Some finite summation formulas of arithmetic character.

To Professor O. Varga on his 50th birthday.
By L. CARLITZ (Durham).

1. Put
fe=t 5 oy
(11 = ;3,(::) 7+ Ba=Ba(0),

so that B.(x) is the Bernoulli polynomial of degree n in the notation of
NORLUND [6]. Also let B.(x) denote the corresponding Bernoulli function
defined by

B.(x) =B.(x) 0=x<1), B.(x+1)=B,(x).

MikoLAs [4] has proved the elegant formula

(1.2) JE,(ax) B,(bx)dx = (—1)"‘%;)’—!(%’:—;’}) Bs,,

where (a, b), [a, b] denote, respectively, the greatest common divisor and the
least common multiple of the integers a, 5. More generally he has proved
that the HURWITZ zeta-function defined for R(s) > 1 by

r— . 1
Wil R é (x+n)’

satisfies, for R(s) > %,

(1.3) ufc(l-s. (@xE(i—s, (o ax= 2B (@ D),

where {x} =x—[x] denotes the fractional part of the real number x.
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Quite recently MORDELL [5] has proved that if fi(x), fo(%),..., fa(x) are
functions of x such that for any positive integer k there exists the relation

k-1
lx+-Ll—=C®7 b
(1.4) ;;{H k] CPfikx)  (i=1,...,n)
where C{* is independent of x, and ai, ..., a. are positive integers that are

relatively prime in pairs, then if the integrals exist

R [

0.5 * | 1
— (" O [ i)+ fu@)dx,

Ax
an,

Jax=

where A=a,a;...a,.
It is noted that both B.(x) and I(s,x) saisfy relations of the form
(1. 4). Specializing (1.5), MORDELL obtains

(1.6 |B@0B,eodi— " LG g (pigz2.

For p=g=r, (1.6) evidently reduces to (1. 2).

2. In the present note we consider in place of the integrals occurring
in (1.2), (1. 3), (1. 5), (1. 6) certain finite sums. We first prove the following

Theorem 1. Let n=1 and let ay,...,a, be positive integers that are
relatively prime in pairs and put A=aa;...a,. Let fi(x), ..., f.(x) be func-
tions of x of period 1 that satisfy (1.4). Then if k is an arbitrary positive

iﬂfegﬂ', we have
= l a ( ] ( )
;fl( lk)fz ﬁgk “.f:‘ a k

- CIO0S...C™W k-lfl (L)fﬂ (L) oo fi ('{']
1 a " g k k n k .

The proof is very similar to the proof of MORDELL’s theorem. Put

2.1)

(2.2) A=atz...a, (1=s=n), A=A,.

Then if S denotes the left member of (2.1) we get, on replacing r by
mkA,-y+r and noting that (A..1,a.)=1. so that mA,.; runs through
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a complete residue system (mod a,),
5= 3 Alagg) o) SA (e ale)-
-3 lf‘(a ) s ae) Sl ate) =
- ;a»“;f"ﬁ(a k] -f..-l(au‘_' : ,‘)f.[—,"—]= (by (1.4))
e S k)
S D)
For the final step replace r by mk-+r, where 0=m<a;, 0 =r<k. Then
omctncerl Bl )4
= ... 0 S (5 A L) -4 (%),

where we have again used (1.4) in the inner summation. This proves the
theorem.

We remark that for n=1, a, is an arbitrary positive integer.

If we divide both sides of (2.1) by k¥ and let k— oo, then provided
the limits exist it is evident that we get (1.5). We may think of (2.1) as a
finite analog of (1.5), analogous to Goop’s formula [3]

Po(x)= ——;(x+ V=1 cos 2’"] (k> n)

for the Legendre polynomial. For other formulas of ‘this kind see [1], [2].
We remark that the same argument leads to the following generalization

of (2.1).

kA-1

(2.3 'gfl(xﬂ. @ k]fe(x"{' a k) °'f"[x"+&{'i?)=
—CE P ... Clw Z;f' [a:xx+ )fs[asx,+ ) s f,{a,.x. + % ]’
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where the x; are arbitrary variables. For k==1, (2. 3) reduces to

2. 4) §fx(xl+ )fz(xz+ ) "fﬂ(xu'I'é)‘—'_
= C{* C§? ... CI fi(a1x1) fo(@2Xs) +++ fa(@nXa),

which may be compared with (1. 4).

3. We now suppose n=2 and consider first the case f(x)=Ba(X).
Changing the notation slightly, (2. 1) becomes for (a, b) =1

@.1) ;2 3-(;;;;)3“(ka—“1 ”bl'".gB‘( )B“(k)

It is convenient to consider the slightly more general sum

G.2) S == ,.,.(x)=§B. (x+%)8;[x+—,%).

Making use of (1.1) we get (as in MORDELL’s proof of (1. 6))

o u uper+o) u e+ et —1
..‘208""”!1!!!: e—HeEe—1) S Z’( (e“—l)(e'—l) P

S uv*  uv(u+ v)ed ) ( 1 ]_
@+0) 2 Smsprar= o1 ||t & 1 L i e

(utn) o
% (';t:;e:] ’uv+2§‘l(lr'v+m,r)‘=

=".§o ';jfx) e "', +v+§———(u’v+uv’)

Comparison of coefficients yields

% (m Sm—l, n(x) + nSn,a-l(x)) -
(3.3)

—en S | (e ()l S

Now it is clear form (3.2) that

-3‘1; m,n(X) =MSp-1,.n + NSm n-1;
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thus integration leads to

I Bin(kx
78..,..(x)=-—-7‘t'-“:”——)+

&) (nle e e

(3.4)

where C,, . is independent of x. But if we put x=0 and then let k— o<,
(3. 4) becomes

[Bua(3)Bu(3)dy=Cun  (m+n=2),
0

so that [6, p. 31] or [5]

(3.5) _ T L L

(m + n)!
In particular for x=0, (3.4) and (3.5) yield

] & r r B
BB
e 50525 =

Baa (m+n = 2).

ST B ia ! !
T Zz 3('?]”(':)”’ (n+n—r)k™" +(—”"'l(r:1+’:=)! o
(m+nz=2).

Returning to (3. 1), since

3 (a3 )l

we readily obtain from (3.6) the following

Theorem 2. For a,b arbitrary positive integers, k=1, m+n= 2,
K==k [a, b], we have
1 85 (ar]— (br]_
&2 B\ %) B\ %)=

i vl W Bl e

w1 min!

+ ('-'l) m Bm-l-n] .
For k= oc, it is clear that (3.7) reduces to (1.6).
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4. For the HURwiITZ zeta-function, the case n==2 of (2. 1) implies

@ Bl fisgf) o 3els Fe5)

If we recall the formula (7, p. 269]

2I°(s) ST & cos2man . Sm &, sin2man
1—s.a)=——=-{cos sin
o ) 2xy 2 i *: 2 Z 3

e ls) o, e
Gy < ¥
where the prime indicates that n =<0, then since

< k (k| m)
P emm‘_“;o (k x m),
we get

B o) 7 2

the summation extending over all m, ns~0 such that k|m+n. Then exactly
as in the proof of Theorem 2, we obtain the following

»

Theorem 3. For a,b arbitrary positive integers, k=1, K=k [a, b},
s, t complex, R(s)> 1,R(t) > 1, we have

0 e )
=M onlaH0)if2 r's)r) Tl
a't’ @x)" s m'n'

In particular for k= oo, (4. 2) reduces to

[ t1—s, {ax}) t(1—1, {bxp) =

2 @™ —On TOLO
aad 2 (27)

For s=1, the right member of (4.3) reduces to
(a,) I'’(s)

2 2s),

[a,8] (27)* W)

which is in agreement with (1. 3).

(4.3)

b)™

E(s+1) (R($)>1,R(t)>1).
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5. We remark thai
£ 1
’,(l—p,x)z-——FB,,(x) (p=1,23,...)

so that (1.6) is contained in (4. 3) and similarly Theorem 2 is contained in
Theorem 3. As pointed out by a refere, the sums

k-1

T
are generalized Dedekind sums and are closely related to the results in a
recent paper by M. MikoLAs, On certain sums generating the Dedekind sums
and their reciprocity theorems, Pacific J. Math. 7 (1957), 1167—1178.

The referee has also called the writer’s attention to another paper by
MikoLAs, Mellinsche Transformation und Orthogonalitit bei C(s, u); Verall-
gemeinerung der Riemannschen Funktionalgleichung von I(s), Acfa Sci. Math.
Szeged 17 (1956), 143—164 in which (pp. 158—159) certain formulas in-
volving {(s, u) are proved that imply both MORDELL's formula (1.6) as well
as (4.3) under the restriction

min (R(s), 1)+ min (R(t), 1) > 0.
Thus (1.6) and (4. 3) cannot be regarded as new.

Bibliography.

[1] W. A, Ac-Saiam and L. Carurz, Some finite summation formulas for the classical or-
thogonal polynomials, Rend. Mat. e Appl. (5), 16 (1957), 75—95.

[2] L. Caruirz, A formula for the product of two Hermite polynomials, J. London Math.
Soc. 32 (1957), 94—97.

[3] L. J. Goop, A new finite series for Legendre polynomials, Proc. Cambridge Philos. Soc.
51 (1955), 385—388.

[4] M. MikoL4s, Integral formulae of arithmetical characteristics relating to the zeta-function
of Hurwitz, Publ. Math. Debrecen 5 (1957), 44—53.

[5] L. J. Morpet, Integral formulae of arithmetical character, J. London Math. Soc., 33
(1958), 371—375.

[6] N. E. Norwunp, Vorlesungen iiber Differenzenrechnung, Berlin 1924,

7] E. T. Warrraker and G. N. Warson, A course of modern analysis, (4th edition) Cam-
bridge 1927.

(Received October 25, 1958.)



