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On nuclei of groupoids.

To Professor O. Varga on his 50th birthday.
By A. KERTESZ (Debrecen) and A. SADE (Marseille).

§ 1. Introduction.

Let (G,-) be a groupoid.’) The set A, of all x in G such that (xa)b=
==x(ab) for all a, b(€ G) is often called the left nucleus of (G,-) (see e. g.
Bruck [4]). The middle nucleus A, of (G,-) is similarly defined as the set
of all x(€G) such that (ax)b = a(xb), and the right nucleus A, in terms of
(ab)x =a(bx). The nucleus A of (G,-) is defined as A= A, n A.n A,. These
examples, as well as some others, e. g. the center and the Moufang nucleus
(see BRuCK [3], p. 288) suggest the following more general definition of nuclei.

Let v,(x;, ..., X), ¥:(X;, ..., xx) be two single valued functions in the
variables x,,...,xx, defined on the groupoid (G,-) and taking values in G.
The set X; of all elements x(€ G) such that '

(%) Y1y o00) Aoty X, Bigty o ooy ) =Ya(a1, « . ., Ai-1, X, Ait1y o+« k)

for all ay,..., @1, @Gis1, ..., ac(€ G) will be called the ¥i-nucleus (i=1,...,k)
k
of (G,-). The ¥-nucleus X is defined as X = [ Xi. Clearly with this definition

=1

the nuclei A,, A., A, and A are exactly the d-nuclei of (G, -) corresponding to

(&) (%1 23) X5 = X, (X2 X5)

and A=1, u=2, p=3; moreover the center Z of (G,-) coincides with the
%,-, ;- and %-nuclei corresponding to

(%) X X == X3 X;.

The purpose of the present paper is to define some special nuclei and
to investigate the relation between them. In view of the great number of

1) For terminology and nolations see § 2.



A. Kertész and A. Sade: On nuclei of groupoids. 215

problems which can be raised, we found it impossible to aim at completeness
even in studying these special cases, and had to content ourselves with
a clarification of the most fundamental relations.

§ 2. Terminology and notation

In this section we shall summarize the terminology and notation used
throughout the paper.

a=>b : a implies b;
a<=>b : a implies b and b implies a;
a€G : ais an element of the set G;
HS G : the set H is contained in the set G;
Hc G : His a proper subset of G;
H,n H, : the set of all elements common to H, and H,;
7 : the empty set;
g:a—b : ¢ is the mapping under which & is the image of a;
‘ : the identity mapping;
gt : equality by definition.

(i) A groupoid (G, x) is a system consisting of the non-empty set G

and the (single-valued) binary operation axb defined for all a, 5(€ G). When

the operation is denoted by a dot “.”, we shall often write for the sake of
brevity ab instead of a-b and ab-c instead of (a-b)-c.

The center Z of (G, x) is the set of all elements ¢(€ G) such that
cXa=axc

for all a(€G). If Z= G, we call the groupoid (G, X) abelian.

(ii) A left quasigroup (G, X) is a groupoid such that for each ordered
pair a, b(€ G) there exists one and only one x(€ G) such that x xa=256. The
right quasigroup (G, x) is similarly defined in terms of axy==56. A quasi-
group (G, x) is a groupoid which is both a left and a right quasigroup.

(iii) A loop (G, xX) is a quasigroup with a unit element, i. e. an element
e such that axe=eXxa=a holds for each a(€Q).

(iv) A semigroup (G, X) is a groupoid such that the “associative law”

(@axb)xc=axX(bxc)
holds for all a, b, ¢c(€G).

(v) A homomorphism ¢ of a groupoid (G, X) into (onto) a groupoid
(H, o) is a single-valued mapping of G into (onto) H, such that (a¢)o(bg) =
= (axb)g for all a,b(€G). If ¢ is one-to-one onto H. then ¢ is called an
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isomorphism of (G, x) with (H, ). An endomorphism of (G, X) is a homo-
morphism of (G, x) into itself, while an automorphism of (G, x) is an iso-
morphism of (G, x) with itself.

(vi) The groupoids (G, x) and (H, o) are said to be isofopic if there
exists an ordered triple {, L} of one-to-one mappings & 7, of G onto H
such that

(a8)o(bn) = (@xb)s

for all a, b(€ G). Clearly isomorphism is a special type of isotopism, namely
that corresponding to the case §=#n=2_. An isotopism {§ n,¢} of (G, x)
onto (G, *) (i. e. an isotopism the third component £ of which is the identity
mapping) is called a principal isotopism.

§ 3. Nuclei related to the associative and similar laws.

Let us consider all such “laws”, which arise from the associative law
by a permutation of the elements and by a (possible) rearrangement of
brackets :*)

@) X3 Xg+ Xy = XXX ; () X+ X3 Xy == X3+ X3 X3 ;
(®) Xy Xg: Xy = Xy X5 X ; ©) X, Xy X == Xy X3 X1 ;
© Xy Xg+ Xz = Xg° X1 X3, (&m) Xy Xo Xz = X3 XX ;
(@) X3 Xg Xg == Xq* X3 X (&) Xy Xg+ X3 == X1 X5° X3 }
&) Xy Xy X5 = X5 X1 Xy ; ©) Xy Xg* X3 = Xp Xy X3 ;
(3) X1 Xg* Xz == Xg* X3X; (Q) X1 Xg- Xy = XgX3- X,
§)) Xy XXy == X, X3 Xa; () X1 XXy == X3 Xg* Xy

Let (G,-) be any groupoid and let ¥ denote an arbitrary but fixed
letter from the set &—Q above.

DEerINITIONS. The set Y, of all elements x(€ G) for which (¥) holds if
we substitute x,=2x, x,=a, x;=2> (a, b being arbitrary element of G), will
be called the leftf Y-nucleus or simply the ¥,-nucleus of the groupoid (G,-).

Similarly, we define the middle ¥-nucleus (¥.-nucleus) Y, in terms of
X, =a, X;=X, X;= >0, and the right Y-nucleus (¥,-nucleus) Y, in terms of
Xy=q, Xgm=D, Xy=X.

Yetv.inY.nY, is called the Y-nucleus of (G,-).

If Z denotes the center of (G,-), then Z* 3£ ZnA is called the Bruck
center of (G,-).

2) The relation of these conditions to group axioms was investigated by T. Faraaé [5].
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A subset H of (G,-) is said to be characteristic if for every h(€ H) and
for every automorphism ¢ of (G,-) the element hy is also in H.

Theorem 1 (Bruck [4], pp. 250—255).°) If (G, ") is any groupoid, then

(i) (As,-), (Au,"), (Ao,-), (A,-) are semigroups and (Z*,-) an abelian
semigroup, provided they are non-empty ;

(ii) these sets are characteristic in (G,-);

(iii) if further (G,-) is a loop, then (Ax,-), (Au,*), (Ao,+), (A,-) are
groups and (Z°,-) an abelian group.

If (G,-) and (H, o) are isotopic groupoids with unit, then (Ax,-), (Au, ")
(A,,-) and (Z°,-) are respectively isomorphic to the corresponding entities de-
fined for (H, o).

Theorem 2. If (G,-) is any groupoid with unit e, then

(I) ZnAi=B.=Cy.=D,; this set with the operation “-” forms an
abelian semigroup with unit (provided it is nor-empty), and it is characteristic
in (G,-); in particular if (G,-) is a loop, then (Zn A,,-) is an abelian group ;

() ZnAn=Cu=N.,=N,=P,;

() ZnA,=B,=Ki=K.=1L,;

(V) ZnBa=Dy=Py,=Q . =Qy;

V) ZnCo=Dy=L,=M=M,;

V) Znh=2Zn0,=1,;

(VIl) ZnKy=L,=M,;

VD Zo N =P.=Qx;

(IX) Z=F,=Ju=Jp=01=0,;

X) Z2Fi=F.=h=1I,.

Addendum 1. Z*=B,nB,=C.nCy; BESZ*; CSZ*; if they are
non-empty, (B,-) and (C,-) are abelian semigroups and are characteristic in

(G,-). In particular, if (G,-) is a loop, then B=2Z* or B=0@ and C=2"
or C=20.

Addendum 2. Let Y denote an arbitrarily chosen one of the sets
B,C,LJ,K,L,LM,N,O,P,Q. If Y has an element which can be always can-
celled on one side, then (G,-) is abelian.

3) For a proof of this theorem we refer to [3].
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Addendum 3. If (G,-) is abelian, then

@ A=A=A=8=B,—C.=C;—=Dp=D,—K\—
=Kn=L1=L#=M&=M9=N»=N9=P1?Po=Q’L=Qo;

B) A=B.=C=Di=Ky=L;=M,=N=P,=Qy;

0 G=R=Fi=Fo=F=h=l=l=I=h=ji=Jo=
=j= OL= 0“= 00=0;

@0 A=B=C=D=K=L=M=N=P=0Q.

Addendum 4. Let W denote any one of the letters B, C, K, L, M, N,
P, Q, and T any one of the letters 4, u,o. If W,= G, then (G, -) is an abelian
semigroup with unit.

REMARK 1. The assertions of Theorem 2 show that

(¢) Z2B,,B,,C\,Cyu,D5,Dy, Dy, Fr, Fy, Fy, I, I, I,
JusJos Koy Ky, Lny Ly, Loy My, My, My, Ny, N,, Os,
Ois Pry Puy Poy @i Qu; Qo |

We shall make use of this fact several times in the course of the proof
and therefore we want to point out that it can easily be proved also directly
(i. e. independently from the theorem). Let for instance x€ B, and let a be
an arbitrary element of G. Then ex-a=e-ax, i.e. xa=ax. Thus we have
in fact B,C Z. The validity of the other assertions in (%) can be shown
similarly.

REMARK 2. The equalities J, = J,; Ki= Kyu; My =My; Nu=N,; Os=0,;
Q.= Q, hold without the assumption that (G,-) has a unit. Similarly the
inclusions ZS F,, Ju, Jo, Ox, O, are also valid in the general case.

REMARK 3. We have examples which show that the sets B,, Cu, B, Dy,
D,, I, L,, P,, F,, F, are in general pairwise different, among them only B, is
closed under the operation; finally Z>5 F, is possible. Thus Theorem 2 gives
a complete clarification of the relations in which the ¥,-nuclei (v=4,u,0)
stand to each other and to the center; in the relations (I)—(X) each nucleus
occurs exactly once.

PROOF. To (I). Let @ and b be in the sequel arbitrary elements ot G.
If x€eZnA,, then ax-b=a-xb=a-bx, and consequently x € B,. If x€B,,
then using (*) we get xa-b =ax-b—=a-bx=a-xb, and thus x € . If x€ G,
then using (%) we get xa-b=a-xb=a-bx, and thus x€ D,. Let now be
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x € D,. Then by (¥) x€ Z and using this ax-b=xa-b=a-bx=a-xb and
SO X€ZnAg.

Let x,y € B.. Then (a-xy)b=(ay-x)b=ay-bx=a(bx-y)=a(b-yx)=
=a(b-xy), accordingly B, is closed with respect to the operation; as
B.S A, it is a semigroup and clearly e € B,. Moreover, if ¢ is an auto-
morphism of (G, ), then

la(x9)]b = {[(ag™)x](69~)} 9 = {(@ap™)[(b9~)x]} ¢ == alb(xg)],

which gives that B, is characteristic in (G,-).

Let now (G,-) be a loop. In order to establish that B, is an abelian
group, on account of the preceding paragraph, the equality B,—Zn A, and
Theorem 1 it suffices to show that if x € B, and the element x' satisfies
xx'=e¢, then x-' € Z. Let us multiply the equality xa=ax by x~ from the
right. We get xa-x"'=ax-x"'=a-xx"'=ae=a, and so

1)) a=xa-x.
Now we multiply (1) by x* from the left. Then
xla=x"(xa-x)=x"(ax-x")=x"(a-xx") =
=x"1(a-x71x) =x'(ax:x) =x"'(x-ax") =
= XTI XX =X~V gx ' =p-ax Tt =qx"",

So we have in fact x '€ Z.

To (II). If x€Zn Ax thenax-b=xa-b=x-ab,and so x€ C,. lf x€ C,,
then making use of (¥x) we get ax-b=x-ab=ab-x, hence x¢€ N,. The
equality ax-b=ab-x shows that N,= N,. If x€ N,, then using (*) we get
xa-b=ax-b=ab-x and so x€ P,. Let now x € P,. Then by (¥) x€ Z, and
using this we get xa-b=ab-x=2x-ab and consequently x € Zn A,.

Simple computations of a similar kind serve to establish (III), (IV), (V),
(VI), (vil), (VIII) and (X). It is easy to see that all elements of the center
are contained in all the sets F,, Ju, /o, Ox, O.. Thus, making use of (%), we
get also (IX).

To Addendum 1. We first show that
(2) ANANZ=ANnANZ=AnANZ=2"
Let x€ Axn A.n Z; then for any elements a, b(€G)
ab-x=x-ab=xa-b=ax-b=a-xb=a-bx

and consequently x € A,. Similar considerations show that if x€ A\nA,nZ
then x€ A,, and if x€ A.nA,n Z then x € A,.
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Now, making use of (2) and applying (I) and (IIl), (I) and (II) resp-
ectively we get

3) BunB,=2ZnA.nA,=2°,
(4) GnCo=2ZnA.nA=2",
SO

BEZ' and CE2Z°.

Let x,y € B. Then, by (3) and by Theorem 1 xy € B.n B,. Moreover, for all
elements a, b(€ G)

(xy-a)b=(x-ya)b=x(b-ya) = x(by-a) = x(yb-a) = x(y-ba) = xy-ba,

so that xy € B, and thus xy € B. Similarly, if x, y€ C then by (4) and by
Theorem 1 xy € C.n C. and for any a, b(€ G) we have

ab-xy=(ab-x)y=(b-ax)y = b(ax-y)=b(a-xy),

so xy € C,, and consequently xy € C.
Let ¢ be an automorphism of (G,-), and let x be any element of B.
Then by (2) and by Theorem 1 x¢ € B, n B,. For arbitrary elements a, 6(¢ G)

[(x¢)alo={[x(ap)(be™)}p = {x[(by™)(ep )} ¢ = (x9)(ba).

Hence x¢ € By, and so x¢ € B. Similar considerations serve to show that C
is characteristic in (G,-).

Let (G,-) be a loop, and let y,€B,x€Z*; a,b€G and 2, be the
element of G for which y,2, =a holds. Then xa-b==(xy,2,)b = x(3,2,-0) =
=x(y,-b2)) = x(bz,-y,) = x(b-2,,) = x-ba. Thus x € B,, Z* < B,. From this
there follows the equality B= Byn Z*=Z". — Similarly, if y, € C, then there
exists an element 2, of G, for which 2,y,=056. Then ab-x=(a-2,y,)x=
= (a2 Y2) X = (22-ays) X = (2,-20) x = (2:y,-@)x = ba-x=b-ax. Thus x€C,,
2'<SC,. Hence C=C,nZ* = 7" follows.

To Addendum 2. Let y be an element of Y such that it can always be
cancelled on one side. As by (¥) YE Z, this implies that y can always be
cancelled on either side. Now if a, b are any two elements of G and Y =B,
then ab-y=y-ab=yb-a=0by-a=b-ay=>b-ya=ba-y and so the cancel-
lation of y yields ab==ba, proving that (G,-) is abelian. That ab— ba and
so that (G,-) is abelian can be similarly deduced from ab-y =b-ay=b-ya=
=yb-a=by-a=y-ba=bayif Y=C; from ab-y=y-ba=bay if Y=1,
from y-ab=y-ba if Y=]; from y-ab=a-yb=a-by=b-ay==>b-ya=y-ba
if Y=K; from y-ab=a-by=a-yb=y-ba if Y=L ; from y-ab=b-ay =
=bya=ayb=a-by=y-ba if Y=M; from ab.y =ay-b=ya-b=yb-a=
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=by-a=ba-y if Y=N; from ab-y=ba-y if Y=0; from ab-y=0by-a=
=yb-a=bay if Y=P; and from ab-y=yb-a=by-a=ay-b=ya-b=
=ba-y if Y=0Q.

To Addendum 3. Let (G,-) be abelian. and let a, b be arbitrary elements
in G. Then, owing to (II), (IlI), (IV) and (V), in order to prove (&) it will
be sufficient to show that

A=A =A,=B,.=C_,.

If x€¢A, then x€A,. If x€ A, then ab-x=x-ab=x-ba=xb-a=
—a-xb=a-bx, hence x€ A,. If x€ A,, then xa-b="b-xa=b-ax=ba-x=
= x-ba and consequently x € B,. If x € B;, then ab-x=x-ab=x-ba=xa-b—=
=ax-b=~>b-ax and so x € C,. Let finally x € C,. Then xa-b=ax-b=0b-ax=
=ab-x=x-ab, i.e. x€Ay; ax-b=b-ax=ab-x=0ba-x=a-bx=a-xb, i.e.
X€Au; ab-x=ba-x=a-bx; i. e. x€ A,; consequently x € A.

In order to prove (8), on account of (I), (VII) and (VIII), it will be
sufficient to show that

Ap= K= N,.

If x€ A, then a-bx=bx-a=0b-xa="b-ax, hence x€K,. If x€K,,
then xa-b=ax-b=b-ax=a-bx=>bx-a=xb-a, hence x € N,. If x € N,, then
ax-b=xa-b=xb-a=a-xb, i. e. x€ A,.

Since (&), (9), () and (O) are consequences of the commutativity,
(y) is clear

(d) is an immediate consequence of (¢) and ().

To Addendum 4. Let W.= G. Then W= G, hence e € W. Since e can
always be cancelled, by Addendum 2 (G,-) is abelian and, by (d) of Ad-
dendum 3, it is a semigroup.

This completes the proof of Theorem 2 and its addenda.

§ 4. Endomorphizer nuclei.

1. Let (G,-) be a groupoid, let ¢:x —x" (x,x’ € G) be a single-valued
mapping of G into itself, and consider the equation

® X1 = (aX,).
The set of all elements x(€ G) such that
xX'a = (xay

holds for all a(€ G), will be called the left endomorphizer nucleus (for ¢) of
(G,-) (for short the 8,-nucleus) and it will be denoted by &[G, ¢]. Similarly,
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the right endomorphizer nucleus (for ¢) of (G,-) (for short the &,-nucleus) is
the set of all elements x(€ G) such that

a'x' = (ax)
holds for all a(¢ G). We denote this set by &[G, ¢]. Finally
&[G, 9] L &[G, ¢]1n &[G, 9]

is called the endomorphizer nucleus (for ¢) of G (for short &-nucleus).

Let m be an arbitrary fixed element of G and suppose that for any
x(€G) there exists exactly one x'(€G) such that xx'=m. The mapping
D, :x—x (x€QG) is a single-valued mapping of G into itself; we call it
the quotient mapping (for m). If, in particular, &[G, P»)= G, then @, is
an endomorphism of (G,-), which we call the quotient endomorphism (for m).
In this case we can also say that (G,:-) admits a quotient endomorphism
for m. Moreover, if the mapping @, is one-to-one and &[G, @.)= G, then
®,, is an automorphism of (G,-), and we say that (G,-) admits a quotient
automorphism for m.

ExAMPLES. (i) Let (G, x) be the set of vectors in 3-dimensional euclidean
space with vector multiplication as operation, and let ¢ be the mapping
which makes correspond to the elements of G their projections onto a fixed
1-dimensional subspace. It is easy to see that in this case &[G, ¢] is the set
of all vectors of the 1-dimensional subspace considered.

(ii) For a group (G,-) &[G, ®Pu] coincides with the center Z of (G,-),
or else it is empty, according as to whether m =1 or not.

Proof. Let xxX’ =m (x€ G); then X' =x""'m, X'y =x""'my"'m, (xy) =
=(xy) " 'm=y"'x"'m. Thus, in order that x ¢ 8,[G, ®@,] be fulfilled, it is
necessary and sufficient that for any y(€ G)

y'x'm=x"'my’'m
or, what is the same
y-.lx—l s x-—lmy—i

be valid. In the special case when y=1, the latter equality yields x™' =x""m
and this implies m=1. So there remains the condition y'x'=x"'y7,
which shows that one needs in fact x€ Z. — On the other hand, if m=1
and x € Z then clearly x € &[G, @,).

(iii) For an arbitrary field (K, +,-) the quasigroup (K, o) defined by
Xoy=a(x—m)+b(y—m)+m (x,y,0,b,meK; a,b#0)

admits a quotient automorphism for m, as can be shown by a simple
computation.
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(iv) Consider the groupoid (3, —) of the ordinary rational integers under
substraction, and let ¢ be the mapping of (J, —) into itself defined as fol-
lows :

' e ;Oforxeven!
FAE S - 1 for x odd I(XGS)-

It is easy to see that &.[(3, —), )] coincides with the set of all odd integers,
&,[(3, —), ¢] with the set of all even integers, and so &[(J, —), ¢] is empty.

2. Example (iv) shows that &[G, ¢] is not necessarily closed with res-
pect to the operation considered. We have however the following theorem:

Theorem 3. If (G,-) is a semigroup then for any single-valued mapping
¢:x—x (x,x € G) each of the sets &[G, 9], &[G, 9] and &[G, ¢}, which is
non-empty, is a subsemigroup of (G,-). If (G,-) is a group then each of the
sets &,[G, 9], &[G, ¢, 8[G, ¢] which is non-empty is a subgroup.

PrOOF. Let x,y € &[G, ¢] and let ¢ be an arbitrary element of G. Then
(xy-ef =(x-yo)y =x(yefy =x"-y¢’=xy"-c’ = (xy)¢’

shows that xy € &.(G, ¢]. Similarly, for x, y € &[G, ¢], ¢ € G we have (c-xy)' =
=c'(xy) and so xy € &[G, 9]

Let. now (G,-) be a group, its unit ¢, and x¢€ &[G, ¢]. Then by the
first part of the theorem x*€ &[G, ¢]; further, X’ = (xe)’ = x'¢’ implies ¢’ =e.
If g is any element of G then

Xg =(xg) = (" xg) =(x) (x'g) = (x)'(x"'g)

whence (x)"'g = (x"'g). The special case g—e yields (x)” = (x"'), and
thus we may write (x™')'g’ = (x'g)’ proving that x~* € &.[G, ¢]. This, together
with the first part of the theorem, shows that &[G, ¢] is a subgroup; so are,
for similar reasons, &[G, ¢] and &[G, ¢].

REMARK. Since in the first half of our proof we used only the relations
&[G, [ =€ a.(G) and &,[G, ¢] < d.(G) respectively, the following more general
statement is also valid :*)

If for the groupoid (G,-) &[G, ¢]SA.(G) (&[G, ]S a.(G)) then
&.[G, ¢] (&[G, ¢]) is closed under the operation considered. If both of these
inclusions hold then &[G, ¢] is also closed.

Theorem 4. Let (Q,-) be a quasigroup. The intersection N= A n E of
the Q-nucleus A and the &-nucleus E (for @,, where m€A) of (Q,-) is a

) By G,(G) we denote here the &,-nucleus of the groupoid (G,-).
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group (N,-) or else it is empty. The intersection N*=EnZ* of E with the
Bruck center Z* of (Q,-) is an abelian group (N*,-) or else it is empty.

Proor.%) (1) If x, y € A, then for arbitrary elements a, b(€ Q) the following
relations hold :

@) (xy-a)b=(x-ya)b=x(ya-b)=x(y-ab)=xy-ab;

B) (a-xy)b==(ax-y)b=axyb==a(x-pb)=a(xy-b);

7) ab-xy=(ab-x)y=(a-bx)y = a(bx-y)=a(b-xy),
and consequently x,y € A=>xy € A.

(1) Let x,xy€ A and a,b€ Q. Then

@) x(ya-b)=(x-ya)b=(xy-a)b=xy-ab=x(y-ab),
and cancellation of x on the left yields

ya-b=y-ab;

@) since (Q,-) is a left quasigroup, there exists a »(€Q) such that
vx=a, and thus

ay-b=(vx-y)b=(v-xy)b=v(xy-b) = v(x-yb) = vx-yb=a-yb;

y) since (Q,-) is a left quasigroup, there exists a w(€ Q) such that
wx=~>, and thus

ab-y=(a-wx)y=(aw-x)y=aw-xy=a(w-xy)=a(wx-y)=a-by,
hence x,xy€ A—>y€A.

(I;) y, xy € A=>x € A. The proof of this is similar to that of (II,).

(Ill) Let x,y€N and let @,.:q—q (q,9 € Q; m€ A). First of all we
remark that in view of g¢’=m € A and of (Il,) ¢’ € A holds for g € A. Thus
in particular x’, )’ € A. Now, if a is an arbitrary element of Q, then

@) (xyyad=xy-a'=x"yad=x(ya) =(x-ya) = (xy-a);
B) d'(xyy=d Xy =axy=(ax)y =(ax-y) =(axy);

and hence x,y€ N=>xy¢€E.

(IV,) Let x, xy€ N and a€ Q. Then by (II,) one has y € A. We have
still to show that y € E.

%) A reference to Theorem 1 would slightly shorten the proof. but for the sake of
completeness we do not make use of this.
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«) By the conditions imposed on x and on xy, and in view of the
remark made in (III) concerning the element ¢, we get

X-ya =xy-ad=(xy)a = (xy-a) = (x-yay =x'(ya),
and hence, by cancellation of X/,
(yay =ya’

#) Let {(¢Q) be an element, such that {x==a. Then #x'=a’. Taking
this into account, and making use again of the remark made in (lII), we get

a'y =tx.y=txy==t(xy)=(xy) =(xy)=(ay).
Hence x,xy € N=>y¢€N.

(IVy) y,xy € N=>x € N. The proof is similar to that of (IV,).

On the basis of (I) and of (IIl) N is closed under the operation cons-
idered ; by (II,), (IL;), (1V,) and (IV;) (N,-) has a bilateral division; as NS A
the associative law holds in (N,-); so (N,-) is a group.

(V) Let us denote by Z the center of (Q,-). Then by definition we have
Z'=ZnA. Let x,y€Z® and a€ Q. Then xy-a=x-ya=x-ay=xa-y=
=ax-y=a-xy, i.e. xy€ Z; since at the same time we have by (I) xy € 4,
the relation xy € Z* follows.

Let now x,xy€Z* and a€Q. Then x-ay=xa-y=ax-y=a-xy=
=xy-a=x-ya and cancelling x on the left we get ay=ya i.e. y€Z. On
the other hand by (IlI,) we get y€ A and so y€Z°. A similar calculation
can serves to establish y,xy€ Z*—=>x¢ Z".

We have shown that (Z*-) is an abelian group. Since by what has
previously been said (AnE,-) is a group and N*=2Z'nE=2°'n(AnkE),
(N*,-) is also an abelian group. — This completes the proof of Theorem 4.

From the proof of this theorem we can draw several consequences, e. g.
the following:

The Qa-nucleus of a right quasigroup is an associative right quasigroup,
or else it is empty. (By (1) and (ll, 2).)

The Q-nucleus of a quasigroup is a group or else it is empty. (By (l),
(I1,) and (Ily).)

The intersection of the Qa-nucleus A, with the &-nucleus (for D,., where
m € A,) of a right quasigroup is an associative right quasigroup, or else it is
empty. By (1e), (I,@), (Ille) and (IV,e).)

The intersection of the Q-nucleus A with the &-nucleus (for @,, where
m¢€A) of a right-quasigroup is an associative right quasigroup or else it is
empty. (By (1), (I1,), (Ill«) and (IV,).)
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Theorem 5. If (Q,-) is a right quasigroup and T is a permutation of
Q which is permutable with the mapping @ :x— x' (where m(€ Q) is a fixed
element) then the isotope of Q by the isotopism {§=m=1,L} is a right
quasigroup (Q, ), and &[(Q, ), Pum] =&[(Q, 0), Pui]-

PROOF. Since
(5) ax=b<=>aox=>5by (a,x,6€Q)

and § is a permutation of Q, (Q, o) is clearly a right quasigroup. Moreover
from (5) it follows in particular that

XX =m<=>x0X'=m{ (x,x’, m€ Q),
and this means that @, of (Q,-) coincides with @, of (Q, o).
Suppose now that x € & [(Q,-), @.]. Then for any a(€ Q) we have
X0t = (x' @) = (xa) {=[(xa){] = (xoa),
so that x € 8[(Q, ©), Pmc). Conversely, let x € &[(Q, ©), Pnc]. Then for any
element a(€ Q) we have
(X' @) = x'0a’ = (xo0a) = [(xa)%]) = (xa)'t,

and since { is a permutation of the set Q, x'a’=(xa)’. Thus x € &.[(Q,-), D]
If (G,-) is a group with the unit element ¢, then any permutation

¢ of G, which is permutable with @, yields a quasigroup (G,o) and
&.[(G, o), D) = Z, where Z is the center of the group (G,-). Since

Xa=ax=b<=>xoa=aox=>bf (x,a,b€Q)

the center of (G, o) is also Z. — (G, o) is in general not a group, not even
a loop. For example, let G be a cyclic group of order 4, generated by a
and define { as ef=a’, al=a, a*C=-¢, a®{ =a’. This { commutes with
@, but as the following multiplication-table shows, (G, o) has no unit element.

ol|le | a|a| at
2| a|e | a®
ala|e|a| e
e|a3|a='a
asd aslal|a e

If (Q,-) is a right quasigroup, then @, exists for any m(€Q). It is not
hard to give a necessary and sufficient condition for (Q,-) to admit a quo-
tient endomorphism for any m(€Q):
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A right quasigroup (Q, -) admits a quotient endomorphism for any constant
m(€Q) if and only if
(6) ab=ac-bd (a,b,c,d€ Q)
holds whenever ab = cd.)

Let us first suppose that for any m(€ Q) @,.:x— x’is an endomorphism,
and let ab=cd=m. Then with b=a’, d=¢’ we have ab=m =ac(ac) =
==ac-a’'¢’=ac-bd. On the other hand, if (6) is valid whenever ab = cd, then
for any mapping @, :x—x’" the relation

m=xy(xy) =xx'=xy-x'y
holds, and by the left cancellation law

(xyy =x7y.
3. Now we are going to investigate the behaviour of &-nuclei in the case
of certain groupoid constructions.
Let P=(H,-), Q=(H,0) and R=(H, x) be three groupoids defined
on the same set H. Similarly as in [6] (p. 232, N°4), we define on the set
H a groupoid S-==(H,*) with the operation

x*y==(x-y)o(x X y) (x,y € H).

We say that S is the product with respect to Q of the groupoids P and R,
and we write S= PoR.

Theorem 6. If P=(H,-), R=(H, X) are two arbitrary groupoids on
the same set H, Q= (H, o) a groupoid on H which satisfies both cancellation
laws and S PoR2% (H,*), then for any endomorphism ¢:x—x of
Q the equality M= N holds, where M % (&.[P, ¢] U &[R, ¢]) n &[S, 9] and
N4t &, [P, ¢] n&.[R, ¢]. — If, in particular, the mapping ¢ is such that there
exist elements m, n(€ H) for which the relations a-a’ =m, a X @’ = n are satis-
fied with any a(€ H), then

(&n[P, Pu) U&EL[R, Pu]) N EA[S, Pmon] = EA[P, Pn] N E[R, D).

PROOF. Let us first suppose that x ¢ M. Then the element x belongs to
at least one of the sets &,[P, ¢], &:[R, ¢]. In view of the prevailing symmetry
we may suppose that x € & [P, ¢]. Then for any a(€H) we hawe

X'#a = (xX'-a)o(x’ X @’) = (x-a)'o(x" X a’),

%) If all elements x of (Q,-) are idempotent, i. e. if for any x the equality x=x
holds, then in case ab==cd (6) is exactly equivalent to the equation of bisymmeiry

ab-cd=ac-bd
(sec e. g. [1] p. 180).
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and on the other hand
(x*a) == ((x-a)o(x X @)) = (x-a)’'o(x X a)'.
Since by hypothesis x'#a’ = (x*a)’, the relation
(x-a)'o(x’ X @) = (x-a) o(x X a)
follows, from which we obtain by left cancellation
X' X =(xXaY.

Thus x € &,.[R, ¢], and so ME N.
Conversely, let us now suppose that x € N. Then for any a(€ H) we have

x'#a' = (X' -a)o(X' X @) = (x-a) o(x X a) = ((x-a)o(x X a)) = (x*a),

and consequently x € &[S, ¢]. On the other hand x € & [P, ¢] U & [R, ¢], and
thus NE M.

In order to establish the second assertion of the theorem, we suppose
that for any a(€ H) the equalities aa’=m, a x a’=n hold. Then

a*a’ = (a-a’)o(a x @) = mon,

s0 ¢ coincides with @,, on P, with @, on R, and with @,,, on S. From
this our assertion follows by the equality M= N.

Let Q=(H, o) and R==(H, x) be two groupoids on the same set H.
We define on the set /H a new groupoid S = (H, %) with the operation

x#y=xo(xxy)  (xy€H),

and we denote it by S= HoR. The groupoid RoH is defined in an analo-
gous way. The product HoR is a special case of PoR. Indeed, let P be the
groupoid (H,-) in which x-y = x for any x, y(€H).

We remark that if Q and R are two right quasigroups, then S = HoR
foo is a right quasigroup. Indeed, when

) axx==qgo(ax x)==>b (a, b€ H),

there exists exactly one y for which aoy=2>6 and exactly one x for which
ax x=y. This x clearly satisfies (7), and is the only element having this
property.

Theorem 7. If (-=(H,o) is a groupoid which satisfies the left
cancellation law, R=-(H, x) is an arbitrary groupoid on the same set and
S % HoR 8¢ (H, %), then for any endomorphism ¢:x—x' of Q the relations

& [S, Q'"} = §, [f\); 90]
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and
&[S, gl =&[R, 9]
hold.
ProOOF. Suppose first x € &[S, ] and let a be an arbitrary element
of R. Then

x'o(x X @) = (xo(x X @)) = (x*a) = x"%a’ = x"o(x’ X a’).

By the left cancellation law
- (xxa)y =x'xa

and consequently x € &.[R,¢]. — Conversely, if x€&.[R,¢] and a is an
arbitrary element, then

(x*a) = (xo(x X @)) =x'o(x X a) =x'o(x' X ) =x"*a,

and thus x € &[S, ¢].
Similar considerations serve to establish the validity of the relation

&[S, 7] =3,[R, 9],
and so we see that the relation

&[S, 9] =8[R, 9]
also holds.
By the direct product of the groupoids P=(H,-) and R=(K, X) we
mean the groupoid S= (D, *) defined on the cartesian product D of the sets
H and K by the operation

(a, b)x(c,d) =(a-c, b xd) (a,c€H; b,deK).

Let ¢, v be single-valued mapping:s of H, K respectively into them-
selves. Then &:(x, y)— (x¢, yy) is a single-valued mapping of D into itself.
This mapping will be called the direct product of the mappings ¢ and .

Theorem 8. Let S=(D,*) be the direct product of the groupoids
P=(H,-) and R= (K, X), let ¢, y be single-valued mappings of H, K
respectively into themselves, and let 9 be the direct product of the mappings
¢ and . Then &[S, 3] coincides with the cartesian product of the sets &, [P, ¢]
and &.[R, y). Similar statements are valid for the 8- and &-nuclei.

Corollary 1. 3 is an endomorphism of S if and only if ¢ is an endo-
morphism of P and w an endomorphism of R.

Corollary 2. If ¢ = ®@,, and = D, then $ = Dy, . — S admits a
quotient endomorphism for (m, n) if and only if P admits one for m and R
one for n.
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The proof clearly follows from the equalities
[(x, ) (a, )] % = ((x-a) g, (¥ X b) ¥);
(x, ) F*(a, ) = (xg-ap, yy X by),

where the left hand sides are equal if and only if the right hand sides are
equal.

§ 5. Semi-symmetrizer nuclei.

In [7] (see N° 18.7) a semi-symmetric groupoid is defined as a groupoid
(G, ), which satisfies
Xy-x=y
for any elements x, y(€ G). Following this definition, we shall call a mapping
x—Xx of a groupoid (G,-) into itself semi-symmetric, if
xXy-x=y
for any x, y € G. Clearly, the groupoid is semi-symmetric if and only if the
identity mapping on it is semi-symmetric.
Let ¢:x—x" be a single-valued mapping of the groupoid (G,-) into
itself. The set of all elements x(€ G) for which
xa-x' =a

holds with any a in G, will be called the semi-symmetrizer nucleus (for ¢)
of (G,-), for short the S-nucleus, and it will be denoted by §[G, ¢].

EXAMPLES. (i) The mapping ¢ :x—x""' of the abelian group (G,-) is
evidently semi-symmetric and thus 8[G, ¢] = G.

(ii) Let us consider the quasigroup (K, o), over an arbitrary field (K, +, ),
defined by

xoy=ax+by-+c (a,b,c€K; as=00),

and let @,:x—x" (m¢K) be a quotient mapping of (K, o). Then by virtue

of x,=£:£:t_——_c

b we have

(xop)ox’=a(a—1)x+aby+m+ac,

which shows that §[(K, o), @.] is non-empty if and only if either a=0b=1,
c=—m or ab=1, as=1. In the first case the $-nucleus of (K, o) coincides

with K and in the second case it consists of the single element x=m.
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(iii) Let (3,-) be the multiplicative semigroup of the rational integers.
One easily sees that in this case S[(J,:),¢] coincides with the multiplicative
group of the numbers +1 and —I1.

Theorem 9. Let (G,-) be an arbitrary groupoid. Then

(e) if for a mapping ¢:x—x of (G,-) into itself the inclusion
a.(G) S 8|G, ¢] holds, then A,.(G) is an associative right quasigroup, or else
it is empty;*)

(8) if (G,-) has a semi-symmetric permutation ¢:x—x' then (G,-) is
a quasigroup;

(y) if @ is a semi-symmetric permutation of (G,-) for some m(€G)
then (G,-) is a loop;")

(9) if (G,-) is semi-symmetric, then (G,-) is a quasigroup;

(¢) if D2 A.(G)n 8(G, ¢] is non-empty, then D is an (abelian) group,
which is a direct product of groups of order 2.5)

PROOF. (a) By (I, ) in the proof of Theorem 4 d,.(G) is closed with
respect to the operation in G. If there exists an element x(€d,.(G)) such that

(8) ax=>,

(a, b arbitrary elements in &,(G)) then multiplying this equation on the right
by a’ we get ax-@’=ba’, and since a is an element of the $-nucleus, we
must have x=2>ba’. Conversely, x=>5ba’ is a solution of the equation (8),
for in view of the fact that & belongs to the &,.-nucleus, one obtains
a-ba’ =ab-a’=b.

(B) First of all we show that the mapping ¢ is an endomorphism.
Indeed, for arbitrary elements x, y(€ G) one has

(xy-x)(xy) =X,
and so
y(xy)y =x'.
Multiplying this equation by y" on the right, we get

[Yyxy)ly =XV,
(xyy =x"y.

and so

In view of
x-a'x = (ax-a)a'x' = (ax-a’)(ax) =a'=xa'-x,

7) This is a loop with the special property of Arvzy [2].
8) We include the case of a group having only one element.
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we have
) x-ax=xa-x
for any x,a € G.
Consider the equation
(10) nx==b (a, b€ G).
If x is a solution of this equation then necessarily x= ba’ holds. On the

other hand, since ¢ is a permutation, there exists an element b°(€ G) such
that (6*) =0b. Thus by the substitution x=ba" and using (9) we get

ax=a-ba’=a|(b*) a’l|=[a(b*)])a’=ab-a’=0b,

and this shows that x=ba’ is a solution of the equation (10).
Consider now the equation

(1) ya=b  (a,b€Q),

and let a*,y* be elements of G, such that (@*) =a, (y*Y =y. Then, by (9)
equation (11) yields

y=0" =I[a"0("1@) =a'[(y’)(@")]=a"-ya=a’b.
On the other hand, let y=a"b. Then
va=a'b-a=(a"b)(a’) =0,
and so we have proved solvability and the uniqueness of the solution also
for equation (11).

(y) We show that m is the unit element of (G,-). Denote by x* the
element for which (x*) =x. Since for any x(€ G) the relation xx" = m holds,

using (9) we get
XM =x-XX == X-(X") X' = x(x") : & == (x*) = x
and
mx=x"x-x==x,

(d) This is the special case of (8) in which ¢ is the identity mapping.

(¢) First we show that D is closed with respect to the operation. Let
x,y€D. Then for any a € G

(xy-a)(xy) = (x-ya)(xy) = [(x-ya)x]y=ya-y=a

holds and consequently xy € 8[G, :]. On the other hand, by (I. #) in the proof
of Theorem 4, xy € d.(G) and so xy€ D. — Since the operation is asso-
ciative in D and (D,-) is a semi-symmetrical groupoid, by (d) (D,-) is a group.
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Finally for any elements x(€¢D) and a(€G) one has xa-x=a, and
thus in particular for a=1 (=the unit element of (D,-)) x* =1. This shows
that the order of any element of D different from 1 is equal to 2, so (D,-)
is abelian and a direct product of groups of order 2.

As an immediate corollary to (¢), we get the following:

A semi-symmetric semigroup is a group, which is a direct product of
groups of order 2.°)
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