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On a generalized Pexider equation connected
with the iteration theory

By MARIUSZ BAJGER (St. Lucia)

Abstract. Let X, Y , Z be arbitrary nonempty sets. We consider the following
functional equation (iterative) of Pexider type Fst = kst ◦Hs ◦Gt for (s, t) belonging to
the domain of a binary operation on a groupoid K, where {Ft}t∈K ⊂ ZX , {Gt}t∈K ⊂
Y X , {Ht}t∈K ⊂ ZY are unknown families of functions and kst belongs to the group of
all bijections of Z onto Z. It is shown that, in the case when there exists a unit element
e ∈ K and He is an injection, Ge is a surjection, the equation can be reduced to the
Cauchy equation. Some conditions are established under which the Cauchy equation
has continuous solutions. Finally, as an application, using some facts from the iteration
theory, we give solutions of the Pexider equation in some special cases.

Notations and definitions

Let K be a nonempty set endowed with a binary operation (i.e. a
mapping of a subset D(K) of K ×K into K). The set K with the binary
operation is called a groupoid (cf. [5]). If (s, t) ∈ D(K) then we say that
the product st is defined. An element e ∈ K will be called a unit if for
every t ∈ K the products te and et are defined and te = et = t.

By In(X,Y ), (Sur(X, Y ), Bij(X, Y )) we denote the set of all injections
(surjections, bijections) of a set X into (onto) a set Y .

Ran f (Dom f) means the range (the domain) of the function f and
idX stands for the identity function on the set X.

Let X, Y be topological spaces. We say that f : X → Y is an open
map if f maps open subsets of X onto open subsets of Y . The set of all
homeomorphisms of X onto Y will be denoted by Hom(X, Y ).
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To simplify the notations, we write In X, SurX, Bij X, HomX in the
case when X = Y .

Further, by Q, R and C we will denote, as usual, the sets of rationals,
reals and complex numbers, respectively.

Let X be a subset of Rn. A family of continuous functions {Tt : X →
X, t ∈ R} ({Tt : X → X, t ∈ Q}) is said to be an iteration group (resp., a
rational iteration group) if

Ts+t = Ts ◦ Tt for s, t ∈ R (resp., for s, t ∈ Q).

If for every x ∈ X the mapping t 7→ Tt(x) is continuous then the iteration
group is said to be continuous (cf. [8] or [11]). The set {Tt(x), t ∈ R (or t ∈
Q)} is called the orbit of x.

Let K be a groupoid and X, Y , Z be arbitrary nonempty sets. We
shall consider the following functional equation of the iterative type (i.e.
the equation in which compositions of unknown functions appear)

(P) Fst = kst ◦Hs ◦Gt, (s, t) ∈ D(K),

where {Ft}t∈K ⊂ ZX , {Gt}t∈K ⊂ Y X , {Ht}t∈K ⊂ ZY are unknown
families of functions and kst ∈ BijZ for (s, t) ∈ D(K). Similar problems
have been also studied in [2], [3], [7], [10], [12], [13], [14].

Main results

Theorem 1. Let K be a groupoid such that there exists a unit element

e in K. If {Ft}t∈K ⊂ ZX , {Gt}t∈K ⊂ Y X , {Ht}t∈K ⊂ ZY satisfy the

equation (P), where kst ∈ BijZ for every (s, t) ∈ D(K) and He ∈ In(Y, Z),
Ge ∈ Sur(X,Y ), then there exist functions a ∈ In(Y,Z), b ∈ Sur(X,Y )
and a family of functions {Tt}t∈K ⊂ Y Y such that

(1) Tst = Ts ◦ Tt, (s, t) ∈ D(K)

and

(2)





Ft = kt ◦ a ◦ Tt ◦ b,

Gt = Tt ◦ b,

Ht = a ◦ Tt, t ∈ K.
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Conversely, if a ∈ ZY , b ∈ Y X , kst ∈ ZZ for (s, t) ∈ D(K) and

{Tt}t∈K ⊂ Y Y satisfies (1) then the functions Ft, Gt, Ht given by (2)
satisfy equation (P).

Proof. Put Ft =: F (t), Gt =: G(t), Ht =: H(t), kt := k(t). Setting
t = e in (P) and then s = e we get

F (s) = k(s) ◦H(s) ◦G(e), s ∈ K,(3)

F (t) = k(t) ◦H(e) ◦G(t), t ∈ K.(4)

Hence Ran(k(t)−1 ◦ F (t)) ⊂ Dom(H(e)−1). Thus we have

(5) (k(t) ◦H(e))−1 ◦ F (t) = H(e)−1 ◦ k(t)−1 ◦ F (t), t ∈ K.

Comparing the right hand sides of (3) and (4) for s = t, we obtain

(6) H(t) ◦G(e) = H(e) ◦G(t), t ∈ K.

Hence, by the relation G(e) ∈ Sur(X, Y ), we infer that Ran H(t) ⊂
Dom(H(e)−1) for t ∈ K.

Now, introduce on X an equivalence relation R:

xRy iff G(e)(x) = G(e)(y).

Let X̃ = X/R and let g be an invertible mapping such that g([x]) ∈ [x],
where [x] stands for an equivalence class containing x. Thus the function
G(e) ◦ g : X̃ → Y is a bijection. From (3) we obtain

F (t) ◦ g = k(t) ◦H(t) ◦G(e) ◦ g, t ∈ K,

whence

H(t) = k(t)−1 ◦ F (t) ◦ g ◦ (G(e) ◦ g)−1, t ∈ K.(7)

Hence (P) may be written as follows:

F (st) = k(st) ◦ k(s)−1 ◦ F (s) ◦ g ◦ (G(e) ◦ g)−1 ◦G(t)(8)

for (s, t) ∈ D(K).

By (4) and (5) we have

(9) G(t) = H(e)−1 ◦ k(t)−1 ◦ F (t), t ∈ K.
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Next (6) implies

G(t) = H(e)−1 ◦H(t) ◦G(e), t ∈ K.(10)

Define

T (t) := H(e)−1 ◦ k(t)−1 ◦ F (t) ◦ g ◦ (G(e) ◦ g)−1, t ∈ K.(11)

Hence, calculating k(st)−1 ◦ F (st) from (8) and by (9) we can write

T (st) = H(e)−1 ◦ k(st)−1 ◦ F (st) ◦ g ◦ (G(e) ◦ g)−1

= H(e)−1 ◦ k(s)−1 ◦ F (s) ◦ g ◦ (G(e) ◦ g)−1 ◦G(t) ◦ g ◦ (G(e) ◦ g)−1

= H(e)−1 ◦ k(s)−1 ◦ F (s) ◦ g ◦ (G(e) ◦ g)−1 ◦H(e)−1 ◦ k(t)−1

◦ F (t) ◦ g ◦ (G(e) ◦ g)−1

= T (s) ◦ T (t).

Then (1) holds, where Tt := T (t), t ∈ K. By (7) and (11) we have

H(t) = H(e) ◦ T (t), t ∈ K(12)

and from, (12) and (10),

G(t) = T (t) ◦G(e), t ∈ K.(13)

Substituting (13) into (4) we obtain

F (t) = k(t) ◦H(e) ◦ T (t) ◦G(e), t ∈ K.(14)

Putting a := H(e), b := G(e) we get from (14), (13) and (12) the for-
mula (2).

The converse statement is easy to check.

Remark 1. As an immediate consequence of Theorem 1 we have The-
orem 1 from [3] concerning the solutions of the equation

Fst = Hs ◦Gt, (s, t) ∈ D(K).

To see this it is enough to take ks = idZ for s ∈ K in formulas (2).

Let X, Y be topological spaces. Let f ∈ Sur(X,Y ) and R be an
equivalence relation on the space X defined by

xRy iff f(x) = f(y).
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Denote by X/R the quotient space X/R endowed with the usual quotient
topology i.e. the final topology determined by the canonical surjection
k : X 3 x 7→ [x] ∈ X/R (cf. e.g. [6]). Let g be an invertible map such that
g([x]) ∈ [x]. Define a map f̃ : X/R → Y putting f̃ = f ◦ g. It is easy to
see that f̃ is a bijective map.

Using the obvious fact that k is a continuous map, one can easily show
the following Lemma (see e.g. [6], Chap. 7).

Lemma. If the map f is continuous (resp., open) then the map f̃ is
continuous (resp., open).

Let K be a group with a unit element e and X, Y , Z be arbitrary
topological spaces and let {Ft}t∈K ⊂ ZX , {Gt}t∈K ⊂ Y X , {Ht}t∈K ⊂ ZY .
Assume the following hypotheses:
(a) Ht is a continuous map for t ∈ K and He is an open map;
(b) Gt is a continuous map for t ∈ K and Ge is an open map;
(c) Ft is a continuous map for t ∈ K, Fe is an open map and He is a

continuous open map;
(d) Gt is a continuous map for t ∈ K and Ge, He are open maps.

Proposition. Let {Ft}t∈K ⊂ ZX , {Gt}t∈K ⊂ Y X , {Ht}t∈K ⊂ ZY

be families of functions satisfying the equation (P) for s, t ∈ K, where
kt ∈ HomZ for t ∈ K. Suppose that He ∈ In(Y, Z), Ge ∈ Sur(X, Y ). If
one of the hypotheses (a), (b) or (c) holds then there exist a ∈ In(Y, Z),
b ∈ Sur(X,Y ) and a family of mappings {Tt}t∈K ⊂ Hom Y satisfying
equation (1) for s, t ∈ K such that (2) holds.

Moreover, if the hypothesis (c) holds then the families {Ft}t∈K ,
{Gt}t∈K , {Ht}t∈K are families of continuous mappings.

Proof. Note that by the proof of Theorem 1, we obtain (cf. (14))

(15)





Ft = kt ◦He ◦ Tt ◦Ge,

Gt = Tt ◦Ge, for t ∈ K,

Ht = He ◦ Tt,

where {Tt}t∈K ⊂ Y Y satisfies (1) for s, t ∈ K.

Thus it suffices to prove that Tt is a homeomorphism for every t ∈ K
and {Ft}t∈K , {Gt}t∈K , {Ht}t∈K are families of continuous mappings in
the case (c).

Let % be an equivalence relation on the topological space X defined
by:

x%y iff Ge(x) = Ge(y).
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Denote by X̃ the quotient space X/% endowed with the quotient topology.
Let g be an invertible mapping such that g([x]) ∈ [x]. Define the maps
G̃t : X̃ → Y and F̃t : X̃ → Ran Ft setting

G̃t = Gt ◦ g, F̃t = Ft ◦ g

for t ∈ K. Substituting in (P) s = e and then t = e we get respectively:

Ft = kt ◦He ◦Gt, t ∈ K,(16)

Fs = ks ◦Hs ◦Ge, s ∈ K.(17)

Comparing the right hand sides of (16) and (17) for s = t we have

He ◦Gt = Ht ◦Ge, t ∈ K.(18)

Note that by (15) we get

Tt = H−1
e ◦Ht, t ∈ K.(19)

Setting t = e in (19) we obtain

Te = idY .(20)

Using (20) and the fact that {Tt}t∈K satisfies (1) for s, t ∈ K one can easily
check (cf. e.g. [15], Remark 1, p. 218) that Tt is a bijection for t ∈ K. By
virtue of (18) and (19) we have

(21) Tt = G̃t ◦ (G̃e)−1, t ∈ K.

Having disposed of the preliminary steps, we proceed to investigate the
three cases separately.

First assume that hypothesis (a) holds. Then the map He : Y →
RanHe is a homeomorphism. Thus, by (19), we get the continuity of the
map Tt for every t ∈ K.

Suppose that hypothesis (b) holds. By the Lemma, the map G̃e is a
homeomorphism. Fix t ∈ K, t 6= e. On account of (18) and (19) we have
Gt = Tt ◦ Ge. Whence Gt is a surjection. From (19) we deduce that the
function Ht is an injective map. Hence, by (18), we obtain

Gt(x) = Gt(y) iff Ge(x) = Ge(y), x, y ∈ X.

Consequently, by the Lemma, G̃t is a continuous map. Now (21) implies
the continuity of Tt.
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Finally suppose that hypothesis (c) holds. On account of (16) we get

Gt = H−1
e ◦ k−1

t ◦ Ft, t ∈ K.

Hence Gt is a continuous map for t ∈ K. Moreover Ge is an open map
since Fe is an open map and He : Y → RanHe is a homeomorphism.

By the Lemma, the bijective map G̃e is a homeomorphism. From (17)
and the injectivity of Ht we infer that F̃t : X̃ → RanFt is a bijective map
for t ∈ K and in view of the Lemma, F̃t is continuous. Now note that (17)
yields

Ht = k−1
t ◦ F̃t ◦ (G̃e)−1, t ∈ K.

Consequently Ht is a continuous map for t ∈ K. This implies, by (19), the
continuity of Tt for t ∈ K.

To finish the proof, observe that Tt is a homeomorphism for t ∈ K,
since (Tt)−1 = Tt−1 and each Tt is a continuous function.

Remark 2. From the above proof, one can see that when the hypothe-
sis (a) holds, it suffices to assume that K is a groupoid with a unit element
e ∈ K, to obtain the continuity of Tt for t ∈ K.

Applications

Using the above results and some facts from the iteration theory we
will solve the Pexider functional equation

(22) Fs+t = ks+t ◦Hs ◦Gt, s, t ∈ R,

(or s, t ∈ Q), where {Ft}, {Gt}, {Ht} are unknown families of functions
which map a real interval (or the unit circle, or a subset of Rn space)
into itself and kt is a homeomorphism for t ∈ K. More precisely, we shall
show under some additional assumptions, that the functions Ft, Gt, Ht

satisfying the above equation, are conjugate (in some sense) with some
special families of functions.

Theorem 2. Let ∆ be either a real open interval or the unit circle,

{Ft}t∈R, {Gt}t∈R, {Ht}t∈R be families of functions mapping ∆ into ∆
and satisfying the functional equation (22),where kt ∈ Hom ∆ for t ∈ R.

Suppose that H0 ∈ In ∆, G0 ∈ Sur ∆, the function t 7→ Ht(x) is continuous
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for every x ∈ ∆ and H0(x) 6= H1(x) for x ∈ ∆. If one of the hypotheses
(a), (c) or (d) holds then there exist a ∈ In∆, b ∈ Sur∆ such that

(23)





Ft = kt ◦ a ◦ ϕ−1 ◦At ◦ ϕ ◦ b,

Gt = ϕ−1 ◦At ◦ ϕ ◦ b,

Ht = a ◦ ϕ−1 ◦At ◦ ϕ, t ∈ R,

where, in the case where ∆ is a real open interval, ϕ is a homeomorphism
of ∆ onto R and At(x) = x+ t for x, t ∈ R and, in the case where ∆ is the
unit circle, ϕ is a homeomorphism of ∆ onto ∆ and At(x) = e2πiαtx for
x ∈ ∆, t ∈ R and some α ∈ R.

Conversely, if a ∈ ∆∆, b ∈ ∆∆, kt ∈ ∆∆, t ∈ R are arbitrary functions,
ϕ is a bijection of ∆ onto R (or ∆ onto ∆), {At}t∈R is a family of functions
mapping Ran ϕ into Ranϕ and satisfying the Cauchy equation (1) for
s, t ∈ R, then the functions Ft, Gt, Ht given by (23) satisfy the Pexider
equation (22).

Proof. Note that on account of the Proposition we have the repre-
sentation

(24)





Ft = kt ◦ a ◦ Tt ◦ b,

Gt = Tt ◦ b,

Ht = a ◦ Tt, t ∈ R,

where {Tt}t∈R is an iteration group on ∆ such that Tt ∈ Hom∆ for every
t ∈ R. Moreover, by (19), the mapping t 7→ Tt(x) is continuous for every
x ∈ ∆ and T1 has no fixed points.

Suppose first that ∆ is a real open interval. It is well known (see [9],
Th. 6 or [11], p. 99) that such a continuous iteration group {Tt}t∈R is
conjugate with the group of translations Pt(x) = x+ t; that is there exists
a homeomorphism η : ∆ → R such that

(25) Tt = η−1 ◦ Pt ◦ η, t ∈ R.

Now, assume that ∆ is the unit circle i.e. ∆ = {z ∈ C : |z| = 1}. Then
by Theorem 2 in [15], which states that every continuous iteration group
of the homeomorphism T1, such that T1 has no fixed points or T1 = id∆,
is conjugate with a group of rotations of the circle Qt(x) = e2πiαtx for
some α ∈ R, we infer that there exists a homeomorphism ψ : ∆ → ∆ such
that

(26) Tt = ψ−1 ◦Qt ◦ ψ, t ∈ R.
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Finally, substituting (25) and (26) into (24) respectively, we obtain
the required formulae (23).

The converse statement is easy to check.

Under a stronger regularity assumption i.e. assuming the continuity
of the function (x, t) 7→ Ht(x), it is possible to obtain similar results in the
multi-dimensional real case, namely:

Theorem 3. Let D ⊂ Rn be a nonempty set and {Ft}t∈R, {Gt}t∈R,
{Ht}t∈R be families of functions mapping D into D, satisfying the Pexider
equation (22), where kt ∈ Hom D for t ∈ R, and such that H0 ∈ In D, G0 ∈
Sur D. Suppose that for every x ∈ D, t ∈ R the mapping (x, t) 7→ Ht(x) is
continuous, Ht(x) 6= H0(x) for x ∈ D, t 6= 0 and there exists a hypersurface
Γ ⊂ D homeomorphic to Rn−1 such that H0(Γ) has exactly one common
point with every orbit of {Ht, t ∈ R}. If one of the hypotheses (a), (c)
or (d) holds, then there exist a ∈ InD, b ∈ Sur D and a homeomorphism
ϕ : Rn → D such that (23) holds, where {At, t ∈ R} is the one-parameter
group of translations i.e. At(x) = x + tα for t ∈ R, x ∈ D and an α ∈ Rn,
α 6= 0.

Conversely, if a ∈ DD, b ∈ DD, kt ∈ DD for t ∈ R are arbitrary
functions, {At}t∈R is a family of functions satisfying the equation (1) for
s, t ∈ R, ϕ is a bijection from Rn onto D then the functions Ft, Gt, Ht

given by (23) satisfy the equation (22).

Proof. We shall use a result of M. C. Zdun ([17], Th. 1) which
states that the iteration group {f t}t∈R defined on D ⊂ Rn, such that the
mapping (x, t) 7→ f t(x) is continuous, is given by the formula

f t(x) = ϕ−1(ϕ(x) + αt), t ∈ R, x ∈ D,

where ϕ : Rn → D is a homeomorphism, iff f0 = id, f t(x) 6= x for
x ∈ D, t 6= 0 and there exists a hypersurface Γ ⊂ D homeomorphic to
Rn−1 which has exactly one common point with every orbit of {f t, t ∈ R}.

By the Proposition we have the representation (24), where {Tt}t∈R is
an iteration group. Moreover T0 = idY , Tt(x) 6= x for x ∈ D, t 6= 0 and, by
(19), the mapping (x, t) 7→ Tt(x) is continuous since the mappings (x, t) 7→
Ht(x) and H−1

0 are continuous. Now, observe that by the injectivity of
H0 and (19) we can infer that the intersection Γ ∩ {Tt, t ∈ R} is a single
element set for every orbit of {Tt, t ∈ R}. Thus, by the mentioned theorem
of M. C. Zdun, we obtain

(27) Tt = ϕ−1 ◦At ◦ ϕ, t ∈ R,
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where ϕ : Rn → D is a homeomorphism and At(x) = x + αt for t ∈ R,
x ∈ D and some α ∈ Rn, α 6= 0. Substituting formula (27) into (24) we
get (23), as claimed.

Checking the converse statement is a mere calculation.

Finally, we shall show that in the case where the families {Ft}, {Gt},
{Ht} mapping a real open interval into itself and satisfying the Pexider
equation are indexed by rationals, we do not need any regularity assump-
tions to obtain representations like (23). More precisely, the following
result holds:

Theorem 4. Let I be a real open interval and {Ft}t∈Q, {Gt}t∈Q,
{Ht}t∈Q be families of functions mapping I into I and satisfying the equa-
tion

(28) Fs+t = ks+t ◦Hs ◦Gt for s, t ∈ Q,

where kt ∈ Hom I for t ∈ Q. Suppose that H0 ∈ In I, G0 ∈ Sur I and
H0(x) 6= H1(x) for x ∈ I. If one of the hypotheses (a), (b) or (c) holds
then there exist a ∈ In I, b ∈ Sur I such that

(29)





Ft = kt ◦ a ◦ γ−1 ◦Bt ◦ γ ◦ b,

Gt = γ−1 ◦Bt ◦ γ ◦ b,

Ht = a ◦ γ−1 ◦Bt ◦ γ, t ∈ Q,

where either {Bt}t∈Q is the group of rational translations and γ is a home-
omorphism mapping I onto R, or {Bt}t∈Q is a special rational iteration
group of piecewise linear homeomorphisms mapping I onto I and γ is a
homeomorphism of I onto I.

Conversely, if a ∈ II , b ∈ II , kt ∈ II for t ∈ Q are arbitrary functions,
γ is a bijection mapping I onto I (or I onto R) and {Bt}t∈Q is a family
of functions mapping Ran γ into Ran γ satisfying the Cauchy equation (1)
for s, t ∈ Q, then the functions Ft, Gt, Ht given by (29) satisfy the Pexider
equation (28).

Proof. By the Proposition we get the representation (24), where
{Tt}t∈Q is a rational iteration group. Observe that by (19), T1 has no
fixed points since H0(x) 6= H1(x) for x ∈ I. Consequently for every t ∈ Q,
Tt has no fixed points (see e.g. [1]). Now consider the set L(x) of the limit
points of the orbit {Tt, t ∈ Q}. In paper [16](Th. 1) (see also [18], Prop. 1)
it has been proved that the set L(x) does not depend on x. Denote this



On a Generalized Pexider equation . . . 87

set by L. Further, either
1) L = cl I or
2) L is perfect and nowhere dense in I.
In case 1) the rational iteration group {Tt}t∈Q can be embedded in a

real iteration group (see [16], Th. 4) which is conjugate with the group of
translations. Thus, there exists a homeomorphism ϕ : I → R such that

(30) Tt = ϕ−1 ◦At ◦ ϕ, t ∈ Q,

where At(x) = x + t, x ∈ I, t ∈ Q.
In case 2), by Theorem 2 in [4], the rational iteration group {Tt}t∈Q

is conjugate with a special rational iteration group {pt}t∈Q of piecewise
linear, fixed-point-free homeomorphisms. More precisely, there exists a
homeomorphism ψ : I → I such that ψ(x) = x for x ∈ L and

(31) Tt = ψ−1 ◦ pt ◦ ψ, t ∈ Q.

Substituting (31) and (30) into (24) we obtain the desired formulae.
The converse statement is easy to check.

Remark 3. The iteration group {pt, t ∈ R (or t ∈ Q)} has been
constructed and examined by M. C. Zdun in [18] (see also [4]).

Acknowledgement. I wish to thank the referees for their valuable com-
ments and suggestions.
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Springer-Verlag, Berlin–Heidelberg–New York, 1985, pp. 218–231.

[16] M. C. Zdun, On the orbits of disjoint groups of continuous functions, Rad. Mat.
8/1 (1992).

[17] M. C. Zdun, On continuous iteration groups of fixed-point free mappings in Rn

space, European Conference on Iteration Theory (Batschuns, 1989), World Sci.
Publishing, River Edge, NJ, 1991, pp. 362–368.

[18] M. C. Zdun, The structure of iteration groups of continuous functions, Aequationes
Math. 46 (1993), 19–37.

MARIUSZ BAJGER
DEPARTMENT OF MATHEMATICS
THE UNIVERSITY OF QUEENSLAND
ST. LUCIA 4072
AUSTRALIA

(Received September 13, 1994; revised May 22, 1995)


