A class of systems of differential equations and its
treatment with matrix methods. III.
Contiguous systems.
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1.%) In Part I. of the present paper [1] | investigated the properties of
the matrix differential equation

(1.1) XY =AY

(X a diagonal matrix with the elements x—a,,...,x—a., A an n by n
constant matrix) or what amounts to the same, those of the vector differential
equation

(1.2) Xy =Ay

where y is a column of the matrix Y.
It was found among others that several classical linear differential equa-
tions are equivalent to a system of type (1.2). For instance the system

x—1 0] . y—a—g y—ea

Ui 9 [ 0 x]y= B—y —rl17
has the solution

v Fla, 8,7, %)

Yo, 8y = [(3_}') F(e,8,7+1,x) |

1) Notations:

a,

2 =[ : ] ={a,, a,, ..., a,}, b, ... column vectors
a, g

a*=|a,,...,a,),b" ..., row vectors

A, B, ... matrices

{ay,as, ..., a,> diagonal matrix

I=<11,...,1> unit matrix
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where F(a, b,¢, x) is Gauss’ hypergeometric function.®) A simpler instance of
an equation of type (1.1) is the case when n=1:

(1.4) (x—a)y’ = any.

Returning to the general case we shall term two matrix differential
equations XY = AY and XZ'=BZ (A and B constant n by n matrices) to
be contiguous if there exists a matrix M(x) linear in x (i. e. its elements are
linear functions of x) such that

(1.5) Y=M(x)Z

is a solution of XY" = AY. This implies that if y and z are the Ath columns
of Y and Z respectively, then

(1.6) y=M(x)z.

For instance, the differential equation (x—a,)2’ = (a,—1)z is contiguous
in the sense defined above to (1.4), for (x—a,)z is a solution of (1.4).

Another example of a pair of contiguous differential equations is (1. 3)
and the equation which one gets from (1.3) by replacing in it @ by «+1,
or rather the corresponding matrix differential equations of type (1.1). Indeed
one may readily verify using Gauss’ formulae between contiguous hyper-
geometric functions that

x—1 X
(1.7) Yov=|7— s a ]y-n.n,
' e (x—1 x ’
3'( ) &7 +}'"‘*“

a_
which remains true for any continuation of the vectors ya sy and ya41,5,y On

la) We remark here as a supplement to 5, Part I of this paper, that an example
of a vector differential equation of the type

(3 l) (K—LX):':MI.
of Part 1. (K, L, M constant square matrices) is

—-x 1], —v—1 0
a7 et

e [P N (x)]

One of its solutions is

I L)
the components of the solution vector being ultraspherical polynomialsin Szead’s notation
(Orthogonal Polynomials, New York, 1939). This can be verified by the use of formula
(4.7.28) of Szead’s book. (Cf. problem 4783 by L. Carurrz in Amer. Math. Monthly 65
(1958), p. 288.)
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their (common) Riemann surface securing thereby the contiguity of the two
matrix differential equations.

The subsequent analysis will show that in the hypergeometric case there
exist three other formulae of the type (1.6) similar to (1.7) and connecting
Ya, B,y with Ya,p+1,vs Ya+l,8 v+l Ya,g+l,y+l respectively.

Each of these formulae can be verified directly with the help of Gauss’
15 relations between contiguous hypergeometric functions, and conversely
from these formulae the entire set of Gauss’ relations may be derived.

As a generalization of the foregoing we will show the following

Theorem. Given a matrix differential equation of the form (1.1),
if (a) there exists a characteristic value of A different from 1 and 0 and (b)
among the quantities a,,a,,...,a, at least two are differing, then there exists
a matrix differential equation XZ' — BZ such that between the solution
matrices Y and Z there exists a relation of type (1.5).

In other words the solution of (1.1) may be written as a product of
two matrix factors so that the first factor is linear in x and the second is
a matrix Z which satisfies a matrix differential equation similar to (1.1).

The construction which follows shows that B is not uniquely determined;
indeed if one supposes that A is diagonalizable and none of its characteristic
values is equal to O or 1, further each coordinate of every characteristic
vector ot A is different from O, then there are at least n* matrix differential
equations, contiguous to XY’ = AY. Each of these n* contiguous equations,
say XZ'—B"?Z where p and ¢ are any natural numbers not greater than
n, may be characterized as follows: if the set of the diagonal elements and
of the characteristic values of A and B®? are {au}, {4} and {b{"?}, {u\"?}
respectively (i=1,2,...,n) then

bii=aQi—0ip; ;u?w)=ii_diq (i=1,2,...;0)

where J;; is the Kronecker deita.

As an application we shall deduce the (known) linear relations between
a class of contiguous generalized hypergeometric functions. It will be seen
that all but one of these relations are consequences of one and the same
matrix formula (6. 4).?)

2. We shall try to find necessary conditions relating to the form of
M =M(x). Suppose that there exists a relation Y= M(x)Z between the

2) The simpler question whether one can find to a given A a constant matrix M
and B having the same properties as above may be answered immediately, Take M a regu-
lar constant diagonal matrix. Then from XY’ =AY it follows XMY =MAM MY and
B=MAM", Z=MY.



A class of systems of differential equations. 207

solutions Y and Z of the systems XY'= AY resp. XZ'=BZ (det Y0,
det Z=£0 if xs=a;, i=1,2,...,n) where each element of M is a linear
function of x. Let x be different from each of the quantities a;. Then
det M=det Y/det Z=~0, further the matrices K—=X"A and L= X"'B exist
and from the equations Y'=KY,Z'=LZ and Y=MZ we infer that

MZ+MZ=KMZ,
M +ML=KM

and
@21 M+MX'B=X"AM.

Denoting the general term of A, B,M, M’ by aa, ba, mu(x), mi,
respectively, the last relation is equivalent to

(2.1») Z‘ ma(x)bu, :Z a.»;m;g(x) — M.

1 X— X—a;

If one supposes that axsta; if is£k, this relation holds only if
x—ai|ma(x) (I5=10)°) so that M(x) may be written in the from

1 0]
0 ‘s..

where the ra’s and s’s are constants. If we introduce the matrix R with
elements r, and the matrix S with the elements s;dx (Jda is the Kronecker
delta) the last relations may be written in the form

ri-(x—a)) ne-(x—as)...n.-(x—a,)

M= +

r,.;- (x—ay) r..g:(x—-ag) i Tha :(x—a.)

(2.2) M=RX+S (R and S const. matrices, S diag.).
Substituting this into (2.1) we have after suitable transformations

(2.3) XR+XRB+SB—ARX+AS

as M'=R and XS=SX.
Let us now introduce the diagonal matrix C=<ay,...,a.>. Then

(2.4) X=Ix—C.
8) The possibility that x—a; ¥ m,(x) and hence by=0 (I#i k=1,2,...,n) may

be discarded, for in this case the /th equation of the system XZ’'= BZ is simply (x—a;)z; =0.
This shows that the place x = a; is no singular place of the solution of the system XZ'=BZ.
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Substituling this in (2.3) and using the principle of equal coefficients
we have

(2.5) R+RB=AR
and
(2.6) —CR—CRB+SB=—ARC+AS.

The last equation may be substituted obviously by
27 SB—AS=CAR—ARC.

This enables us to enounce the following. If a; ax (is~k) and if the
relations XY’ =AY, XZ'=BZ, Y=MZ (M linear in x) hold, then (2. 2),
(2.3), (2.5) and (2.7) are necessarily true. To a given A and a given C
one may find therefore a B and an M (or R and S) if one solves equations
(2.5) and (2.7).

If any two a;’s coincide the conditions given above are not necessary, as from
(2. 1) the formula (2. 2) does not follow. Yet if in this case too one may find
to a given A matrices R, S and B satisfying (2.2), (2. 3), (2.6) and (2.7),
then our problem is again solved.

3. The next step is to find a solution of the system of the two matrix
equations (2.5) and (2.7) with given C and A. Unknowns are the three
matrices R, B and the diagonal matrix S. I didn’t succeed in finding the
general solution of this system.

However, if A51,0 is a characteristic value of A, one gets a particular
solution in the following way. Let u be a characteristic column vector of A
corresponding to 4 or in the case of a multiple root one of these vectors.
We may suppose without restriction of the generality that u; 0 and parti-
cularly that u;=1.

Suppose now (a) that v*=[v1, ..., va] =[1, @12, ..., @1a] is a characteristic
row vector of the unknown matrix B corresponding to the characteristic
number 4—1; (b) R is a one-dyad matrix and ra =ww; (c) $1=0;
(d) none of the quantities a3,...,a. is equal to a;. We are going to show
that it is possible to find a solution of the system (2.5), (2. 7) satisfying
these assumptions.

It is easy to show that each matrix B and R satisfying the above
assumptions fulfils equation (2.5) or

f.‘k-l-Zfabm—Zﬂam:O, (GLk=1,2,...,n),
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for
ra +Z rabu — Z’aaru. —win Ui Z v by — Zaauwk=

= Ui+ ti(A—1)n—Auv =0.
Further equation (2.7) is equivalent to

s.-b.-;—s;a.—;,:(a.-—a.)Za.-,ru, (k=12,...,n)
and by virtue of (a) and (b)

Sibia— sxaa = (ai—ay) :Z' @ thvr == (G;i— Q) AU; Uk

or using (c) and (a)
(2.8) Siby = (ai—ay)du;
(2. 8) $ibix— S = (Qi— m) Auan (k=2,3,...,n).

Now let be i=1 in (2.8). Then [si+4 (a1—ax)i]an=0 and this
equation is always satisfied by

2.9) S ==A(ax—ay) k=2,3,...,n).

Moreover by virtue of our assumption (¢) (2.9) remains true if k=1.
Substituting the value of s; and s, from (2.9) into (2. 8) one sees that these
equations are always satisfied if

-, - A Ai—ax T s
(2.d10) b = aa s + anu; s ((,k=23,...,n)
an
(21]) bi=ui (f=2,3,...,ﬂ).

The remaining first row of the matrix B may be calculated from

assumption (a):
Zv.'bu; == (l—])vk.
It is |

n

bu=(2.-—1)vg—§v.'ba‘

and especially
by = an—1.

Thus we found a set of matrices R, S, B which satisfy the assumptions
(a)—(d) and form a solution of the system (2.5), (2.7). We have yet to
show that the matrix M=RX+S thus constructed is regular at each
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regular place of the system. Indeed if x=~a;, then a simple calculation
shows that

det M= 2" (x—a,) (@2—ay)- (@, —a1) # 0.

It is here that we make use of the restriction that 15<0.

It is to be mentioned that in the case det M0 the relation (1.6)
remains true but it may become meaningless if M(x)z happens to be iden-
tically O. :

4. As a corollary one may show that the spectra of the matrices A
and B connected by the relation of the preceding chapter differ only in one
characteristic number.

Let indeed be
1 0---0 A Qs ce el
0

U— l:lg l" 2|, then UAU— 9032—312112 Q30— 1 U2
Uy 0-:-i 0 a..g——-amu,,---a;..—amuu
Further let be
1 vgeervn Ai—10 Y]
e ? . O then vBYV'= f’“ el ?2"_‘52‘”"
0 0--r1 b Da—himsti b= bit,

As by (2.10), (2. 11) and assumption (a)
bi— b v = (ai"'"al)-l (aik_‘alkui)(ak_al) (i, k> l)

the submatrices of UAU™" and VBV~ obtained by omitting the first rows
and columns are similar and have therefore the same characteristic numbers.
As the spectra of A and B consist of the spectra of these submatrices and
of the number 4 resp. A—1, our assertion is proved.

5. Applying the preceding considerations to the system (1. 3), i.e. to the
system which corresponds to the hypergeometric equation we see that the
characteristic numbeirs of A are —a and —p. Here we suppose that neither
e nor # are equal to y. If we choose A=—a and s;=0 and perform the
calculations of 3 we arrive at (1. 7) while the assumptions A= —2, s,=0;
A=—a, s=0; A=—p, s2=0, respectively, lead to other three similar relations.
These four relations differ only in form from Gauss’ relations between con-
tiguous hypergeometric functions and all of the latter relations may be
obtained from them. We do not write these relations in full length, forin 6
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we shall establish them in a more general form in connection with the gener-
alized hypergeometric functions, restricting ourselves to the case s; =0.

6. The generalized hypergeometric function

@

61 s st o= S G
[(€)y =c(c+1)--+(c+r—1), ;5 0, 8 is neither O, nor a negative integer and
finally no @ is equal to any «] and its contiguous’) functions satisfy a set
of linear relations.

From this set one may choose a subset of 2p--n—1 linearly indepen-
dent relations with the aid of which one can construct each linear relation
between generalized hypergeometric functions. The complete list of these
relations was given by E. D. RAINVILLE [2]. Here we will give another deduc-
tion of these relations restricting ourselves to the case p=n.

Let the function (6. 1) be denoted by y'f and let be y?=,F,._1(&+).
It was shown in Part L. of this paper (p.21) that

(x—1)y! =ayl—Usyo— +++ — Unn
xys = Ryt — By

6.2)
xYo = B)t —Buyn
where
S, I T (&1 —B)(@2—8) -+ (& —8))
6.3) a=2 8~ Ui=ga—py Gr—B) Gty BB

If the matrix of the right hand side of the system (6. 2) is denoted by
A and X=<{x—1,x,...,x> then the solution of the system Xy —Ay
characterised by the initial condition y(0)={1,1,...,1} is the vector
yﬂ= {yll)l yg’ crey yE} b)

Now we shall try to find a system Xz'= Bz contiguous to the
above system in the sense of 1. The characteristic values of A are now
—ay,—ag,...,—a,. Let the 4 of 3 be —a,. (We suppose of course that

%) A function contiguous to (6. 1) differs from it only by changing one and only one of
ite parameters a, or 8; into «; + 1, a;—1 resp. 8,+ 1, or 8,— 1. As customary, these func-
tions will be denoted by F(ai;+),..., F(8;—). Further, the notation F(a;+,8; +) will be
used for the function which one gets from (6. 1) by replacing in it ¢, and 8, by a4+ 1
and 2, + 1.

5) If p<n then the vector yO satisfies a differential equation which does not belong
to the type (1.2) and therefore the reasoning of 3 is to be modified.
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—a; 50, 1). Then performing the calculations indicated above we have

— l’ﬁgfa;""fﬁﬁﬁa; S5 | QR R R T
[a—1 (a—fat v (@—Ps+1)vs - (@— Bt 1)vn |
B
g 0 0
B
B—| 0 — B 0
: :
| B—a ? 0 i . Y

Let now be N=<1,h—a,..., f»—a). Then B=N'BN where

ﬁ —U2"' _Un
B2 A 2
ﬂn 0 "‘_p’u

and @, U; differ from the corresponding quantities a, U: in (6.3) only by
interchanging @ by a:+1. Consequently a solution of Xy =By is
¥'={,...,7%) where 3 differs from y; only by a change of « into
a;+ 1. This solution corresponds to the initial condition y(0)={I,1,..., 1}.

Now (cfr. footnote 2) a solution of Xz'==Bz is z’—N"'y’ and this
corresponds to the initial conditions

2(0) ={l, (B—a)", ..., (fa—a)}.

We state that —z° is just that solution of Xz'= Bz which is equal to
M(x)y’=(uv'X + S)y°. It suffices to verify the relation y°(0) = — M(0)z°(0) or

L —1 0---0|] 1 7]
By 1

! et -3 ﬁﬂTaI m. ¥ .32-:"“:

1 e ' Ba

P . ﬁn_al 0 a’__ _ﬁn_al_

which is clearly true. The relation
(6.4) y'=—M(x)Z°
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when written in full length is equivalent to the following n® relations:

6.4) F=(1—x)F(a;+)+x§‘%E"al Flea+,8+) ({(=12,...,n);
FBit)=(1—2) 52— Flat) — 72— Flat, fit)+

6.4 A

v s Uy e ]
th—a A Fma T@t B+ a3, a)

One can show that these formulae contain all but one of Rainville’s relations
quoted above. For the n relations (6. 4;) are equivalent to Rainville’s formula
(21), while eliminating the term with X from (6.4:) and (6.4;) we get

(6.5) Bi—a) F(%+)—BF+aFla+, B+)=0 (i#1).
If /=1 we have
(6.6) Bi—a) FBi+)—BiF+aFlex+,8+)=0  (is1).

This is equivalent to relation (15) of Rainville while subtracting the expression
(6.6) from (6.5) we get

(ei—a) Fi+)+ta Fla+, i+ )—ar1 Flei+, 8+ )=0 (1=2,...,n).
These n—1 relations are the equivalents of Rainville’s formula (14).
There remains formula (19) of Rainville which is in our notation
(I=x)a[F—F (a1 +)]| = x[aF— 2, UiF(§+)].
=

It is not contained in the matrix relation y°=— M(x)z° but one deduces
it at once from the easily verifiable differential-difference equation
al[F—F(al -4 )] +IF'=O

and from the first equation of the system (6. 2).
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