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On algebraically closed modules.

To Professor O. Varga on his 50th birthday.
By ZOLTAN PAPP (Debrecen).

§ 1. Introduction.

The concept of algebraically closed module, defined by A. KERTESz
[4], coincides with the concept of injective module, which plays an important
role in homological algebra.!) In [4] KERTESZ studies the properties of such
modules, and it is apparent from his results that they constitute a natural
generalization of algebraically closed (in other terminology divisible) abelian
groups. In most cases he finds that the corresponding generalizations of
theorems on algebraically closed groups hold true for algebraically closed
modules.

However certain results do not retain their validity in the theory of
algebraically closed modules over arbitrary rings. For instance, any discrete
direct sum of algebraically closed groups is algebraically closed, but as
KERTESZ shows in [4] this no longer holds for algebraically closed modules
over an arbitrary ring. He therefore raises the following problem: what rings R
have the property that any disrete direct sum of algebraically closed R-
modules is algebraically closed. In §3 of the present paper we show that
this, and also that certain other module-theoretic properties, are characteristic
of Noetherian rings.

In §4 we study the structure of algebraically closed modules over
Noetherian rings. First we give another characteristic property of Noetherian
rings, proving that any algebraically closed R-modules is a disrete direct
sum of minimal algebraically closed R-modules if and only if R is Noetherian;
then we characterize the minimal algebraically closed R-modules in terms of
the left ideals of R*. This enables us to give a complete set of invariants
for any algebraically closed module over a Noetherian ring.

Finaily we give a necessary and sufficient condition that two modules
over a Noetherian ring have isomorphic algebraic closures.

1) For terminology and notation see § 2. — In the literature the concept of injective
module is mostly defined in the case unitary modules. (See for instance CArtan—EiLenBERG [2].)
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§ 2. Preliminaries.

The reader is referred for the most of the module-theoretic concepts
used in the sequel, and in particular for that of a system of equations over
an R-module, to the paper [4] of KERTESZ. Here we give only those con-
cepts and results which are fundamental to our investigations.

A ring R is called Noetherian if it satisfies the ascending chain condi-
tion for left ideals, i. e. if every ascending chain of left ideals of R contains
only a finite number of different members. It is well known that this is
equivalent to the condition that every left ideal in R has a finite number
of generators.

The theory of modules over an arbitrary ring R may be reduced in
almost every respect to the theory of unitary modules over the Dorroh-
extension R* of R. See KERTESz [3], [4]. The ring R* consist of all pairs
{r,n> (r€R; n€ &, & being the ring of the natural numbers) with the follow-
ing operations:

{ryn>+<s,mp=<r+s,n+m)
{r, s, my=<{rs+ns+mr, nm»

Thus R* has <0, 1> as identity; further R is an ideal of R* and every left
ideal of R is also a left ideal of R".

It is easy to see that any R-module G can be considered as a unitary
R-module with the operation

{rnnyg=rg+ng (g € G).

By a direct sum ZA;=A;+ -+ Ai+--- of modules we always mean
a discrete direct sum. If G= A+ B, we say that A (and of course also B)
is a direct summand of the module G. If A is a submodule of G such that,
for any submodule M of G which is maximal among the submodules that
intersect A trivially, G=A+M, then A will be called a strictly direct
summand of G.

Let I" be a set of indices. The system of submodules (..., Ay, ... )ser
of A is said to be independent if for every finite ordered subset (»;, »a, ... %)
of I, the condition A, n{A,,, A,,, ..., Ay} is satisfied, i.e. if their sum
in A is direct. A system of elements (..., a,,...)»er (a» € A) is linearly
independent if the system of submodules (..., {a,}, ...)ver is independent,
where {a} denotes the cyclic module generated by a. (We shall always use
{-++} for submodules or left ideals generated by the elements listed inside
the brackets.)

rsecR; n,mecé.
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Let R be a subring of the ring S, and let L be a left ideal of R or
of S. The additiv group of L will often be considered as an R-module, in
this case denoted by L), the product r/ (r€ R, I € L) being defined as in S.

We write 0(g) for the order of the element g (€ G), i.e. for the set of
all elements <r, n> (€ R*) with {r,n>g=0. Obviously 0(g) is a left ideal
of R*. It is easy to show that R{x/0(g)m=2{g}; in general, if L is an
arbitrary left ideal of R* then Rk)/Lx == {a}, and O(a) = L, where a =<0, 1>+
+ Limy (€ Riw/Lw)-

Let H be a submodule of the R-module G, and let

(1) Loy idpx=h, (v, nyp€R*; h, € H; v€T)

be a compatible system of equations in one unknown. H is said fo be a
pure submodule of G if the solvability in G of the system of equations (1)
implies its solvability in H.

If every compatible system of type (1) is solvable in H, then H will
be called an algebraically closed module. (The concept of injective module,
used mostly in the unitary case, is equivalent to this.)

Set H be a submodule of the R-module G. An element g (€ Q) is
algebraic over H if there exists an element <{r,n>(€ R*) such that (0s~)
{r,n>g € H. In the contrary case g is transcendental over H. The R-module
G is algebraic over H if every element g of G is algebraic over H. The
following theorems on algebraically closed modules, which can be found in
KEeRTESZ [3], [4], will be employed in our considerations without further
reference.

If G is an algebraically closed module, then:

(I) G is strictly direct summand in any of its extensions.

(II) Let L be an arbitrary left ideal of R*. If ¢ is a homomorphism
of L into G, then there exists an element g of G such that lp=Ig for
every element [ of L.

(Ill) If ¢ is a homomorphism of some submodule A of an arbitrary
R-module B into G, then ¢ can be extended to a homomorphism of the
whole of B into G.

Two extension G, and G, of the R-module G will be called equivalent,
if it is possible to establish between them an isomorphism under which the
elements of G remain fixed.

(IV) Let R be an arbitrary ring.

a) Any R-module G has an algebraically closed extension.

b) For any R-module G, the following assertions are equivaient:

b,) G, is a maximal algebraic extension of G,
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b,) G, is an algebraically closed algebraic extension of G,

b;) G, is a minimal algebraically closed extension of G.

c) Any R-module G has one, and up to equivalence only one extension
G, having the properties b,, bs, b;.

We call the minimal algebraically closed extension of G the algebraic
closure of G and denote it by A(G). If G is a submodule of an R-module
B and A is an algebraic closure of G in B then we write A= z(G).

§ 3. A characterization of Noetherian rings.

In his paper [4] KERTESZ shows that the discrete direct sum of arbitrarily
many algebraically closed R-modules is in general not algebraically closed.
He raises the problem: to describe the rings R which are such that the
discrete direct sum of arbitrarily many algebraically closed R-modules is
algebraically closed. In this section we solve this problem, showing that only
the Noetherian rings have this property.

Another module-theoretic property for rings can be described as follows.

Property P. For an arbitrary R-module G and for any system of
equations
2 rvx=gy (rn€R*;8,€G;vET)
over G the solvability (in G) of every finite subsystem of (2) implies the

solvability (in G) of the whole system.
We are now ready to formulate our first result.

Theorem 1. For an arbitrary ring R, the following conditions are
equivalent.

a) R is a Noetherian ring,

b) R* is a Noetherian ring,

¢) R has the Property P,

d) in arbitrary R-module G, the union of any ascending chain of pure
submodules (of G) is a pure submodule,

e) the union of any ascending chain of algebraically closed R-modules
is algebraically closed,

f) any discrete direct sum of algebraically closed R-modules is algebrai-
cally closed.

PROOF. a)=>b) ?) Consider any ascending chain

AIS A S SAS. .

2) This step is due to L. G. KovAcs.
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of left ideals is R* and put B;=A:nR, Ci={A;, R}. Then
BiEB& S8

GEGEe---SCE---
are ascending chains of left ideals in the Noetherian ring R and R*/R=>=§
respectively; so, from a certain index n, Bi= Bi,; and C;= Ci;; must hold
for every i(> n). Take such an i; first Ai1 & Ciyi = Ci={A:, R} means that
A,—+1=A.-+1n{A,-, R}, next, as A;SA:,1 we can deduce that Aii=AiaN
n {A.‘, R}= {A., AN R} s {A{, B§+1}. Fmally Biyy=B: S A; gives that A;y =
== {A;, Bj11} = A;. Hence our original chain in R* cannot contain more than
n different terms, and as it was an arbitrary chain R* Noetherian.
b)=>c) Let us suppose that R* is a Noetherian ring and

(3) rx=g, (v €R;8,€G;veT)

is a system of equations over an arbitrary R-module G such that its finite
subsystems are all solvable in G. Denole by L the left ideal of R* generated
by the elements r,(v € I'). Since R* is Noetherian L is finitely generated,

and moreover we may choose a finite set of generators of L from the
elements r, (v€I'):

and

L={Fy,; Toys : o sy I'ny,} (mer;i=1,2,..., k).
Consider the following system of equations:
(4) Iy X=gy. (i=1,2,..., k).
This is finite subsystem of (3) and thus by our conditions it is solvable
in G.
i Let g(€ G) be a solution of (4), so that

I8 =gy, (=12 ...; k)

We shall prove that g(€ G) is a solution of the whole system (3).
Since every finite subsystem of (3) is solvable in G, the mapping r, — g,

induces a homomorphism ¢ of the left ideal L onlo H={..., g, .. .}rer,
a submodule of G, and the following equalities are valid:

r.8="Iv9 (==1,2, ..., %)

k
v v
ry=_2, sy,

i=l1

Now if

then for arbitrary » ¢ I,

k K k k
rng= (gls,f’r..-]g= 2 S (rv,8) =2/ 8! (1 9) = (gsffﬁ) g=lrP =L

showing that g is a solution of (3).
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¢)==>d) Let us suppose that R has the Property P and that G is an
arbitrary R-module. Consider the following ascending chain:

HEHS SSS- (n€d),

where the S, (u € 4) are pure submodules of G and 4 is a well-ordered (non
empty) set of indices. Let S denote the union of S, (u€ 4), S= UdSu.
HE

If
©) rvx=g, (g.€S r€Rver)

is an arbitrary system of equations over S, solvable in G, then obviously
every finite subsystem

(6) Fo X =g, (i=12, ...,k

of (5) has a solution in G. To every system of equations (6) we can choose
an index T € 4, such that g,, €S, (i=1,2, ..., k) and, since S; is pure in G,
the system of equations (6) is solvable in S, hence solvable in S. But R
has Property P, so the whole system of equations (5) is solvable in §, thus
S is pure in G.

d)==>e) Consider the ascending chain of algebraically closed R-modules:

ASAS -SAS (u € 4).
Let us denote by A the union of the A,’s (u€ 4), A= UAA,, and let A
ne

be an algebraically closed extension of A. Since each A, (u € 4) is pure in 4,
by the condition d) A is pure in A, hence A is an algebraically closed
R-module.

e)==>f) This is clear, since any discrete direct sum of algebraically
closed R-modules in the union of an ascending chain of algebraically closed
R-modules.

fy==>a) It is sufficient to prove that if R is not a Noetherian ring then
we can construct algebraically closed R-modules A,, (i=1,2,...), such that

A=ZA.,,. is not algebraically closed.

We show a little more; namely that such A,, can be chosen from any
set £2 of algebraically closed modules A, provided £2 has the following pro-
perty. Consider all maximal left ideals K.(u € I') of R*; put ¢.==<0, 1>+
+ Ky (€ Riey/Kuwy) and C.= A({c.}). The property required of £ is that
it contain countably many copies of A,, isomorphic to C,., for each u in I
This property ensures that to any left ideal K of R* there is an element a
in one of the A,(€£) such that K< O(a).
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Let us suppose that R does not satisfy the ascending chain condition,
in other words that there exist elements:

s | B T R W (ER)
!u+1¢{10’ Il:l a4y ’n}-

L“={10,11,---,lu} (n=0’ ],2! "')
Ll

for which

Set

We choose the A,, and define homomorphism ¢; of L; into Bi= A, +
+ .-+ +A,, such that L;g; &= Bi.; and ¢; is an extension of ¢;.;, for every
i=1,2,..., using the following induction.

Choose A,, (from £2) such that it contains a nonzero element a;, for
which 0(a;)20(/) and define /yp; =a,. Clearly this defines ¢, on L; and
Lig1 S A,, but Ly & By=0. Now assume that 4,,, ..., A,; @1, ..., ¢; are
already defined according to the above requirements. The set £; which
remains after the removal of 4, ..., A,, from £ also has the postulated
property of £2.

(l) If L;n {l.'+1}=0 then L.‘+1=L.‘+{f"+1} and so ®i+1 Can be defined
by ¢: and, after the choice of a nonzero a;. in some A, , (€ $2;) such that
O(Gm)_Q_O(lm), b}' fi+1‘;0i+1=ai+1-

(ii) If Lin {lis1} 0, let K be the left ideal consisting of all elements
s of R* for which sl € L; and choose A,, (€ £2:) such that it has an element
@;;1 whose order O(a:.1) contains K:

(7) 0((1.'4.1)2[(.
The mapping s — (sli1)@: (s € K) is a homomorphism of K into B;, for

. (51 + 82) = [(s1+ S2) li1) @i == (S1Liv1) @i + (Selivr) @i
an
rs = [(rs)lii] @i = [r(slin)lpi = r[(sl1) @i].-

By (1) (see §2) there exists an element ao(€ B;) such that

(8) (sliv1) i = sag
for any s€ K. On account of (7), this is the same as
©) (8li1) pi = s(ao + i)

Now we show that (9) can be extended to the definition of a mapping
@1 with the required properties, namely to

(10) (z+ ﬂ.—+1)09i+1 =2+ f(ao + ﬂm)
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(z€Li,r€R"). First of all we have to ensure that (10) defines a single-
valued mapping of Li;i. If an element of L, has two different representa-
tions in the form used here, say,

214l = 2o+ raliyg;

then 2y =2y+ (re— r1)liy1 (obviously (ro—ri) € K) and, using (9), we see that

21@i+ri(@o+ aisi) = [22+ (re—r1) ] @i + ri(@o + ai) =
= 20@; + [(re— ) i) @i + r1(@o + ais1) =
= 2o@; + (re— 1) (@0 + @is1) + r1(@o + Qis1) = 2o @i + ro(@o + ais1).

This shows that the image obtained by applying (10) to the first form of
our element is the same as that obtained from the second form.

The rest is almost obvious; ¢, preserves the operations, extends
@i, Lisy19is1 © Biyy; furthermore

lis1 @iv1 = Qo+ A1 & B;

which gives that L.-ugo:.-u g= B.
Let ¢ denote the union of all the ¢;. Naturally ¢ is a homomorphism
of L=|JL, into

(11) A=LjJB,-=ZAyi.

Consider the (obviously compatible) system of equations
(12) Ix=lg (lel)

over A. There is no solution of the system (12) in A. Indeed, any element
a of A has only a finite number of nonzero components in the direct de-
composition (11) and so for some i a € B;; but then li,.a € B;, and lL.9¢B;,
which show that a cannot be a solution of (12). Thus A is not algebraically
closed, and this completes thc proof of Theorem 1.

§ 4. Algebraically closed modules over Noetherian rings.

1. To describe the structures of all algebraically closed R-modules over
an arbitrary ring R seems to be a rather difficult problem. This is perhaps
partly due to the fact that the discrete direct sum of algebraically closed
R-modules is not, in general, algebraically closed. This difficulty can be
avoided, as we have just seen, only if our considerations are restricted to
modules over Noetherian rings. The aim of this section is to solve the problem
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for this particular case, in other words, to give a description of all algebrai-
cally closed modules over Noetherian rings. We close the section by answering
a related question.

DEFINITION 1. An R-module A(s£0) is a minimal algebraically closed
module if it is algebraically closed and satisfies one of the following con-
ditions:

a) A has no algebraically closed proper submodules,

b) A is-the algebraic closure of any of its nonzero submodules.

The conditions a) and b) are equivalent.

The next simple lemma gives a characterization of the minimal algebrai-
cally closed R-modules which will play an important role in the sequel.

Lemma 1. An algebraically closed R-module is a minimal algebraically
closed module if and only if the intersection of any two of ils nonzero sub-
modules is likewise nonzero.

ProoF. If B is a nonzero submodule of the minimal algebraically closed
module A then A, being the algebraic closure of B, is algebraic over B.
This means that no cyclic submodule and therefore a fortriori no nonzero
submodule of A can intersect B in 0.

Conversely, the existence of an algebraically closed proper submodule B
in the algebraically closed R-module A would imply that A= B+ C, (C+#0),
Bn C=0. This possibility is excluded by the condition in the lemma.

Theorem 2. A ring R has the property that every algebraically closed
R-module is a discrete direct sum of minimal algebraically closed R-modules
if and only if R is a Noetherian ring.

ProOF. Let R be a Noetherian ring. We first show that if A(%0) is
an algebraically closed R-module then it has a minimal algebraically closed
submodule. Let B=A,({g}) where g is a nonzero element of A. If B is not
a minimal algebraically closed module then B= B, + C,; if C, is not a minimal
algebraically closed module then C,= B,+ C,, giving B= B,+ B;+ C,.
Continuing this process we necessarily arrive at a (finite) index i such that
C: is a minimal algebraically closed module. Otherwise we would obtain
decompositions B= B, + By +++ + B.+ C, for each natural number n; put-
ting D,=B,++--+ B,, we see by Theorem 1 that the union D= D, is

algebraically closed, so that B=C+ D, and
(13) B=C+Bi++++Bupt e+
The decomposition g=c-+ b+ -+ + by corresponding to (13) gives {g} <
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C C+ Dy; but C+ Dy is an algebraically closed proper submodule of B
which is impossible since B = A({g}).
Consider next a maximal independent set

(14) PR KB T

of minimal algebraically closed submodules of A, and let B be their direct
sum. From Theorem 1 we conclude that B is algebraically closed, so that
A= B+ C. Since the system (14) is a maximal independent one C=0,
which means that A— B = > A,. This completes the first part of our proof.

uwer
Conversely, suppose that R is not a Noetherian ring, but that every

algebraically closed R-modules is a discrete direct sum of minimal algebrai-
cally closed R-modules. Consider the set of all maximal left ideals K,(u€1")
of R* and put m, for the cardinal number of the algebraically closed module
Cu=A({c.}) where ¢,=<0, 1>+ Ku(x (€ R/Kum). First we prove that C,
is a minimal algebraically closed module. Let B(s=0) be a submodule of C,.
Since the elements of B are algebraic over {c.}, and since from the maximality
of K, it follows that {c.} is a minimal R-module, we see that {c.} ©B. This
shows that the intersection of any two nonzero submodules of C, is likewise
nonzero; hence by Lemma 1 we infer that C, is a minimal algebraically closed
R-module. Let now.

(15) C=9I(§Z{Cp}),

where > '{c.), denotes the discrete direct sum of n, copies of {c.}, the

infinite cardinal numbers n, satisfying the proper inequality n, > m, for each
perl.
By our hypothesis, C is a discrete direct sum of minimal algebraically

closed R-modules A,(» € 4),
(16) C=2A,.

ved
We show that for each index u (€ I') there exists an infinity of direct
summands A,, (. € 4.(S4)) in the direct decomposition (16) of C, which
are such that C,>~A, . Take ¢, from any of the n, factors of (15) that
correspond this u, and consider its decomposition according to (16):

Cu=by A+ +by, (by; € Ay).

It is easy to see that O(c,) = O(by,) N -++ N O(by,). Since O(c,) is a maximal
left ideal of R*, there follow the equalities O(c,) = O(b,,)= ---= 0(b,,).
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Then the isomorphismus C.2>A(R(r/O(by)m) (i=1,2, ..., k) show that
there exists at least one A..#(vpedp) with the required property.
Let us consider the direct sum of all A, (v.€4,) isomorphic to

C,, A" = A, . Then
3 ’n%‘;u i
(17 CAtL' D A,

¥ d‘u
We show that if the order of an element ¢ (€ C) is the maximal left ideal
K, then c € A". Indeed, according to (17),

c=b"+b,,+--+0b (b, € Ay)

where necessarily K,SO(b,) (i=1,2,...,k) and as by our condition
v; ¢ 4. implies A,, = C,, we conclude, that O(b;,) = R" and therefore b;,, =0
(i=1,2,...,k).

Now as we have n, distinct copies of ¢., whose order is K., the
cardinality of A“ is at least n.. On the other hand, the cardinality of

A= A,, is m, times the cardinality of 4,. As n, is infinite and greater
'”Eﬁ‘“

than m, it follows that the cardinality of 4, is at least n, and so a fortiori
infinite. So we see that this set of the A,(v € d) has the property of the
set £ on p. 316 and so, by the method given there, one can select a
subset 4° of 4 such that A= A, is not algebraically closed. But

red’

C=A+ A,, so A is a direct summand of the algebraically closed
vE4L €4

module C. This is clearly a contradiction, completing the proof of Theorem 2.
Applying Theorem 2 to the case A=A({g}) we obtain the following
Corollary.

Corollary. If A=%({g}) is a module over a Noetherian ring, then
A=A +As+---+ A, where A; (i=1,2,...,n) are minimal algebraically
closed modules.

Our aim in the following will be to describe the minimal algebraically
closed R-modules in terms of the left ideals of R".

DEFINITION 2. A left ideal L of R is reducible if there exist left ideals
M(#L), N(L) in R such that L=MnN. In the contrary case L is
irreducible.

DerINITION 3. A decomposition of L
(18) L=LinL:n---NLy
is irredundant if, for every index i, L; is irreducible and

LiZR(Lin+-nLanLiyine--nkLy).
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It is easy to prove (see for instance McCoy [5] p. 199) the following
lemma.

Lemma 2. If R is a Noetherian ring then every left ideal of R has
an irredundant decomposition of the form (18).

Lemma 3. The order of any element of a minimal algebraically closed
R-module is an irreducible left ideal.

PROOF. Let a be an arbitrary element of a minimal algebraically closed
R-module A. By definition A= A4({a}) and suppose that

(19) O(@=LinL: , Li#0(a) i=12

Write a;=<0, 1>+ Li& (€ R®/Li®; i=1,2), and consider the element
x=a,+a, of the R-module C={a,}+{a,}. Then O(x)= O(a,)n O(a;,) =
== L, N Ly=0(a); hence A({x}) =~ A({a}) = A and so A" = A({x}) is a minimal
algebraically closed R-module.

By the condition (19) there exist elements L €L,, L€ L, such that
La,s#0, l,a,+0 and therefore 0s=lLa,=Lx (€A"), 05 La,=Lx (€A).
According to Lemma 1 the intersection of the R-modules {La,}, {/,a,} is not
equal to zero, contrary to the fact that C= {a,} + {a,} is a direct sum.

Theorem 3. A module A over a Noetherian ring R is a minimal
algebraically closed module if and only if A=U({a}), where O(a) is an
irreducible left ideal of R".

PROOF. Let A be a minimal algebraically closed R-module. Then for
an arbitrary element (0#£)a €A, A=A4({a}), and by Lemma 3, O(a) is an
irreducible left ideal.

On the other hand, let A==%A({a}) and O(a) irreducible. Then by the

Corollary to Theorem 2,
(20) A=A+ As+ -+ + A,,
where A; (i=1,2,...,n) are minimal algebraically closed modules. In this
decomposition @ =a; + as+ - -+ +a,, whence O(a) = Of{a;)n --- n O(a,). Since
O(a) is irreducible either O(a)= O(a:) or O(a)= [\ O(a:). By induction on
=2

the number of the direct summands of the decomposition (20) one can easily
see that for some index i, O(a) = O(a:), hence that A= A; where A; =~ A4 ({a:}).
So it follows that A is a minimal algebraically closed R-module.

Lemma 4. If R is a Noetherian ring, A is an algebraically closed

R-module and the system of elements (..., a,, ...)ver is @ maximal linearly
independent system in A, then A= gAy where A,= Y ({a,}).
¥ Y
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Proor. To prove that for every finite ordered subset
1, .., WG, AnN{As, ..., Ay) =0,
we show that an equality
(21) by, + by, + +++ +b,,=0 (by; € A,)
implies b,,=0 (i=1,2, ..., k). Suppose on the contrary that b, ==0. Since

A,, is algebraic over {a, } there exist elements r,s(€ R*) such that rb, —
=sa,, 50, and thus it follows from (21) that

say, +rby,++--+rby, =0

with sa,, #0. Continuing this process with the next element not equal to
zero, we finally arrive at the equality:

$1Qy,+ +++ + Sk, =0
where for at least two indices iy, is
Sily, 0, Syay, F0.

This contradicts the independence of the system (..., @,, ...)yer.
Let A’= 2 A,. Then by Theorem 1 A’ is algebraically closed, so that

vel

A=A+ A”. By the maximality of (..., @, ...)yer the only possibility is that
A”==0, s0 A=Z;A.., as required.
re

2. Let now R be a Noetherian ring and L any irreducible left ideal
of R. We can associate with L a minimal algebraically closed R-module,
namely A= A(R()/Lx). We shall say that A the minimal algebraically closed
R-module corresponding to L.

Call the irreducible left ideals Ly and L; of R* equivalent if there exists
a submodule (#0) of R&/Lyx isomorphic to a submodule of R&/Laxz. To
prove that this relation is an equivalence it suffices to show that it is transitive.

Let L,, L, and L, be arbitrary irreducible left ideals of R*, L, equivalent
to L, and L, equivalent to L,. By definition there exist submodules H,&
S R(»/Lyw), H: S R{r)/Lowy, H:S R%)/Loryand Hs & R{r)/Lsw such that Hy==H,
and Hi=~Hs. Since L, is an irreducible left ideal, the module Rk&/Laz, is a
submodule of a minimal algebraically closed R-module, R(z)/Lom) S U(R)/Lary)
Lemma 1 now gives Hsn Ho=H=0. Since Hi>=H; and Hi= H; there
exist submodules H> H{(S H,) and H =< Hj(S Hs), so H{= Hj, showing
that L; is equivalent to Ls.

Denote by € the class of irreducible left ideals of R* equivalent to L.
We show that the correspondence between such equivalency classes and the
minimal algebraically closed R-modules, induced by the above association
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of left ideals with minimal algebraically closed R-modules, is one-to-one.
Let L;, L. be equivalent left ideals of R* and A, A; the corresponding
minimal algebraically closed modules, respectively. Then there exist elements
a1 (€ Rw/Lyw) and as (€ R%/Laur) with O(a;)= O(az), since by definition
R(z/Liyz has a submodule isomorphic to a submodule of R/Lax. The
following relations

Ar= Uy, ({a:}) = AR/ O(a1)m) = AR/ O(a2)m) == Us,({az}) = Az

establish the validity of the first part of our statement.

On the other hand, it is easy to see that if A is a minimal algebraically
closed R-module then the left ideals L which correspond to A belong to only
one class C; so we are entitled to speak about A corresponding to € or @
corresponding to A.

Let us consider all the classes Cs (3 € 6) of irreducible left ideals of R*.
With each class ©s we associate a cardinal number ms, and denote by S
the system [Cs, ms]scs. S determines an algebraically closed R-module

G=;€,;Z‘Aa,

mg

where D As denotes the discrete direct sum of my copies of As, Ag being
mg
the minimal algebraically closed module corresponding to the class Cs.

Conversely, let G be any algebraically closed module over a Noetherian

ring. Then by Theorem 2
G= g 2 As,

alﬂ,

where the Ay are minimal algebraically closed modules. Let Cs be the class
corresponding to As; then we associate with G the system §=[Cs, ms)scs.
The following theorem shows that this correspondence is one-to-one.

Theorem 4. If G is an algebraically closed module over a Noetherian
ring then any two decomposition

G=%§Aa=%§Aa

of G into discrete direct sums of minimal algebraically closed modules are
isomorphic. (ng = ms for every 9 €6.)

This theorem is an immediate consequence of a general result of
G. Azumaya ([1] Theorem 1.).

If abelian group are considered as modules over the ring consisting of
one element (i.e. as unitary modules over {0}* =~ &) the reader may deduce
the following well-known result.
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Corollary. An arbitrary algebraically closed abelian group G has a
unique decomposition of the form:

G=28+2 2 Com

where & is the additive group of the rationals, C(p®) is Priifer's group of
type p®, and p runs over all prime numbers.

The next theorem establishes a duality between the decomposition of
the left ideals of R* and those the corresponding algebraically closed
R-modules.

Theorem 5. Let L be an arbitrary left ideal in R* and A = N(R(/Lr)-
Then to each irredundant decomposition of L there exists a decomposition
A=A+ -+ A, where Ai>~N(Rf/Liw), and conversely.

Proor. Let A==%%({a}), where a is the element <0, 1>+ L& of R%/Lw),
and let L=L;n---nL, be an irredundant decomposition of type (18) of L.
We use the following notation: a;=<0, 1>+ Lug (€ R/Liw); fori=1,2, ..., n,
Ai=U{a;}), and X=A;--+--+A,. If x=a,+ +++ +a., then

O(x)=0(a)n---n0(@)=Lin++-NLe=L=0(h)

and therefore B=Ax({x})== A. Since the decomposition of L is irredundant,
there exist elements /; € R* such that O lLix=1La;=a'(€ Bn Ai). Suppose
that X= B+ B and (0£)6 € B, then

V=ai+ - +a., (aicAi;i=1,2,...,n)

By the method used in the first part of the proof of Lemma 4 we
obtain easily

O£t =(s1a'++--+s.a")€B

which contradict the fact that BnB'=0. Thus A~B=X=A{+---+ A,
showing that there exists a decomposition A=A;+4 ---+ A, with A;=>=A;
(i=12,...,n) as desired.

Conversely let A=A;+ ---+ A,, where A=%A({a}), a=<0, 1D+ L
(€ Riw/Lw) and Ai(i=1,2, ..., n) are minimal algebraically closed modules.
Then a=a,++--+a, sothat L=0(@)=O(a)n---n0O@,)=LiN -+ NLn.
This is an irredundant decomposition. For in the contrary case we may
suppose without loss of generality that L=L;n---nLn (m<n) is an
irredundant decomposition of L. Then using our hypothesis and the statement
proved above, we obtain that A= A{+ ++ 4+ AL, = A+ -+ A, (m<n, and

D22
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the A, A} (i=1,2,...,n; j=1,2,..., m) are minimal algebraically closed
modules) in contradiction to Theorem 4. This completes the proof of Theorem 5.

Let R be a Noetherian ring. We say that the irredundant decompositions
L=Ln-+nLiy, N=Nin--nNNn of two left ideals L and N of R* are
similar if there exists a one-to-one correspondence between the L;(i=1, 2, ..., k)
and the N; (j=1, 2, ..., m) such that the corresponding irreducible left ideals
are equivalent. As immediate consequences of Theorem 4 and Theorem 5 we
obtain the following corollaries.

Corollary 1. Any two irredundant decompositions of a left ideal L of
R* are similar.

Corollary 2. Let {a} and {b} be two arbitrary cyclic R-modules. Then
A({a}) = A({b}) if and only if O(a) and O(b) have similar irredundant de-
compositions.

The following question: under which conditions are the algebraic
closures of two modules (over the same Noetherian ring) isomorphic, is
strongly suggested by Corollary 2, and indeed an answer follows from our
results. We conclude our paper by expounding this.

Consider any module G over a Noetherian ring R, and in particular
the set N of elements of irreducible order in G.

First we show that for any nonzero element g of G, {g}nN=#0.
Theorem 2 and Lemma 3 implies that A=A({g}) has at least one element
a(+#0) whose order is irreducible. As a is algebraic over {g}, some non-
trivial multiple rg(r € R*) of g belongs to {a} S A4({a}). Theorem 3 shows
at once that O(rg) is irreducible.

From this it follows that N=~0 and so N contains linearly independent
subsets. Take any maximal linearly independent subset M of N and denote
by M, the set of all elements of M such that their order belong to the class
Cs (See p. 324). Put my(9) for the cardinality of Ms; mu(9) is a function
defined on 6.

Lemma 5. /[f M and M’ are any two maximal independent subset of N
then my(9) = my ($) for every 9 €6.

PROOF. It is easy to see that M is a maximal linearly independent set
in A=%(G). Indeed, any nonzero element a of A is algebraic over G and
so has a nontrivial multiple ra(r € R*) in G; this ra, as any nonzero element
of G, has a nontrivial multiple s(ra) (s € R*) in N; so {a} n{M} =0 would
imply {sra}nM=0 with Os=sra€ N, contradicting the maximality of M
in N. Now Lemma 4 gives that A=§;X;({m}) and this we can write as
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A=) %A({m})ggmé; )Aa. Similarly

dey meMy €
A =m,§[ Au({m')) = % ...%,f[“({”"” ~ é m%‘on.

So Theorem 4 proves that my($)=my (3) for all $€6.

The meaning of Lemma 5 is that my(9) does not depend on the
particular choice of M, but is an invariant of the module G. While proving
Lemma 5 we had to see also that A(G) is completely determined by me($)
— now we may write this instead of mx($) — so we have the following
answer to our question.

Theorem 6. The algebraic closures of two modules G,H over a
Noetherian ring are isomorphic if and only if mg($)=mg(3) for every 9 €6.

Added in proof: The first part of Theorem 2 and Theorem 3 has
also been obtained by EBEN MATLIS, Injective modules over Noetherian rings,
Pacific J. Math. 8 (1958) 511—528.
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