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§ 1.

The most customary manner for introducing the direct product <A, of
the abstract algebras A, is the following: we form the set-theoretical product
of the sets A, and we define the operations component-wise. (The notion
,,direct product” will mean always the unrestricted or complete direct product.)
If each algebra A4, has a unit element e, then there is also an inner charac-
terization of this concept which proceeds by identifying the element a€ A,
with the element of XA, which has a as its 2-component and any other
component of which is the respective unit element. Thus we got the algebra
X A, as the direct product of certain of its subalgebras.

In more recent investigations there arose also other ideas for the inner
characterization of this concept. The definition by a system of endomorphisms
appeared to be reasonable for abelian groups in the papers [6] (p. 311) and
[4] (p. 159) of T. SzeLg, J. Szenprel and A. KerTEsz. The two manners of
introduction mentioned above are in the following connection: we consider
in the direct product XA, the endomorphism & which assignes to each
a¢ x A, the i-component of a (for any 2).

Another possibility is touched in G. BIRKHOFF’'s book ,Lattice theory”.
He wants to give a connection between congruence relations and direct decom-
positions into a finite number of algebras in a theorem of his book ([2] p. 87,
Theorem 4; cited in [5] p. 211 and [3] p. 87), however, this theorem is not
correct. A similar (but true) result is due to J. HasHimoTo ([3], p. 96) for
an infinity of factors. The fundamental idea is to define the congruence rela-
tion ¢, by the rule: a=5 (mod ¢z) holds if and only if @ and & have the
same A-component.

In §2 we define certain systems of congruence relations and certain
sy stems of endomorphisms in an algebra A; these systems can serve for cha-
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racterizing the direct decompositions of A. These systems will be the (§C)-
systems of congruence relations and the (JO8C)-systems of endomorphisms.
The § 3 is devoted to elucidate the connection among the three manners: in
Theorem 1 we investigate the many-one correnspondence between the (8C)-
systems of congruence relations and the corresponding systems of subalgebras,
the Theorem 2 states that there is a natural one-one mapping between the
(JO8C)-systems of endomorphisms and the (8C)-systems of congruence relations.

It seems that the characterization by congruence relations has the great-
est importance from universal-algebraic point of view: it can be extended
for algebras without unit element, and it can be modified into inner charac-
terization of subdirect products (see [3]). In § 4 we investigate two automorph-
ism groups of an algebra A which leave fix (in different senses) an ($C)-
system of congruence relations of A. Theorem 3 contains a result about the
embedding of the stricter group into the wider one, and determines the stricter
automorphism group. This theorem in an analogon of the earlier results of
[1], so we can omit the details of the proof in consequence the analogy. § 5
contains a counter-example (due to L. Fucus and G. SzAsz) disproving the
statement mentioned above of BIRKHOFF.

§ 2.

The notion of algebra is defined in [2] or [3]. The assumption that the
operations are finitary is not necessary for us. The element e is called the
unit element of the algebra A if it forms a subalgebra of A and any other
subalgebra of A contains at least two elements. The existence of a unit ele-
ment assures that we can speak about a null endomorphism (denoted by o) of A.

The bracket in an expression of the form {o,} denotes that the index
4 runs through a set A (of arbitrary cardinality), this set of indices is sup-
posed to be the same throughout the paper. We make no distinction between
the systems of congruence relations {¢i} and {e;} of there is a permutation
A—4" of A such that g, =g3 holds for any 4. If ¢ is a congruence relation
and « is an automorphism of A, then o« means the congruence relation
defined by the rule: a=¥& (mod ¢e) if and only if ae'=bea' (mod o).

We define the following two properties for systems of congruence
relations:

(8) (Property of separability.) If a=& (mod ¢,) holds for any
A€Ad (a,beA), then a=0b.")

1) This property occurs frequently in the lattice-theoretical form [ ¢, =0. (Cf. [2},
31 [51) Mgt
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© (Property of completeness.) Any system of congruences of
the form x=a, (mod g;) has a solution in A (4 runs through 4,
the a,’s are arbitrary elements of A).

A system of congruence relations having the properties (8) and (C) is
said to be an (8C)-system. We shall use similar notations also for other col-
lections of properties.

For any endomorphism & of A the congruence relation o[s] defined by
a=b (mod ¢[¢]) if and only if ae=bs (a, b€ A) is called the congruence re-
lation induced by s. We define the equality between systems of endomorphisms
similarly to the equality of systems of congruence relations. The system of endo-
morphisms {&} is said to have the property (8) if the congruence relations
induced by the &’s form an (8)-system. Similarly, we define the completeness
of a system of endomorphisms by the completeness of the congruence rela-
tions induced by them. (One can get easily a direct definition.)

We define two further properties for systems of endomorphisms; the
property (©) is defined only in algebras containing a unit element.

)] (Property of idempotency.) s — s holds for any endomorph-
ism of the system.

©) (Property of orthogonality.) If & and &, are distinct endo-
morphisms of the system, then & &, =o.

If some congruence relations form an ($C)-system {g.} of A, the A is
said to be the direct product of the factor algebras A/pi. If A has a unit
element e, then let us define the subalgebras A, of A by what follows: a€ Ax
if and only if xs=4 implies a=e (mod ¢.) (« € 4). These Ax’s are called
the subalgebras corresponding to the o,’s.

§ 3.

Throughout this § A denotes an algebra containing & unit element e,
and any factor algebra A/g, must contain at least two elements.

Theorem 1. Lef {0:} and {03} be two (8C)-systems of congruence re-
lations of A, let {A.} and {Ai} be the systems of corresponding subalgebras,
respectively. If {A.} and {A:} coincide, then there exists exactly one automorph-
ism « of A leaving fixed any element of each A for which

(1 {era} = {ef}
holds. Conversely, if e satisfies (1) and leaves fixed all elemenis of the A)’s,
then the systems {A\} and {Ai} are the same.
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The proof of the theorem will consist of four parts A), B), C) and D).
In parts A), B), C) the first statement of the theorem will be verified, and
we shall prove in D) the converse statement. In part A) the automorphism «
will be constructed, in B) we shall show that « has the properties exposed
in the theorem, and in C) the unicity of « will be verified.

A) Let {A;} ={Ai} be true for the (8C)-systems {0,} and {¢;}. The
equality exposed means that A,—=A" holds for any 4 where A—1" is a
suitable permutation of 4. The fundamental idea of the construction is to
define the ,,components” a;, of an element a € Ay (any a, lies in A;), and to
form a new element ae (€ A) by these components regarded as the elements
of the A}’s.

Let us consider the mapping « defined by

ae=a, (mod ¢j’) for any 4,
where the a,’s are determined by the congruences
(2) a,=a (mod g,) forthe considered 4 and a»=e(mod o,) if (43)u+14,

In order to show that « is an automorphism let us consider the map-
ping 8 which assignes to any a(€ A) the system of the a;’s; £ is an isomorph-
ism of A onto the (external) direct product of the A,’s. The mapping y
which assignes to a the system of its components aj defined by

a5 =a (mod ¢;)
and
a,=e(modg;) for wu=£4,
is also an isomorphism onto the same structure. Now, we have ¢ = fi .

B) If a € A;, then

(3) p=4 implies a=e(mod g,), therefore a,=a holds, and u=+1

implies a,=e. Thus we have the congruences
ae=a (mod ¢}’)
and
ae=e(modg;) if usEA

(by the definition of «). The congruences (3) assure that u=£2" implies
a=e (mod g;), therefore we have ae=a(modpe;) for every »¢€ 4 and
this means that a(€A,) is fixed by e.

The following statement (ii) is obviously equivalent to those under (i)
and (iii) for any pair of elements a€A, b€ A and for an arbitrary 4:

(i) a == b (mod g,)
(i1) a=0b,
(iii) ae = bea (mod oi')

what means that (1) holds.
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C) The equality {0 @,} = {0 @} is equivalent to {ox @ @) = {0:}. There-
fore, the unicity of « will be proved if we show that e=&¢ implies {e\}
# {ora}. (¢ must satisfy the condition of fixing,”) ¢+ denotes the identical
automorphism of A). We shall give an indirect proof. Let the equivalence of

a=b(mod ;)
and ae=bea (mod gx)

be true for a suitable permutation A—4" of 4. We are going to show that « == .
By the condition of fixing, if a s (mod ¢,), and u= 4 implies a=e (mod ¢,),
then a=aase(modey), and u=41" implies a=ae=e(mod g.). This
means that as~e, a € A, imply that a € Ay, thus 4—2" is the identical per-
mutation of 4. Let a be an arbitrary element of A. For any index 4 the
congruence a==a, (mod ¢;) holds (where a, is constructed by the rule (2)).
Therefore we have ae=a,e (modg,). But a@ye=a,, so aa=a (mod g,)-
This is true for every 4, thus eae=a.

D) If a € A, then u 5= 4 implies a = e (mod ¢,.), therefore a==e (mod ¢, «),
thus » = 41" implies a=e (mod ¢;), what means a € A}.. The proof of A, & A}
is completed by the argument that 4" is the same index for each element of
A,. The inverse inclusion A,=2Aji can be verified by a similar inference,
starting with the form {o.} = {oia*} of (1).

Theorem 2. Let us consider the mapping which assignes to any (8C)-
system {&} of endomorphisms of A the ($C)-system of congruence relations
induced by the &’s. The domain of values of this mapping is the collection
of every (8Q)-system of congruence relations. If we restrict our attention only
to the (9O8C)-systems of endomorphisms, then the mapping mentioned above
becomes an one-to-one correspondence, the domain of values remains unchanged.

PROOF. Let {0:} be an (8C)-system of congruence relations. Let us define
the system of endomorphisms {&} by what follows:

as,=a(modg,), and =24 implies a&=e (mod g,).

One can easily prove that {&} is an (JO)-system which induces {¢.}.

Thus we have got that every (8C)-system of congruence relations is
induced by at least one (JO8C)-system of endomorphisms. We are going to
prove that two distinct (JO8C)-systems cannot induce identical congruence
relations. This can be done by elaborating the following principle: for any
(JO8C)-system {s,}, if we regard the induced (8C)-system {o[e]} of con-
gruence relations, and construct an (JOS&C)-system {&i} by the procedure seen

?) I e. a leaves fixed any element of each Aa.
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in the beginning of the proof, then {&}={&{}. In fact, for arbitrary a€¢ A
and 4 € 4 we have (a&)& = as, therefore

as,=a=as (mod ¢[&))
and A u € 4 implies (a&)s. =a (e 8.) =e, therefore

as,=e=as, (mod ¢ [&,]);
thus a& =ae;.

Corollary. For any (8C)-system {&} of endomorphisms there is exactly
one (JO8C)-system {&i} of endomorphisms such that the two systems induce
identical congruence relations. The &’s can be characterized by the equalities

(aei)&n==a&, and (ae)e,—e for any p=A.

§ 4.

In this § we do not suppose the existence of a unit element.

Let A be the direct product of its factor algebras A/g,. We shall define
the following two subgroups G,< G, of the group G of the automorphisms
of A. The automorphism « belongs to G, if and only if for each 4 € 4 there
exist indices u, % € 4 such that p,e =9, and gra'=09,; e € G, if and only
if op@=g, for any 1€ 4.

Theorem 3. G, is a splitting Schreierian extension of G, by an (un-
restricted) direct product of symmetric groups. G, is isomorphic to the (unre-
stricted) direct product of the automorphism groups of the algebras A/p,.

PROOF. If the automorphisms @i (4 € 4) of A are such that g,a; = ox
where 4—4" is a permutation of 4, then the mapping a— ae defined by
ae=aa,(mod ¢») (for any 1) is an automorphism of A.%)

Any automorphism « € G, of A induces a permutation 2—21" of the
index set 4 defined by g.e =g¢x. 4 splits into equivalence classes (4 and A’
are equivalent if and only if A/e: and A/g, are isomorphic). Any permutation
@ of A such that for any 4€ 4, A& and 4 belong to the same class, is in-
duced by some @ (by the first sentence of the proof). The mapping e—a
is a homomorphism of G, with kernel G, onto the group G, formed by the
induced permutations of 4. G, is obviously the direct product of the sym-

8) E. g. for the operation a- b of two variables we have
(@-b)e=(ab)a -~ (aa) (ba)) = (aa)-(ba) (mod ¢,.)

for any 4. The inverse mapping canbe given by ae™' =aa;' (modg,). Indeed, this defi-
nition of @' implies aa™' a, = a(mod ¢,)), s0 aa™'e=a(mod g,,) for each A.
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metric groups of the equivalence classes of 4. Our following aim is to con-
struct a subgroup H of G, for which G,= G,H and G,n H=1 hold. Such
a subgroup can be given by defining a transitive system of isomorphisms
¥, 22 among the Afe,’s in any equivalence class of 4. For any element @ of
G,, we define an automorphism «* of A by the inclusions

ac* € a* @a,2a (4 runs through A)

where a* denotes the congruence class containing a modulo .. The e*'s
form a subgroup H with the required properties.

Every element of G, induces an automorphism in any A/g,. Thus we
have a hormomorphism of G, into the direct product X G, of the automorph-
ism groups of the A/o)'s. If @ and @ are distinct elements of G,, then we
have ae s apf(modg,) for some a€ A and Z¢ 4, therefore the mentioned
homomorphism is an isomorphism. Our last aim is to prove that this isomorph-
ism maps G; onfo XG,. Let @ be an element of G, for each 4, then for
any a € A the system of inclusions

ae€ata (4 runs through A)

has exactly one solution ‘n A. The mapping a—ae is an automorphism of
A inducing the prescribed ay’s.

§5.

G. BIRKHOFF states on the page 87*) of his book [2] that the represen-
tations of an algebra A as a direct union A=A, X...x A, correspond
one-one with the sets of permutable congruence relations 6,,...,0, on
A satisfying 6,n...n60,=0 and (6, n...n6.1)ub:=1 (i=2,...,7r). The
proof of this theorem contains an incorrect step. One can apply the lemma
(exposed on the same page) only in the case if €,n---n6,, is permutable
with 6;. This assumption is, however, not fulfilled in general, because it is
not implied by the congruence relations 6,,86,,---,6, being pair-wise per-
mutable.

Professor L. FucHs and Dr. G. SzAsz have kindly communicated their
counter-example disproving the theorem of BIRKHOFF. Let A be a semigroup
containing 7 elements denoted by (0,0, 0), (0,0, 1), (0, 1,0), (0, 1, 2), (1,0, 0),
(1,0,2), (1,1,1). The operation is defined by the rule xy=x for any pair
x€A, y€A. So every equivalence relation in A is a congruence relation. Let
the congruence relations 6,, 6;, 6; defined by what follows: x=y (mod 6,)

4) Page 131 of the Russian edition.

D21
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if and only if the i-th component of x is equal to the i~th component of y
(x€A, y€A, i can be 1, 2 or 3). Then we have

6j9k=0_fu 6k=0;.6_,-=l if jo&k,

and (6;n6)u b, =1 if j, k[ are distinct. But A is obviously not isomorphic
to the direct product of its factor semigroups A/6,, A/6, and A/6,.
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