplications, where in fact we find a very
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surprising lack of such comparison. Also in this section the connection bet-
ween the generalised free n-th nilpotent products @ /a GoLoviN and d la
MOoRrAN for the case of two groups, for each n=1, is worked out; we find
that the former may exist while the latter does not, but that if the latter
exists so does the former, and they coincide. Section 7 is devoted to a dis-
cussion of the sort of conditions that are likely to succeed for the situation
here presented. In fact one finds that most of the things one feels should
happen do not, and conversely. The examples given in this section will clarify
this remark, and lead the way to a conjecture that the sort of conditions one
would most naturally think about are in fact inadequate for the situation. In
§ 8 we give necessary and sufficient conditions that the generalised free second
nilpotent Golovin product of two groups with amalgamation exist. The con-
ditions are unfortunately not very manageable, but this is felt to be in the nature
of the problem. Moreover even when we know that a product exists, it is not
always easy to obtain all its more important properties. In § 9 we give some
normal forms for the elements of a generalised free second nilpotent product.
It is unusual (or at least unexpected) that a normal form should be constructed
as a result of successful investigations as to the existence of necessary and
sufficient conditions of the sort here mentioned; one would expect to use
the normal form to actually construct the product. It is true that this can be
done, but the construction is so complicated as to be unworthy of serious
attention. Also in § 9 we give (once more unmanageable) necessary and suf-
ficient conditions that the generalised free second nilpotent Moran product
exist. Finally in the appendix we take a cursory glance at the very hard
problem of the third nilpotent products.

The greater part of this paper was presented as part of a thesis for the
degree of Doctor of Philosophy to the University of Manchester. It is my very
great pleasure to record my deep indebtedness to DR. B. H. NEUMANN, in par-
ticular tor suggesting this problem to me and for his ever-ready advice and
encouragement throughout its solution. I would also like to thank my Parents
for making possible this opportunity of doing mathematical research.

§ 2. Notation and preliminary remarks.

In this section we assemble most of the notation. definitions, basic con-
cepts and elementary results which are necessary for the investigation.

Groups will always be written multiplicatively, 1 will stand for the unit
element of all groups occurring, and E for the subgroup consisting of 1 only.
If g, h are elements of the group G, by g* we mean the transform h™'gh of
g by h, and by [g, h] the commutator g 'h™'gh. The following easy results
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will be used throughout this paper:

3

(£,8,+-8) =888,
(&) =&,
[ab, c)=a, c]’[b, c],
[a, b]=[b,a]" .

In these, r is any integer =1, n is any integer, and the other symbols denote
group elements.

The order of the group G is denoted by |G|. We express the fact that
G is generated by the set X of generators with the set R of defining rela-
tions in these generators by the equality

G=Gp(X;R),

or, if the relations are understood or unimportant, by G = Gp(X).

The normal closure of the subgroup Y of G is the least normal sub-
group of G containing ¥, and 1s denoted by Y% by obvious analogy with
the above notation for transforms. If ¥ is a normal subgroup, so that Y= V%,
we write Y <1 G.

It A and B are subgroups of G, the symbol [A, B] stands for the sub-
group of G generated by all commutators of the form [a, b], where a€A,
b€ B. The lower central series of G is

G="62'G=2..-2"¢2--,

where "'G ==["G, G] for n=0; G is nilpotent of class n if its lower central
series terminates in E after a finite number of steps, and n is the first integer
for which "G = E. The upper central series of G is

E=2(G)cZ(G)s---CZ.(G) &,
where Z..:(G)/Z.(G) is the centre of G/Z.(G), for n=0. Then as is well
known G is nilpotent of class n if and only if the upper central series ter-
minates in G after a finite number of steps, and n is the first integer for
which Z.(G)= G. Lastly the derived series ot G is
G=G"2G6"2...26"2...,

where G"* =[G"™, G"] for n=0; G is soluble of length n if this series
terminates in E after a finite number of steps, and n is the first integer for
which G"' =E.

The members of the lower central series and of the derived series are
particular instances of the more general phenomenon of verbal subgroups,
which are defined in the following way (B. H. NEUMANN [8]).
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Definition 2. 1. Let v.(xi”, x8”, ..., x\t2), Where e ranges over some
index set, be a set V of words in the variables X\, where by “word” we mean
any finite power-product of the x\” and their inverses. Let G be an arbitrary
group, and let the x\” range over all the elements of G. Then the subgroup
V(G) generated by all the “values” of the words thus obtained is the verbal

subgroup of G corresponding to the given set of words.
Thus "G is the verbal subgroup of G corresponding to the word

RN [ £ 18 1 I 4 S &

G™ is that corresponding to the word

[...[M[x:, X, [xs, X)), [[xcn Xs), [x7, X]]), - - 4

where this commutator involves 2" variables.

Suppose that G is generated by its subgroups G., wnere « ranges over
some index set M. Then [G.] denotes the subgroup of G generated by ali
commutators of the form [g., gs], where g.€Ga., g3€Gs, and a+p. (Note
that G.n Gs may well be more than E.) The normal closure [Ga]¢ of [Ga)
will be called the carfesian of the G, in G. We shall use throughout the
following results on cartesians and verbal subgroups.

(2.2) If G is generated by its subgroups A and B, then the subgroup
[A, B] is normal in G. (GoLovIN [2]).

(2.3) If G is generated by its subgroups G. (¢€2N), and 6 is any
homomorphism of G, [Ge]®8 = [G.01°°. (GoLOVIN [2]).

(2.9 If V(G) is any verbal subgroup of G, and € is any homomorph-
ism of G, V(G)6 = V(G6). (MORaN [6]).

(2.5) Verbal subgroups are fully invariant.

Let G once more be generated by its subgroups G. (€ D). The fol-
lowing sequence of normal subgroups of G play a fundamental role in the
present work :

[Ga]® = 01(G)20:(G)2:+-20,(G) 2+
where O0,.(G) =[G, 0.(G)] for n=1. The fact that this sequence decreases
follows from (2. 2), which shows that the members are normal in G. The
letter “O” has the advantage that its use is rare in group theoretical writ-
ings, and that it is the first letter of GOLOVIN's first name. One should per-
haps write O.(G;{G.}) ‘or O,(G), to be quite accurate; and where confusion
may arise, we shall do this.

By a right transversal T of the group G modulo its subgroup H we
shall understand a set of right coset representatives of G modulo A, in which
the unit element of G represents the coset H. Thus every element of G has
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a unique expression of the form ht, where h€ H and {€ 7. Left transversals
are defined in the obviously analogous fashion.

Of great importance for the later sections is the fensor product of two
groups A and B. This is denoted by A B, and is generated by all elements
of the form a® b, subject to the relations

a,a;,Rb=(a,®b)(a;:Rb)

a@bb,=(@Rb,)(aR b).
It is well-known that A®@ B is always abelian (this will in any case follow
from considerations in the next section) and that if m is any integer,

A" Rb=a@Rb" =(@Rb)".
To end this section, we give the definition of the useful and powerful
generalised free product of groups with amalgamations (HANNA NEUMANN [10]).

Of the several possible definitions, it is most convenient to give that of
B. H. NEUMANN in [9].

Definition 2.6. Let G be a group and S a set of generators of G.
Let S be the union of not necessarily disjoint subsets S., where « ranges over

the index set Wi :
S= 1] &,

ac
Let G.=Gp(Sa), so that G=Gp(Ga, €€ M). Let R. denote a system of
defining relations for G.; if now all these relations together,

H= U Ra',

ach
form a set of defining relations for G, then G is called the generalised free
product of the subgroups G., with amalgamations Gan G = Hap (€ 8).

§ 3. Regular products of groups.

This section is also largely devoted to the assembling of necessary
material, but it is of a less elementary and well-known character.

In answer to a famous problem of KuroscH, which asks about the
existence of multiplications on a set of groups which enjoy certain properties
possessed by the free and the direct multiplications, O. N. GoLovIN wrote his
paper [2], in which he introduced the concept of regular product. The fol-
lowing is a paraphrase of his definition.

Definition 3. 1. If the group G is generated by its subgroups Ga,
where « ranges over the index set WM, in such a way that for each «&M,
Ga N B = E, where B.— Gp(Gg, €M — {a)), then G is said to be a regular
product of the subgroups G..
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GoLoviN showed that G is a regular product of groups G. if and only
if G2 F/N, where F is the free product of the G. and N is a normal sub-
group of F contained in the free cartesian [G.]*. The extreme cases N=E
and N =[G.]* correspond to the free and direct multiplications respectively.
By a suitable choice of kernels N, GOLOVIN produced countably many asso-
ciative regular multiplications, in the following way:

Definition 3.2. The n-th nilpotent product of the groups G. is
F/O,(F), where F is their free product.

Later S. MORAN, in [6], defined a more extensive class, which he called
the verbal products.

Definition 3.3. The V-verbal product of the groups Ge is
FIV(F)N[Ga)F (a€Mm),
where F is their free product, and V(F) is a verbal subgroup of F.

Definition 3.4. With V(F)="F we get the n-th nilpotent product in
the sense of MORAN.

However it follows from results of GoLovIN in [2] that O,(F)="F n[Gd]",
which means that the n-th nilpotent multiplication of MORAN coincides with
that of GoLoviNn, for each n=1,2,....

The following results will be needed.

(3.5) The k-th nilpotent product of groups which are nilpotent of class
at most m is nilpotent of class at most max (k, m). (GOLOVIN [2]).

(3.6) The V-verbal product G of groups G. such that V(G.)=E is
also such that V(G)= E. Further, any group H generated by isomorphic
copies of the G, in such a way that V(H)=E is a factor group of G.
(MORAN [6)).

(3. 7) The V-verbal product G of groups G. is maximal in the sense
that if H is any group generated by isomorphic copies of the G. in such a
way that V(H)n|[G.]¥ =E, then H is a factor group of G. (MORAN [6]).

(3. 8) The n-th nilpotent product G of groups G. is maximal in the
sense that if H is any group generated by isomorphic copies of the G, in
such a way that O.(H)=E, then H is a factor group of G.

For, let H be generated by isomorphic copies G, of the G., where to
each « there is an isomorphism ¢. of G« onto Ga. Then by the characteristic
property of the ordinary free product F of the G., these isomorphisms gq
can be simultaneously extended to a homomorphism ¢ of F onto H. Let N
be the kernel of ¢, so that by Remark (2. 3),

On(F; {Ga}) @ = Ou(Fp; {Gug)) = On(H; {Ga)) = E.
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Thus N2 0,.(F) and we see
H = F/N =~ F|O,(F)|N/O.(F.

But F/O.(F)== G, and we are through.
Consider next the second nilpotent product G of the groups A and B.
By definition it is FJ[F,[A, B]], so that the cartesian of A and B is
[A, B)¥/[F, [A, B]]. This means that the cartesian is central in G, and it now
follows quickly that
[aa,, b] = [a,, b] [a,, 6]
la, b,b,] = [a, b,] [a, b,

in G. Thus [A, B]¢ is seen to be a factor group of the tensor product A® B,
by von Dyck’s theorem. We shall now show that in fact A® B and [A, BJ®
are isomorphic. This was conjectured by B. H. NEUMANN, and first proved
by T. S. MACHENRY in [5]. The following proof, due to the author, is shorter
than MAC HENRY’s. We first need a preparatory lemma.

Lemma 3.9. Let F be the free product of two groups A and B. Then
the subgroup [F,[A, B)] is generated by all transforms by elements of [A, B]
of all elements of the form [[a,, b)), a], [[a:, b)), b], where a,a, range over A
and b, b, range over B.

PRrOOF. Since F is generated by A and B, and [A, B] is normal in F,
it follows from results in [2] that [F,[A, B]] is generated by all elements
[, a], [u, b], where u ranges over [A, B], a over A and b over B.

Consider [u, a]. Firstly since [A, B] is generated by all commutators
la, b], u is expressible in the form

= [al ’ bl]el{ail bﬂ:r= rrR [ah bsrsl
where & =+1 for each i. Thus [u,a] is a product of transforms by elements

of [A, B] of commutators of the form [[a.. 5.1".a]. Now if &= —1, we use
the equation

0, 61", al — o, [, 61"

to see that [u,a] is a product of transforms by elements of [A, B] of elements
of the form [[a,, b,], @] and their inverses. A similar argument applies for
[¢, 8], and the lemma follows.

Theorem 3.10. The tensor product of two groups A and B is isom-
orphic with the cartesian of A and B in the second nilpotent product G of A
and B, and the correspondence

[a, 0] «+a®b
generates an isomorphism.
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PrOOF. Since G == F/[F, [A, B]], it follows that the cartesian in question
is the factor group [A, BJ¥/[F, [A, B]]. Now by Lemma 3.9, [F,[A, B]] is ge-
nerated by all transforms by elements of [A, B]* of all triple commutators
lla:, &), a], [[a:, b)), b]. In other words, [F, [A,B]] is the normal closure in [A, BJ¥
of these triple commutators. But

[la,, b,), a] = [a:, b.] '[a.a, b] [, 6] ",
[[au bl]) b] s [an bl]_t[al) b]_][al) blb]
Moreover, by results in [2], [A, B]¥ is free on the commutators [a, b] where

a1, bs=1. This means that [A, B]° may be generated by formal symbols
a® b subject to relations

ama® bl o (al b2y bl) (tI X bl)r
aRbb,=(a,2b,) (@R b).

But this group is clearly also abelian, and so it is isomorphic with the tensor
product A® B, as required.

§ 4. Generalised products of groups with amalgamations.

Observing that the extreme cases of regular multiplication have been
generalised to include the contingency that the constituent subgroups do not
intersect in the unit element (O. SCHREIER [12], H. NEUMANN [10], [11], B. H. NEU-
MANN [8]) we are naturally led to attempt a similar extension of the concepts
of GoLovIN and MORAN quoted in § 2. What this would mean in the utmost
generality is not clear (at least not to the author), but it is relatively simple
to extend the definitions of Golovin nilpotent products and Moran verbal
products, in the following ways.

Definition 4. 1. The group G is a generalised Golovin n-th nilpotent
product of its subgroups G. (where « ranges over some index set ) with
amalgamations GaN Gg= Hag (e f), if

(i) G =0p(Ga, c€M),

(ii) 0.(G;{G.})=E.
For brevity we say G is a generalised GN, product of the G. with the given
amalgamations.

Definition 4. 2. If V is a set of words, the group G is a generalised
Moran V-verbal product (for short, generalised MV-product) of its subgroups
G. (where « ranges over some index set M) with amalgamations Gan Gz =
= {laf (“ # ﬁ )r ‘.f :

(i) G = Gp (Ga, c€M),
(ii) V(G)n[Ga]° =E.
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With V(G)="G we have the generalised MN, product, and with V(G)= G
we have the generalised M S, product.

In these abbreviations, the N stands for nilpotent and the S for soluble.

Examples of generalised products of these kinds readily come to mind.
For instance the reguiar nilpotent and verbal products are such; furthermore
any group which is nilpotent of class at most n is a generalised G N, product
of any generating set of subgroups, and any group G such that V(G)=E
is a generalised MV product of any generating set of subgroups.

If will be noted that Definitions 4.1 and 4. 2 carry no mention of the
“freeness” of the product in question. This is because it is found more con-
venient to prove, from a knowledge of the existence of a product, the existence
of a “free” one. To make this idea precise, we let X stand for a relevant
property, and employ the following definition of freeness. (Cf. GRACE E.
BATES [1)).

Definition 4.3. The group G is a generalised free X product of its
subgroups G, (a€MM) with amalgamations Haz= Ga 0 Gp (@ 5 8), if the fol-
lowing two conditions hold.

(i) G is a generalised X product of the G, with the given amalgamations.

(i) If Gis a generalised X product of its subgroups Ga (€M) with
amalgamations Gan Gs=Hap (e~ 8), where for each « €M there exists an
tsamorphtsm 9a 0f Ga onto G such that

(a) for every B+ e, Hygpa = Has,
(b) if h€Hap then hgo = hop,

then the @, can be simultaneously extended to a homomorphism of G onto G.
According to this definition, G is the ‘largest’ group of its kind.

Example 4. 4. The elementary abelian group of order 8 is a G N, product
of two of its four-group subgroups amalgamating a cycle of order 2. The free
one of this type is however

G=0p(a, b,c; &® =00 =¢*=|a, b]=[a, ] =[Ix, y), 2] =1),
where X, y, z range over the elements a,b,c. It is, in fact, the generalised
free product “made second nilpotent”. It is readily verified that G is of order 16
and nilpotent of class 2.

In this example we have implied the uniqueness of the generalised free
X product — cf. the phrase “the free one’”. This uniqueness is demonstrated
in the following theorem, which may be proved by an almost word-for-word
repetition of the proof of the uniqueness of the generalised free product, in [9],
pp. 505—506.
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Theorem 4.5. Let G, G be generalised free X products of their sub-
groups Gs (€M) and G, (e €M) respectively with respective amalgamations
Hap=Ga N G; and Has=Gan Gy (e~ B). Let there be, further, to each « €M
an isomorphism @. of Ga onto Ga. which maps the intersections H.; onto cor-
responding intersections Has. Specifically if h€ Ha; we assume

G n¢¢:h¢ﬂs
and if h€ Has, g ]
hg! = hop.
Then G is isomorphic with G.

This theorem says nothing about the existence of generalised free X
products with amalgamations, it merely states that whenever such a product
exists, it is in a very strong sense unique. However, starting with the know-
ledge of the existence of a generalised GN, or MV product of a system of
groups, we now give an explicit construction for free products of this kind.

Theorem 4.6. If G is a generalized GN, (MV) product of its sub-
groups Ga (e €M) with amalgamations Gan Gp = Has (¢ 5= 8), then

(i) the generalised free product F of the G, with amalgamated H,p exists,

(ii) the generalised free GN, (MV) product of the G. with amalgamated
Hap exists, and it is F/O.(F) (F/(V(F)n[Ga]")).

Proor. The existence of the generalised free product F follows for
example from [9], pp. 518—520. For clarity of exposition we assume that
F is the generalised free product of the subgroups G. with intersections
Hap= Gan G (@ B), where to each « €I there is an isomorphism ¢, of
G, onto G, such that :

Hﬂﬂ(f'a:Huﬁ’

h€Hap => hga==hg;,

h€Hyp => hy,' =hg;'.
Then by the characteristic property of the generalised free product ([9], p.
505.), these isomorphisms ¢. can bhe simultaneously extended to a homo-

morphism ¢ of F onto G. Suppose then that the kernel of ¢ is N, and let
us treat the two parts of the theorem separately.

(a) Suppose G is a GN, product of the G, with amalgamations Hag,
so that O0.(G; {G.}) = E. However by (2. 3),

0.(F; {Ga})¢ = O.(Fg; {Gay)) = 0.(G; {Ga})) = E.
In other words, N2 O,(F;{Ga}) = O.(F). Next put Q= F/O.(F), and let 6
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be the canonic homomorphism of F onto Q. We shall show that Q is the
required generalised free G N, product. This is done in tour stages.

(i) Q is generated by isomorphic copies of the G.. This is because it is
generated by the G.6, and
Gab =~ G.|(G n O.(F)) = G.,
since -
G.n O0,(F)SGan N,
and ¢ is isomorphic on the constituents G..
(ii) GaOn G360 = Hapb (e, BeM). For
x€Ga0Nn Gpb => x = ga.0=gp0 => g5' §.€0,(F),
for some ga€ Ga, 2:€Gs. But since O,.(F)SN,
1=(85"8.)9 = &' 9p&aPa;
so that
&oPa=L3Ps€ Hap.
Hence g3= g.€ Hap, and therefore

GaB 11 G360 S Hash.

This together with the obvious reverse inclusion gives the assertion.

(iii) Q is a generalised G N, product of its subgroups G.6 with amal-
gamations H.p8, where of course Has =~ H.36. This is because

0.(Q; {Ga8)) = O.(F8; {Gab)) = O.(F; {Ga}) 60 =E.

(iv) In fact Q is the free product of this kind. This follows from the
isomorphisms

G = FIN = F/C.(F)[N/O.(F),

which show that G is a homomorphic image of Q.
(b) If, on the other hand, G is a generalised MV product, it follows
that N2 V(F)n[G.)*. For V(F)e = V(Fg),
[Gal"9 = [Gag)™® = [Ga]°.
Hence
(V(F)n[Ga]")¢ S V(G)n [Ga]® =E,

and we get the answer. The proof that F/(V(F)n [Ga]¥) is the required gene-
ralised free MV product follows in a manner exactly analagous to that of
part (a) of this theorem.

The following two properties of the generalised multiplications will be
found useful later.
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(4.7) By (3.7), the generalised free MV product of groups G, with
amalgamations is a factor group of the (free) regular V-verbal product of
the G,; so that in particular the generalised free MV product G of groups
G. such that V(G.)=E also has this property, V(G)=E.

(4. 8) Further the generalised free GN, product of groups which are
nilpotent of class at most m is nilpotent of class at most max (n, m).

This follows quickly from (3.5) and (3. 8).

§ 5. Statement of the problem.

Up to now we have dealt only with groups which we already know
to be generalised GN, or MV products of certain subgroups. The chief aim
of this paper is to consider something of the converse and more difficult
situation, which is perhaps best stated as follows.

Let a set G, of groups be given, where « ranges over some index
set M. In-every G. and to every Sc I let a subgroup H.s be distinguished
where (to avoid special consideration of the case «=pg) we insist that
H.o = Ga, for each a€M. Does there exist a group G which is in some
sense the generalised free X product (X being a GN, or an MV) of the Ga
with amalgamations H.s? More precisely, we ask about the existence of a
group G which is the generalised free X product of its subgroups G,, which
intersect pairwise thus: ¢ ; :

H¢p=G¢ﬂGp=H3¢,

and moreover there is to éxist, to each «€M, an isomorphism ¢, of G.
onto G, :

Ga ¢¢=G¢,
such that .

HopPa = Hap.
If this is so, we say that the generalised free X product of the G, with
amalgamations H.; exists.

We already know (Theorem 4.6) that to guarantee the existence of the
generalised free X product of the G., we need only show the existence of
a G which is a generalised X product of its subgroups G. (not necessarily free).

On the other hand, certain conditions necessary for the existence of the
generalised free X product are evident. Firstly H.; and Hj. have to be
isomorphically mapped onto the same group,

Ga n Gﬂ=ﬁa3=ﬁpg,
which means that they themselves have to be isomorphic. Moreover the mapping
‘g = PaPp’
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must be an isomorphism of H.; onto Hg., and
b= PP

is inverse to t.,3. These tqp are called the amalgamating isomorphisms. It will
be noted that they play an essential role in the construction of the generalised
free X product; therefore to ensure strict accuracy the notation should bear
some reference to the 1as. However, though they may not be explicitly men-
tioned, they are always implicit in any example, so that in fact the notation
is unambiguous.

Even further, it follows from results in [9] that it is necessary for the
existence of the generalised free X product that the generalised free product
of the G. with the given amalgamations exist. We shall consequently only
consider systems of groups for which this condition holds. Certain sets of
criteria for this to be so have been derived, and may conveniently be found
in [9]; however they do not concern us here, for our attention will be chiefly
centred on the case where our system consists of two groups with an
amalgamation — and in this case the famous theorem of SCHREIER tells us
that the generalised free product exists.

The problem we set ourselves is to find necessary and sufficient con-
ditions that the generalised free GN, and MN, product of two groups with
an amalgamation exists. This we do in § 9, after some preliminary inves-
tigation of the situation, in § 6 and § 7.

We next record some useful facts.

(5.1) If the generalised free MV product of a set of groups exists, and
V' is a set of words such that

V(L)S V(L)

for all groups L, then the generalised free MV’ product also exists. For if G
is the generalised free MV product of groups G., V(G)n|[G.]¢=E, which
gives V'(G)n[Ga)° S V(G) N [Ga]? =E. This means that G is an MV’ pro-
duct of the G., though of course not necessarily the free one. (Example 4. 4.)

(5. 2) Suppose that G is the generalised direct product of its subgroups
G., where by this we of course mean that G=Gp({G.}) and [G.]=E.
Then since O.(G;{Ga}) E[Ga]%, V(G)N[Ga)°E[Ge)® G is both a genera-
lised MV product and a generalised GN, product of the G., for any set V
of words and any positive integer n.

(5.1), (5.2) and Theorem 4. 6 now enable us to construct many examples
of generalised free X products, for various properties X; for we need only
take all the groups to be abelian, and the amalgamated subgroup to be one
and the same group.
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(5.3) We now give an example of a system of two groups whose gene-
ralised free GN, product does not exist. Both groups are nilpotent of class
two, being dihedral groups of order 8:

G,=Gp(a, b; a*=b"=(ab)*=1),

G:=0p(c, d; ! =d*=(cd)*=1).
Then put H,=Gp(a®), H,=Gp(d), and define an isomorphism ¢ of H,
onto H, by the rule a*¢9 =d. If we now try to form the generalised free
GN, product of G, and G, amalgamating H, and H, according to ¢, it has
to be

G=Gp(a b d;a'=b=c'=d=(aby=(cdy)=1,a"=d, [[x, 3], 2] =1),

where x, y,z can each assume the four values a, b, ¢, d. This fact follows from
Theorem 4.6 and Remark 4.8. Turning our attention to G, we see that
[@% c]=][d,c]=¢, and [a* c]=/[[a, b], c] =1. This means that in G, the group
U, is not isomorphically represented in the way that it should be; which
means that the required generalised free GN, product does not exist.

Examples of this nature may be endlessly multiplied with only a small
amount of difficulty.

(5.4) It is worthy of attention that the generalised free X product of
certain groups may coincide with the generalised free X’ product (X, X’
denoting different properties), even though this is not the case for the asso-
ciated regular products. For instance let A= Gp (@) and B = Gp (b) be infinite
cycles; then the generalised free GN, product of A and B amalgamating any
subgroup exists. We form that amalgamating the cycle Gp(a®) in A with
Gp () in B. It is

G=Gp(a, b; a’=b"=[[a, b], a] = [[a, 0], 6] =1).
But then 1= [6° b] =[a’, b] =[a, b]’ [a, b] = [a, b}, and similarly 1= [a, a’] =
= [a, b°|=|a, b)’. It thus follows that [a, b]=1, and therefore that G is the
generalised direct product of A and B with the given amalgamation. How-
ever the free second nilpotent group on two generators differs from the free
abelian group of rank two.

Theorem 5.5. The generalised free GN, (MV) product of groups Ga
(e €M) with amalgamations H.z exists if and only if

(i) the generalised free product F exists,

(ii) gegs€ On(F) (€V(F)N[Gal*) and gu€Ga,gs€Gp (x5 F) implies
that g.gs=1.

Proor. We observe first of all that no confusion arises from using
the G. themselves and not isomorphic copies of them in the generalised free
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product. Secondly that the necessity of conditions (i) and (ii) follows imme-
diately from the proof of Theorem 4.6.

Suppose on the other hand that conditions (i) and (ii) are satisfied;
once again we prove their sufficiency for the GN, case, the MV following
by a very similar argument.

We show (as would be expected) that Q= F/O.(F) is a generalised
GN, product of the G, with amalgamations H.z. To this end we let 6 be
the canonic homomorphism of F onto Q.

(a) Q is generated by isomorphic copies of the Ga. This is because it is
generated by the G.6, and

Ga0 = Ga/(Gu N Ou(F)).
However condition (ii) with gs=1 implies that G.n O.(F)=E, so that
Gab =~ Ga. Moreover Hop0 == Hqs.
(b) Ga6n G = Hu.p0 (e = B).Firstly suppose that x€ G.0 n Gz6. Then
X =ga0= g0,
where g.€Ga, gs€Gp, so that
25' 8« € Ou(F).
Condition (ii) now gives gs= g.€(Ga N Gg) = Hap, which means that
G0N G0 S Haph.
The reverse inclusion is obvious, and the assertion follows.
(¢) Q is a generalised G N, product. For 0,(Q) = 0.(F6) = 0.(F)60 =E.
Thus Q has all the desired properties, and the theorem is proved.
This is a convenient stage at which to discuss the interaction of the

various generalised multiplications, before proceeding to a deeper inves-
tigation of the generalised free second nilpotent products.

§ 6. Comparison of the generalised multiplications.

This section is devoted to an investigation of the connection between
the GN, and the MN, products, and a demonstration of the lack of con-
nection between the GN, and the MS,. products. The meaning of this will
become clear as the section proceeds.

We first observe that the free regular nilpotent multiplications of class
n are identical (§ 3). Moreover, every generalised MN, product of certain
groups is simultaneously a GN, product of these groups; for if G is a gene-
ralised MN, product of its subgroups G.,

0.(G; {G.}) S"Gn [G.)’ =E.






Nilpotent products of groups with amalgamations. 147

by (6.2) and (3.8), we conclude that every element of "Q has an expression
of the form @b, for some a€"(A6), be"(Bf). But "Q=("G6)=("G)6, so
that if g6c"G, g=—a0b6=(ab)0 for suitable a€"A, b€"B. Thus g=abu,
where u€0,(G), as required.

We can now prove the following theorem.

Theorem 6. 4. If the generalised free MN, and GN, products of two
groups A and B exist, these products are identical (in the sense that they are
factor groups of the generalised free product F of A and B by one and the
same normal subgroup).

Proor. By Theorem 4.6, the generalised free MN, product is
F["Fn[A, B]F and the generalised fre GN, product is F/O.(F).
Now since [A, B]<JF,
"Fn[A, B|2O0.(F).
On the other hand let x€"Fn[A, B]. Then since x€"F, by Lemma 6. 3 we have
x =abu for some a€"A, b€"B,u€0,(F). Thus, as x€[A, B] it follows that

abg€[A, B]; but abe"F since both a and b do, so that in fact ab€"F n [A, B].
Theorem 5.5 now gives us that ab=1. Hence x=u¢€ O,.(F), and

"Fn[A, B]S O.(F).
The two inclusions now established prove the theorem.

I do not know if a result analogous to Theorem 6.4 is true if one
considers systems of more than two groups.

It might be conjectured that if the generalised free GN, product of two
groups exists then it must be true that the generalised free MN; or MN,
product exists. This is not in fact true, far from it; we next give, for each n,
an example of two groups whose generalised free GN, product exists, but
for which not even the generalised free MS, product exists.

Example 6.5. In [4], PHiLLIP HALL gives p-groups of arbitrary high nil-
potency class such that _

G(i)=2‘—lG
for each i==0,1,2,.... Let G be one of these groups which is soluble of
length n+42:
G=09>5GVD ... G"NG"d) =E,
G=G>2'G>D---D2"'GD"G=E,

where the inclusions are strict. Then we assert that m<1>2"". For if not
m+1=2"" and
G"N+l" ' 2!!{-1_10;”!6 s E’

which is clearly not the case.
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Let now Z be the centre of G and let & be an element of "-2G lying
outside Z. Such an element must exist, else G would have nilpotency class
less than m. Put

H=Gp (h);
our system of groups is now to consist of A and G itself.

(a) The generalised free GN, product of G and H amalgamating H
exists. Indeed, G is that very product; for it is the generalised free product,
and moreover

[H,GIE€™'G,

[[G, H], G]=E.
Thus by Theorem 5.5, G is the required generalised free GN, product.

(b) However the generalised free M S, product does not exist. For in G,
which is (as above) the generalised free product of G and H, we give a non-
trivial element of [G, H]n G™. To do this, let g be an element of G not
commuting with A; then 1 [g, h]€[G, HIn™"'G. Now as m+1>2"", we
have m=2"; therefore

so that

m-lG; 2"-1G — GM,
and further [g, h]€[G, H]n G™. This completes the proof of (b).

Example 6.6. The phenomenon which is converse to that of Example 6.5
is much more readily demonstrated. Let G be the free regular MS, product
of the infinite cycles Gp(a) and Gp(b), and put H=Gp (a). Our system of
groups is to consist of G and H.

(a) Obviously [[H, G], G]# E, since [H, G] contains the commutator
[a, b], which is not central (unless n=1, which ftrivial case we exclude).
Thus by the now familiar argument, the generalised free GN, product of G
and H does not exist.

(b) However G is the generalised free MS, product of G and H. This
follows because G™ = E and therefore G n[A, B]=E.

Example 6.7. 1If A and B are both abelian, then both the generalised
free GN, and the generalised free MS, product of A and B amalgamating
any isomorphic subgroups exist.

Example 6.8. To complete the picture, that is to give an example of
a pair of groups whose generalised free GN, and MS, products do not exist
for any n, let G be any non-abelian simple group, and A any proper sub-
group of G. Then [G, H]="G=G" = 0,(G)=G, so that none of the
above products of G and H amalgamating H exists.

It is found, therefore, that there is in fact no comparison in freeness
between the generalised GN, and MS, products. This somewhat pathological
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situation can be perhaps explained by the bad behaviour of intersections under
homomorphisms. Namely if N and M are subgroups of G and ¢ is a homo-
morphism of G then it is not necessarily true that

(NnM)p=Ngn Mg,
though we always have

(NnM)eSNonMe.
Thus we cannot always assert that homomorphic images of generalised MV
products are themselves MV products; and in fact Example 6.1 gives ex-
amples of homomorphic images of free regular V-verbal products which are
not generalised MV products of the homomorphic images of the constituents.
For in that example G is a homomorphic image of the free regular GN,
product of an isomorphic copy of G and an isomorphic copy of Z,.; (Re-
mark 3. 8). This answers a question of MORAN [6].

§ 7. The generalised GN, and MN, products;
preliminary investigation.

We shall now turn our attention more exclusively to a consideration of
the generalised free GN, and M N, products of a pair of groups with amal-
gamation. Our aim is to find necessary and sufficient conditions for the
existence of such products; the present section is devoted to finding out
something of the sort of conditions that can be expected to work.

It is found useful in this section to use the amalgam & of the groups
A and B with the subgroup A amalgamated; in symbols

a={A,B; AnB=H)}.

That is, in the system of groups A, B where A2H, B2 Heg, ¢ being an
isomorphism of H onto He, we regard each element 2 of H as identified
with its image h¢ in He. The amalgam & is then an ‘incomplete group’
(see [9]). We look for conditions that & generate a group which is a GN,
or MN, product of A and B intersecting in H, as it were keeping the amal-
gam intact. To abbreviate certain frequently-occurring phrases we call con-
ditions that the generalised free GN, (MN,) product of & exist GN, (MN,)
conditions for &.

The following lemmas give some necessary GN, conditions for & and
therefore necessary MN, conditions, as every condition which is necessary
GN; for 4 is automatically necessary MN, for d.

Lemma 7. 1. If the group G is a generalised GN, product of its sub-
groups Ga (e €M) with amalgamations Hep = G N Gp (e = 8) then
[. . .“H‘;p, Ga]; Ga], sesy Gal - E,
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the number of commutations being n. That is, for each « and each 8+ «,
Hag is a subgroup of Z.(Ga). :
PROOF. By definition
On(G) = [o . .[[GG]G, G]' sasy G] = E.
But if h€H.; then h€Gs; and it therefore follows from the above that if
&1, 8 .., 8n are arbitrary elements of G,, the commutator
[' p [[h: gl]! gﬂ]} 8is -:ga:]
must equal the unit element, But this is exactly the requirement that £ € Z,.(G.).

COROLLARY 7.2. For each pair «,8 of indices with a8, the group
Heap is nilpotent of class at most n.

Lemma 7.3. If the group G is a generalised GN, product of its sub-

groups A and B,
[''A, B|=["'B, A|=E.

Proor. It suffices to remark that the result is true in the free regular
n-th nilpotent product K of A and B (see [2]) and that by Remark (3.8) of
this paper, G is a factor group of K.

Lemma 7.4. If the group G is a generalised MN, product of its sub-
groups G, (e €M) with amalgamations Has, then for each B+ a,

*Ga N [Ga, Hag) = E.

The proof is obvious, and omitted.

We can now write down the following set of necessary G N, conditions
for the amalgam d={A, B; AnB=H}:
(1.5) [[A, H], A]=[[B, H], B]==[A"n H, B]=[B'n H, A]=E.
Observe that all commutations are carried out completely inside one or other
of the factors. Further (7.5) together with the following set of conditions are
MN, necessary for & :

(7.6) [A, A'|n[H, A]=[B, B'|n[B, H|=[A,A|n Hn [B,H] =
=[B,B]nHn[A, H|=E.
For some time it was thought that conditions (7.5) were also GN, suf-
ficient for @. Such is very far from the truth, as we shall now see.
Lemma 7.7. Let A={A,B; AnB=H} be an amalgam such that
there exist a€ A, b€ B where for some positive integer n,
(i) a"€H,b" =1,
(i) [6, "] 1.
Then the generalised free GN, product of & does not exist.
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PROOF. Suppoée that it does, and let it be G. Then in G, the com-
mutator [a, b] is central so that

[d", b)=[a, O] =|a, "] =1,

which is a contradiction.

This lemma (of which it is easy to imagine variants) is a fruitful source
of counterexamples. For instance the following example immediately shows
that (7.5) are not G N, sufficient.

Example 7.8. Our amalgam consists of a dihedral group of order 8 and
a cyclic group of order 8 intersecting in a cyclic group of order 4. Namely

A=Gp(f; f=1),
B =0p(c,d; ! =d*=(cd)*=1),

where we put f*=c and H==Gp(c). This amalgam satisfies conditions (7. 5)
— indeed any amalgam one group of which is abelian and one nilpotent of
class 2 will do so — and the requirements of Lemma 7.7, with n = 2,a=f,
b=d.

Example 7.8 is an example of an amalgam of one abelian group and
one nilpotent group of class two which cannot generate a nilpotent group of
class two. Actually, something much worse is the case, namely we shall now
give such an amalgam which can generate no nilpotent group, of finite or
transfinite class. This means that conditions (7.5) are not even GN, suffi-
cient, for any n>0. The example depends on the following lemma, which is
perhaps interesting in its own right.

Lemma 7.9. Let G be an arbitrary group, g an element of G, and
d an element of G whose square commutes with g. Then for each r =0, "G
contains the commutator (g%, d|.

ProOF. This proceeds by induction. With r=20, the result is obvious,

since [g,d] is clearly contained in 'G.
Suppose then that r=0 and that we have shown that "*'G contains
[g¥, d]. Then "G contains the commutator

k=g d, (g d)|=d"'g"d g " dg"¢"dg " d'g"d.

Putting d = d 'z we see that z commutes with d and g; and as "G 4G,
it contains the transform &’ of k by the element d 'g™'d. A little computa-
tion now gives

or or

k’ i z__]g_:!rdgzl’i-l dg_zl' _:_—g" g_2r+ld_1g2r+1dg__ :
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Further, "2G contains the transform k" of ¥’ by g¥,
K'=g d
s [g9r+l, d].
This completes the induction, and proves the lemma.
Example 7.10. Let A be the dihedral group of order 8:
A=0p(c,d;ct=d*=(cd)*=1).
B is a Priifer group of type 2%:

B=Gp(a,,a,,...,q,,...;ai=1,a2 ,=a,,6n=12,:..).

_or+l 1 ar+l
a g

We form an amalgam & of A and B by putting a;=c¢ and H==Gp(c). Let
then G be any group generated by the amalgam — such groups exist since
the generalised free product does. By Lemma 7.9, "*'G contains [g¥, d] for
any g€G. Observing that

- _02

n+2 =
for each n=0,1, 2,..., we see that 'G contains the commutator
[a%,, d]=[a,,d] =[c, d] =%

r+2?
But ¢?s£1, so that G is not nilpotent, not even of transfinite class.

This example amply demonstrates the considerable amount of deviation
from the expected that one encounters in this investigation. It leads one to
conjecture that necessary and sufficient GN, conditions will have to be
rather different from those we have so far examined. Precisely, we take our
general amalgam & = {A, B; AnB=H} and allow ourselves three methods
of forming groups from the constituents of &, namely

(i) commutation;
(ii) intersection;
(iii) multiplication of normal subgroups.
We form all possible groups from & using these operations; if G, and G,
are such groups the equation
G, =G,
is termed a C/IM condition for &. .

CoNJECTURE 7.11. No set of CIM conditions can be GN, necessary and
sufficient for Q.

In fact it seems likely that the amalgam in Example 7.7 satisfies all
possible necessary conditions of this sort.

In our search for GN, conditions for an amalgam of two groups, we
have always finally investigated properties of groups not arising from the
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amalgam Dy the use of operations (i), (ii) and (iii) above; up to now it has
been the generalised free product. A similar situation is present in the next
section, when we investigate properties of the free regular second nilpotent
product and of the tensor product. It thus appears that the difficulties here
arising are very different in nature from those one finds in a study of the
generalised free and generalised direct products. In the former case there is
no restriction on the subgroup to be amalgamated; in the latter it has to be
central in both constituents. This is a C/M condition, namely

[A, H]=[B, H|=E.

§ 8. Necessary and sufficient GN, conditions.

Instead of using the amalgam of groups we find it easier from now on
to equip ourselves with a pair of groups A and B, where A contains a sub-
group H and B a subgroup He isomorphic to A under the isomorphism ¢.
In the present section we derive necessary and sufficient conditions that the
generalised free GN, product of A and B amalgamating H and H¢ accord-
ing to ¢ exist. The conditions achieved are not very manageable, or easily
applied ; but this is felt to be inherent in the nature of the problem.

We first need the following lemmas.

Lemma 8. 1. If the generalised free GN, product G of A and B amal-
gamating H and Hy according to ¢ exists it is G,/N, where

(i) G, is the free regular GN, product of A and B,

(ii) N is the normal closure in G, of all elements of the form h™'he,
where h ranges over H.

PrROOF. Let F, be the ordinary free product of A and B, and let F be
the generalised free product amalgamating H and He. Then F = F,/M, where
M is the normal closure in F, of all elements h 'h¢. Further by definition
G,=F,/|F,, [A, B]], and by Theorem 4.6, G = F/[F, [A, B]]. Thus

G = F/M[MIF,, [A, BI/M = F/M[F,, [4, BI}

In other words G is obtained from F; first by making the cartesian central,
and then by applying all relations h = h¢, which means by vON Dyck’s
theorem that G =~ G,/N.

Lemma 8. 2. With the same notation as in Lemma 8. 1, the generalised
free GN, product of A and B amalgamating H and He exists if and only
if the implication

a€A,bEB,abeEN=>acH, b=a'gp
always holds.
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PrOOF. (i) Suppose that N has the properties mentioned in the data,
and let @ be the canonic homomorphism of G, onto G,/N.

(a) G,0 is generated by isomorphic copies of A and B. For let a€ An N.
Then a=a-1, so that by the data a=1. This means that An N=E, and
similarly Bn N=E. But G,0 is generated by A6 and B6, and

A0~A/(AnN)=A
BO>~B/(BnN)=B,
In this way we show also that H6 >~ H.

(b) ABnBO = HO = (Hg)b. Firstly H6 = (Hg¢)#6, because if h is any
element of H, h"'hg€ N so that (h 'he)6-=—=1, h6 = (he)6.

Next, x€ A6 n BO means that x=aN=5bN for some a€A, b€B. Thus
ab'€N, and therefore a=—he H, b zh“:p, which means that A6n BOS H6.
With the obvious reverse inclusion this now gives A6n Bf = H6, so that
in G,, A6 and B#@ intersect in H6, and moreover H and Hg¢ are amalgam-
ated according to ¢.

(c) By the well-known property of commutator subgroups under homo-
morphisms, [G.6, [A6, BO]|= [G,, [A, B]]|¢ = E6 — E. Thus G,0 is a gene-
ralised GN, product of A and B amalgamating H with He, and therefore
the required generalised free GN, product exists.

(ii) Conversely, suppose the generalised free GN, product G of A and
B amalgamating H with Hg exists. Then G, can be mapped by a homo-
morphism v onto G in such a way that ¥ is isomorphic on A and on B;
and by Lemma 8.1 the kernel of v is N. Suppose then that a€ A, b€B, and
the product ab€N; then (ab)y =1, and ayzmb"w. But then it quickly
follows that a€ H and b=a"'¢, since Ay and Bwy intersect in the subgroup
Hy = (Hg¢)y, in Gyy. This completes the proof of the lemma.

Following HANNA NEUMANN, we shall say that N is “tidy” in G, with
respect to A and B if it has the property formulated in Lemma 8. 2. In order
to find necessary and sufficient conditions for this to be so, we first remark
that by Theorem 1.1 in Chapter I of [2] and Theorem 3.10 of this paper,
we can express G, as the set of all triples

(a, b, ¢c),

where a ranges over A, b ranges over B, and ¢ over the tensor product
C=A® B. The multiplication in G, is given by

(01, by, C1) (ﬂz, b:, Cz) = (0102, by bs, lez{ﬂ:il ®R6:1});

furthermore the unit element is (1, 1, 1), and

@b c)y'=(@", o', c {a'®b)).
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These all follow from the fact that the cartesian is central in G,. The set of
all triples (a, 1,1) forms a subgroup A, isomorphic with A, and the set of
all triples (1, b, 1) a subgroup B, isomorphic with B. We may without con-
fusion identify (a, 1, 1) with a, A, with A, and so on.

Lemma 8. 3. Let (a:,b:,¢:), (i=1,2,...,r) berelements of G,, where
r=2. Then

r

H(ﬂ.‘,b;, C§)=[gﬂi, ‘£:Ib.', IrIC.' H ﬂf‘@b};).

i=1 izl 1sSk<jSr

PrOOF. This is by induction on r. For r=2 the result is merely a
statement of the multiplication in G,. Suppose then that for arbitrary (a;, b;, ¢;)€G
we have shown that

g(aij bi’c")=(EI=IIai, gb", Hc'. II a;l®bk],

i=1 1=k<j=r
and let (@41, br41, Cr41) be a further element of G,. Then using the commu-
tativity of the tensor product,

r+l r+1 r+1 r+l r
11 (@, b, c.-)=(_111as, 1o, Il L _q' ®bkl }a;:l o:oIIIb.-t] -
= i= = i= = J=Sr i= !
H ahn® bi‘}’=
=1

H aj-l ® bl‘:
r+l r+l r+l
=(Ha.-, Hb.', HC.' H afl®bk].

r+l

=(ﬁa,-, ﬁb.-, gc.-

2 | i=l1

ISk<j=r !
=l =l i=l1 1=k<j=rsl

This completes the induction, and the lemma is proved.

In the succeeding work we use the following notation.

G, is the free regular second nilpotent product of A and B;

N is the normal closure in G of all elements (k™' he, 1), h€ H;

C is the tensor product AQB;

D is the subgroup of C generated by all elements a® he, where a€A,
heH:

D° is the subgroup of C generated by all elements A &® b, where h€ H,
beB.

Lemma 8.4. If N is tidy in G, with respect to A and B, there is a
homomorphism 0 of D onto [A, H] defined by

(@R@hg)d=|a, h’'].
PROOF, Put n=(h"", he, 1) and let ac A. Then using Lemma 8.3,
l[a,n]=(@ ", 1,1)(h,h " '¢, h®hq)(a,1,1) (k" hg, 1) =
=@ 'hah™,1,{a@he} {(hQh ¢} (h® he})=
—(la,h'), 1, a® hg).
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Also [a, n]€N since N<G,. Now put
ni= (k' hig, 1) (i=1,2,...,7)
and let a;,a,,...,a. be r elements of A. Then by the foregoing,
[ai, n] = ([a:, k'), 1, a: @ hig),
la:, i’l.']'1 = ([a:, fl.'-l]_l, 1, {a;@f!ﬂp}'l).
Thus since the middle component of each of these is 1, if & =+1 for each
i=1,2,...,r we have

r

n.=H[ai; Hi]“=(__lrz [ai’h‘_-llt‘,-’ l, ﬂ(ai®hi(}’)ﬁ)'

Suppose now that II(a.@h ¢)"=1. Then n* lies in A, so that since it also
lies in N, we deduce from the tidiness of N that

U [a:, i =1
=1

This clearly proves the lemma.
Proved by a method very similar is the following lemma.

Lemma 8.5. If N is tidy in G, with respect to A and B, there is a

homomorphism 0° of D° onto B, Hy) defined by
(h®b)o° =|b, he).

So far we have only used the condition that the constituents A and B
have trivial intersection with N. The stronger condition that no product ab
may lie in N is used in the proof of the following lemma, which brings out
the consonance between the homomorphisms J and d°.

Lemma 8.6. If N is tidy in G, with respect to A and B, and d is

any element of Dn D°, then
dJo€EH,

ddg =do°.
PROOF. Let d¢Dn D°. Then by the preceding two lemmas,
ny=(dd, 1,d)€EN,
ne=(1,dd°,d)€EN.
Further
ni'ng=(d"0,1,d™")(1,dd°, d)= ("0, dd° 1).
This also lies in N, so that by the tidiness of this subgroup we conclude
that dd€H and ddg=dd°, as required.

Before carrying this investigation further, we show that the necessary
conditions derived in Lemmas 8.4 and 8.5 contain the conditions (7.5). In
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fact we show a little more. For any pair X, Y of groups we define /x(Y)
to be the subgroup of Y which “centralises X tensorwise”, that is, y€/x(Y)
if and only if x®y=1 in X®Y, for all x€X.

Theorem 8.7. The existence of the homomorphisms 6 and 0° of
Lemmas 8.4 and 8.5 implies the following conditions :
[[A, H], A]=[[B, H], B] = E,
[(Js(A)n H)g, B]=[(Ja(B)n Hy)g™", A] = E.

Proor. (i) Consider the subgroup [[A, H], A] of A. It is generated by
the conjugates in A of all commutators [[a, 4], a;], where a, a; range over A
and A ranges over H. Now
[aa:, h) = [a, h][[a, A), ai] [a:, A],
so that
[la, ), @) = [a, k) *[aa,, h] [as, h]".

Consider then the element
@@h'9) (@aa,@h ' ¢) (@ @ h ' p)™

of D. From the relations of the tensor product, it must be the unit element;
moreover its image under d is

la, h) '[aay, h][a1, k)" = [[a, A], a1).

It thus follows that [[a, #], a;] =1, and hence that [[A, H], A] = E. The proof
that [[B, Hy], B]= E follows along closely similar lines.

(ii) Consider the subgroup [(/z(A)n H)g, B] of B, and let & be any
element of Js(A)n H. Since h€Jsz(A), by definition h®b=1, for all b€B.
Hence if & is any element of B,

1=16° = (h ® b) 0° = [b, hg).

But this means that (/s(A)n H)¢ centralises B, as we wanted to show.

The final part of the theorem is proved in a similar manner.

Conditions (7. 5) now follow from the obvious remark that Jx(Y) always
contains Y’, for all groups X.

Most of the remainder of this section is devoted to a proof that the
necessary conditions found in Lemmas 8.4, 8.5, 8.6 for the tidiness of N
are also sufficient. The proof is long, and is split up into the proof of
several lemmas.

Lemma 8.8. The subgroup N of G, is generated by all elements of
the form
(@'ha, b heb, (h' @b} {a®h¢)),

where a ranges over A, b over B, h over H.
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PROOF. Since N is the normal closure in G, of all elements (4', he, 1),
it is generated by all conjugates in G, of all these elements. Thus to prove
the lemma all we have to do is to show that such a conjugate has the form
required in the lemma. A typical such element is, for some a€A, beB, h€H,
ceC,

=" (0, b, c)-l(h-l! he, 1)(a, b, C)=

=@, b, cH{a'®b))(h", he, 1)(a, b, c)=
=@ "'h'a, b heb,c (@' ®b)c{h ' Rb}{a®b}{aRh ' ¢))
by Lemma 8.3. Thus we arrive finally at the form
(@'h'a, b heb, (h Db} {a @ h'¢))

for n, as required.
As a temporary abbreviation, we shall denote the element n of Lemma

8.8 by f(a, b, h).
Lemma 8.9. Every element of N has an expression of the form

gf(azi-l, boi-1, hai1){ f(@2i, bai, ’!Efl)}_l,
for suitable choices of the a;, b;, hi, (i=1,2,...,2r).

PrOOF. By Lemma 8.8, if m is any element of N,
m= [ f(@a, b;, hi)",
=1

for some ai,b!,n;. In this expression the 4; are integers, which we may
straight away assume to be +1. Since f(1,1,1)=1, we can insert f(1,1,1)
or {f(1,1,1)}"" where necessary to bring this expression to the form

m== l;[f(ﬂai-l, b1, hzi-l){f(azi, bai, hz-‘)}l-l-
Further we can replace hy by hs for each i, and arrive at an expression of
the required sort for m.
Lemma 8.10. Every element of N has an expression of the form
(a, b, c) where

a=J[ai'hi'a, b= []b:' higby,
i=1 =]

o b r
c=ghfl®bsnas®hflfpgh2;®hﬁ?? Il h®me, °

i=l1 ISk<j=2r

for suitable choices of a:, b, hi, (i=1,2,...,2r).
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Then using throughout the fact that [X, ¥] is central,

s+1 1
=T ML (ool =

=l Sp<L

= dT x’*[Hx”* | I fex)=

i=s+1 i=s 1=p<g=s

—Hx”'ﬂlx-,xm] H [Xp» Xo] =

i=s+l i= <g=s
s+l

v JIXB. . IL - [5:%]

i=1 1Sp<q=stl
This completes the induction, and proves the lemma.

Lemma 8.12. Let X be a subgroup of the group Y such that
{lX,Y),Y]=E. Then if s=2 and x,,xs,..., X, are arbitrary elements of X
and y,ys,...,Ys are arbitrary elements of Y,

H [y, x]= H iy, H X, pll _

The proof proceeds by an inductive argument very similar to that used
in the proof of Lemma 8.11.

We are now in a position to prove the following theorem, which is a
proof of the sufficiency of the conditions so far derived as being necessary
for the tidiness of N. The notation used in the theorem has been listed ear-
lier in this section.

Theorem 8. 13. Suppose that there exist homomorphisms d, 6° of D, D°
respectively onto [A, H), [B, Hy] defined by
(@®hg)d=][a, k"], (h®b)d°=[b, hg].
Suppose further that for any d€Dn D°, do€H,ddo° =ddg. Then N is tidy
in G, with respect to A and B.
PrROOF. By Lemma 8. 10, every element of N has the form (g, b, c) where
a_ﬂa,‘h, a, b= Hb. higbi,

i=1
c—IIIh'®b‘Ha.®I:. t;t'th.@flz. : ,‘Hzrh,,-@m,
= Sk =

for suitable a;€ A, b:;€B, h:€H, (i=1, 2, ..., 2r). Suppose now that this element
has the form (a, b, 1), that is, suppose that c¢=1; then we conclude that

2r ” r
d=[Iﬂi®hill‘PI_lIh2i®h2i¢=nh.‘®bi 1l hi'®hg.
=1 =

i=1 1Sk<j=2r
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It will now be seen that deDnD° so that by the data dd€H and
do° =ddg.
Next,

2 r 2r
dd=g[ag. hi]g[hg, hi;]zg[a.-,h,-l.

Further, from Theorem 8 7 we see that [[A, H], A]=E, and therefore by
Lemma 8.12, 4
& o 2r 2r
dé=[[(a;,h)=Ila'h'a; [Th: _T1  [hy, b').
i=1 i=1 1=l I1=pZqg=s

But as we just saw, dd€ H; this means that

2r
a= [[ai'hi'a,cH.
i=1
Furthermore

2r
do° = J] b, ig) _II _[hug, bi'g).
i=l1 I=Sk<j=%

Thus from Theorem 8.7 and Lemma 8. 12,

2r 2r
do°=IT6'hi'gbi [Ty _ LI [ho,hi'9]

i=1 P<q=2r

b [hI'?: hJTIq']‘

=sky=

Moreover, dde — dd° ; so that since

2
ddtp=a¢g he I1 zr[l"pqﬂ.fh«}’qﬂ],

tSp<q=

we deduce from the fact that [B, He] is central that

2r
(8.14) ag=IT6'h'gbc _IT (g, hi'9)

1=k< ;=9

2r
Now b=Hb.71h.-tpb.-, so that by Lemma8.11,

i=]
1
b= I16' gt IT [hy9, hogl.
i=2r 1=Sp<q=2r
Therefore since [B, Hy] is central,
2r
o' =TTb6'hi'gb: [T (19, bs'9).
=1

I=p<q=2r

Equation (8. 14) now gives us that 5" =ag. Thus we have shown that any
element of N which is of the form (a, 6, 1) must be of the form (h™", he, 1);
therefore that N is tidy in G, with respect to A and B.



162 J. Wiegold

We have therefore, by Lemma 8. 2, found necessary and sufficient con-
ditions that the generalised free GN, product of A and B amalgamating H
and Hy exist. Let us examine a few examples to see how the conditions

work in practice.
Example 8.15. In this example both A and B are dihedral groups of

order 8;
A=Gp(a,b; a'=b=(ab)}=1),

B=Gp(c, d; ¢!=d*=(cd)*=1).

We take H to be the subgroup Gp(b) and He to be Gp(d).
It is not difficult to show that A® B is elementary abelian of order 16

and is generated by the elements
a®c¢, a®d, bQc¢, bXd.
Next, D=Gp(a®d,6Xd), D°=Gp(bX®c, b6Xd) and also DnD°=
= Gp (b ®d). Lastly
[A, H]=Gp([a, b]) = Gp (a"),
[B, H] = Gp([c, d]) = Gp(c).
In fact therefore there do exist homomorphisms d,d° of D, D° onto
[A, H), [B, Hy] respectively defined by
@®d)d=[a,b"], (bRd)d=1,
(bRc)d° =|c,d], (bRd)d° =1,
which are consonant on DnD°: d°d=d°d° =1 for any d°€Dn D°. Thus

we can apply the theorem to form the generalised free GN, product of A
and B amalgamating H and Hg. It is

Gp(a,c, b; a*=c'=b=(ab) =(cb)' =[x, y), z] =1),

where each of x, y, 2z takes the values a,¢,b. In fact it is easy to see that
this group if of order 64 and nilpotent of class 2.

In general it is not easy to apply the conditions here derived, in fact
it is usually difficult; but occasionally it is very easy to see that they are
not satisfied, as in the following example (already used once). Incidentally,
it is moderatelly easy to apply conditions (7.5); and any example worth
considering will satisfy them.

Example 8.16. We take our two groups as follows:

A=0Gp(a, b; a*=b0=(aby=1),
B E BP(C; Cﬂ=1)t
and we let H= Gp(a), Hg=Gp(c?), ¢ being the isomorphism defined by
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ag=2c" In this case, D=GCGp(a® ¢, bQ¢*). But

a@ct=a'®@c=|a, b]®c=1,

bR =0'Qc=1Q¢c=1.
In other words, D= E, so that it cannot be mapped homomorphically onto
[A, H], which is the non-trivial group Gp(a®).

§ 9. Normal forms and necessary and sufficient MN, conditions.

In any discussion of generalised products of groups with amalgamations,
an investigation as to the existence of normal forms for the elements of these
products naturally plays an important role, for it is by use of the normal
forms that we hope to construct the product from the groups which generate it.
This has been done for the generalised free and the generalised direct pro-
ducts of groups (see [9]); we shall give here some normal forms for the
elements of the generalised free GN, product of two groups with amalgam-
ation. These normal forms can be used to construct the product, but the
construction is so complicated that it is almost worthless, and is omitted.

The considerations of this section depend on the following theorem.

Theorem 9. 1. Let G be the generalised free GN, product of groups
A and B with the subgroup H amalgamated. Then if a, b are elements of
A, B respectively such that the product ab lies in the cartesian [A, B] then that
product must lie in the subgroup (A, H][B, H].

PROOF. Let G, be the free regular second nilpotent product of groups A, B
which are isomorphic to A, B respectively under the respective isomorphisms
6, and 6>. Then if we denote the subgroup H6;' of A by H, it is clear
that H6,6;" is a subgroup of B which is isomorphic with A. Thus we have
the familiar situation of the last section; we shall denote 6,6:' restricted
to A by ¢. Furthermore, 6, and 6. can be simultaneously extended to a
homomorphism 6 of G, onto G, whose kernel is the normal closure of all
elements 2 ' hg, where i €H.

Now by Lemma 8. 10, if n is an arbitrary element of N, n= a8y where
a€A, BEB, ye[A Hyg]* B, H]”. Suppose now that a, b are elements of A, B
respectively such that ab = u¢[A, B]®. Then there exist d, b, & in A, B,[A, B]®
respectively such that "
a0 =a,b0=>b, u0=u.

Thus (a4b)6 — 6 so that ab— iin, where n€N. Now n=aBy as above,
so that @ b= @iy, since the cartesian is central. But owing to the uniqueness
of such representations in G,, we conclude that

i=e, b=p, dy=1.



164 J. Wiegold

Hence i =y ™' €[A, Hy)*[B, H]*. But this means that ab— (4 5)6 — @16 lies
in ([A, Hg]® [B, H]**). But this subgroup is
[A6, Hp6)*° [B6, H6)*® — A, H]® B, H)".

This completes the proof of the theorem.

It is easy to give examples to show that the conclusion of Theorem 9.1
is no longer true if the word “free’’ is removed.

An easy corollary of the theorem is the following result, which shows
exactly how the constituents of a generalised free G N, product intersect the
cartesian.

Lemma 9.2. If G is the generalised free GN, product of A and B
amalgamating the subgroup H, then in G,

()  [ABInA=[A H|([B, H]n H),
(ii) [A, B]n B=[8, H|([A, HIn H).
(iii) [A, BiInH=([A, HIn H)([B, H]n H).
PrOOF. We prove the first of these equalites to exemplify the method
of proof. Note first the obvious fact that

[A, BIn A2[A, H|([B, H]n H).

Next let a€ An[A, B]. Then by Theorem 9.1, a=a-1=a’b’, for some
a€[A H), b'¢[B,H). We then get that b¥'—a 'acAnB=H, so that
V€[B, HInH. Thus

[4, BIn B&[A, H]([B, H]n H),
which together with the above reverse inclusion gives the answer.
We can now exhibit our normal forms.

Theorem 9. 3. Let G be the generalised free G N, product of the groups
A and B amalgamating the subgroup H. Let further T, be a right transversal
of B modulo H, and T, a right transversal of [A, Bl modulo (A, H][B, H].
Then every element of G hus a unique expression

g=atu,
where ac A, teT,, ucT,.

PRrROOF. (i) Firstly we show that every element has an expression of the
required form. If g is an arbitrary element of G, it is easy to see (cf. for
instance [2]) that g =a,b,u, for some a,€A, b,€B, u,€[A, B]. Express u, in
the form .

u=a'bu,
where a’€[A, H], b'€[B, H), u€T,. Then since @’ and & are central in G,

g=a,a'b,b'u. Next
bb' = ht
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for some he€H, t€T,; so that g=a,a’htu. This is of the required form
with a=a,d’'h€ A.
(i) Next suppose that g has two such expressions, say
g=a,thu,= atyu,.
Then
ay' oty = uyus €[A, B,
since u, and u, are central. Therefore, by Theorem 9.1,
a’'ah ;' €[A, H][B, H).
But then w,ui lies in [A, H][B, H], which means that u,—u,. We are now
left with the equation a,f, = a.f,, which gives
a;'a,=4LET'€EANB=H,
so that t,=1,, a,—a,. This completes the proof of the theorem.
The following theorems can be shown in a manner similar to that used
in Theorem 9. 3.

Theorem 9.4. Let G be the generalised free GN, product of groups
A and B amalgamating the subgroup H. Let further T, be a left transversal
of A modulo H, and let T, be a right transversal of [A, Bl modulo [A, H][B, H].
Then every element of G nas a unique expression of the form

g=tbu.
where t€T,, bEB, ucT,.

Theorem 9.5. Let G be the generalised free GN, product of groups
A and B amalgamating the normal subgroup H. Let further T, be a left
transversal of A modulo H, and T, a left transversal of B modulo [A, H] B, H].
Then every element of G has a unique expression of the form

£=Sstu,
where s€T,, teT,, u€[A, B].

These normal forms are not, as has been pointed out already, of any
great use as tools for studying the generalised free G N, products. The normal
form of the product of elements in normal form is obtained only after a fairly
complicated set of equations, which makes manipulation very tiresome. However,
it looks likely that there are no simpler normal forms.

Let us return now to a consideration of the generalised MN, products.
It will certainly be asked where the theory of the last section breaks down
for the MN, case; for if the generalised free MN, product of two groups A
and B amalgamating the isomorphic subgroups H and He exists, itis Gi/N,
where these symbols have the same meaning as in § 8. However, even if N
be tidy in G,, we cannot state the generalised free MN, product is Go/N
— and indeed this product need not exist, as Example 6.1 will be seen to
demonstrate.
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To find necessary and sufficient M N, conditions, we use the fact that
the MN, product is simultaneously a GN, product, and that if they both
exist, they coincide. Precisely, we prove the following theorem.

Theorem 9.6. Let G be the generalised free GN, product of groups
A and B amalgamating the subgroup H. Then G is the generalised free MN,
product if and only if the following condition holds. Suppose that a”’, b",a’, b', h
are elements of [A, A'], [B, B'), [A, H], [B, H], H respectively, connected by the

uations
eq a":a; h, bn i h-lbt.

Then it must follow that " €H, b”"€H and a"b" =1.

PrROOF. The second member of the lower central series of G is, by
Lemma 6. 3,

[G,G]=[A, A'|[B, BIG, [A, Bll=[A, A']|B, B'],
since the cartesian is central in G.

(i) Suppose that G is the generalised free MN, product of A and B,
so that [A, A'|[B, B'|n[A, Bl=E. Then if a”,b",a’, b, h are as in the data,
multiplying we get a”b” =a’b’. But this means that

a”"b”€[A, H][B, H|n[A, B]=E.
Then a”b” =1, and of course a”€H, b” € H.
(i) On the other hand, let g be any element of [A, A’|[B, B|n[A, B].
Then g=a"b" for some a”€[A, A’), b”€[B, B’], and by Theorem 9.1,
a’b’=a'lt
for some a’'€[A, H], b’ €[B, H). This gives
@) "'a"=b'(b")"=h¢eH,
and a”=a’h, b” =h'b’. But from the data we now conclude that a”b” =1,
and therefore that [G, G| n[A, B]= E. This finishes the proof of the theorem.

We now state the following set of necessary and sufficient M N, conditions
for the set-up as in § 8.

1. There exist homomorphisms d,0° of D, D° onto [A, H], [B, Hy]
respectively defined by

@®hg)d=[a, k"), (bR h)d° = [he, b].

2. If d is any element of DnD°, dd€H and ddgp==dd°.

3. If, in the amalgam of A and B amalgamating H and He¢ according
to ¢, we have elements a”,b",a’,0',h of [A A'), [B,B], [A H] [B,H], H
respectively, connected by the equations

o' =ah b"=h"Y,
then a”€H, b"€H and a”"b" =1.
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For 1. and 2. give the existence of the generalised free GN, product,
and by the theorem just proved, 3. makes it the MN, product.

Appendix. The GN; products.

The problem of finding necessary and sufficient GN, conditions is beset
by the difficulty engendered by the fact that the cartesian is no longer central.
I have been able to work out necessary conditions similar to those of Lemmas
8.4, 8.5, 8.6, though any proof that these are also sufficient would at best
be enormously complicated. We shall content ourselves with merely stating
our necessary conditions, as the derivation is simple if rather tedious.

Let A and B be groups, H and He subgroups of A, B respectively,
isomorphic under the mapping ¢. Let further G, be the free regular third
nilpotent product of A and B, where for clarity we denote the commutator
of an element a of A with an element b of B, in G,, by |a, b/, and so on.
We define D to be the subgroup of |A, B| generated by all commutators
|a, hp|, and D° that generated by all |k, b|. Then the foliowing are necessary
for the existence of the generalised free GN; product of A and B amalgamating
H and He.

1. There exist homomorphisms d,d° of D, D° onto [A, H], [B, Hy)

respectively defined by
\a, hp|d=[h,a], |h, b|d°=[b, he].

2. If d is any element of DnD°, ddo€H, ddg=dd°.

To give even these necessary conditions the same sort of weight as that
possessed by the necessary GN, conditions, we should have to give an
abstract representation of the third nilpotent cartesian |A, B|. B. H. NEUMANN
has conjectured that the following group, which he naturally calls the “‘elevensor
product” and denotes by A (xi) B, will provide this abstract representation.

A i) B is generated by “formal commutators” |a, b|, {a, b,¢|, (where a
ranges over A, b over B, ¢ over their direct product A X B) subject to the
relations :

|a1aﬂ’ bl = [an bl |a?: bl ‘ah bs aﬂl!
|a: b1b2| Y [6’, bll ]a: bﬂl |ﬂ, bl: bﬁ‘;
|@yay, b, c| =|ay, b, ¢||as, b, c|,
|a, b6, c| = |a, by, ¢||a, by, ¢|,
|a, b, c;co| =|a, b, ;| |a, b, &),
|a1, bxl |ah b‘il-;:laﬂ) bzl |01, bll

for all a, a,,a,€A, b,b,5,€B, ¢,¢;,c;€AXB.
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