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A remark on scalar valued multiplicative
functions of matrices.

To Professor Otto Varga on his 50th birthday.
By M.HOSSZU (Miskolc).

Let K. denote the multiplicative semigroup of n-rowed square matrices
over the real (or complex) field K. The mapping A—¢A of K, into K is
called multiplicative, if the equation

9(AB)=¢A9B, A BcK)

holds. M. KucHARZEWsKI [5] has proved that every mapping A —q¢A of this
form is a multiplicative function (in the usual sense) of det A. M. Kuczma
[6] has simplified the proof of M. KuCHARZEWSKI's theorem. The object of the
present paper is to prove this theorem in another way.

We shall use the well known theorem [4] that every matrix A has a
factorization A =HU, where H is Hermitian und U is unitary, hence both
factors are equivalent to diagonal matrices. On the other hand, the value of
@ is the same for equivalent matrices, just as the value of the determinant,
since

9A=9¢(BB'A)=9¢B(¢B)9yA=¢BgpAgB"' =9(BAB").

So A is a product of two function values depending on diagonal mat-
rices, hence it depends only on a diagonal matrix D having the same deter-
minant as A since also the determinant is a multiplicative function. Therefore,

considering the factorization
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where P, consists of the elements of the unit matrix, but the first and kth
rows are permuted, we get '

dh 0 oo -
0 1 0 e k=1dk ! .

gA=9D=1[]9y Sty el

= f(det D)= f(det A)
for every A€ K. .
The theorem proved above gives a possibility of axiomatizing deter-
minants without coordinates'’) by the multiplicativity and by the homogeneity:

g(AA)=2"pA, A€K, ACKY,

e.g., if K is the real field and n is odd.?)

As a corollary we get as characteristic properties of the determinant the
multiplicativity and the additivity for a column and row vector, respectively.
These properties were used by M. SToJAKoVIE 7] to characterize the determinant.
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1) The problem of characterizing determinants without coordinates has arised in [1—2].
2) J. Gispir [3] could characterize Dieudonné’s determinant over a sfield by the
multiplicativity and by the homogeneity.



