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Characterizations of quadratic differences

By B. R. EBANKS (Louisville) and C. T. NG (Waterloo)

Abstract. We characterize two-place functions of the form

F (x, y) = f(x + y) + f(x− y)− 2f(x)− 2f(y),

which we call a quadratic difference, by means of systems of functional equations. Our
functions map groups to groups.

1. Introduction

It is a well-known result of Jessen, Karpf and Thorup [5] that the
Cauchy difference

(1.1) ∆(x, y) = f(x + y)− f(x)− f(y),

for ∆ : G × G −→ H with G and H abelian groups and H divisible, is
characterized by the system of functional equations

∆(x, y) = ∆(y, x)

∆(x, y) + ∆(x + y, z) = ∆(x, y + z) + ∆(y, z),

that is, by symmetry and the cocycle equation. (For an extensive dis-
cussion and bibliography, see [4], in which similar results are proved for
Cauchy differences of all orders.)

The problem of finding a similar characterization for the quadratic
difference

(1.2) F (x, y) = f(x + y) + f(x− y)− 2f(x)− 2f(y)

was formulated a decade ago [6]. (The name quadratic difference derives
from the fact that any solution of f(x + y) + f(x− y)− 2f(x)− 2f(y) = 0
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is called a quadratic function.) Several necessary conditions are known,
one of which is the functional equation

(1.3) F (x + y, z) + F (x− y, z)− 2F (y, z)

= F (x, y + z) + F (x, y − z)− 2F (x, y),

introduced by Székelyhidi [6]. It was demonstrated in [2] that this equa-
tion is not sufficient to guarantee (1.2), even when G = H = R (the
additive real group). On the other hand some sets of sufficient conditions
for (1.2) are known. For instance, (1.3) and boundedness [6], or (1.3) and
two times continuous differentiability [3] are sufficient when F : R2 −→ R.
Yet it is clear that analytic conditions are not necessary for (1.2).

The purpose of this paper is to present some sets of conditions which
are both necessary and sufficient for F : G −→ H to have the representation
(1.2). To our knowledge, this has not been done until now. We assume
throughout that G is an abelian group and that H is a uniquely divisible
abelian group. (So H is a vector space over the rationals.) We shall note a
few places where the divisibility hypotheses concerning H can be relaxed.

We shall need to make use of the following result on Cauchy differ-
ences.

Theorem 1 [4: Theorem 2.2]. A map K : G3 −→ H is symmetric and

satisfies the condition that

(1.4) (x, y) ½ K(x, y, w) is a (1.1) Cauchy difference for each w ∈ G,

if and only if K is itself a Cauchy difference of order 2, i.e. there exists a

map g : G −→ H such that

K(x, y, z) = g(x+y+z)−g(x+y)−g(x+z)−g(y+z)+g(x)+g(y)+g(z)

for all x, y, z ∈ G.

2. Pieces of the solution

In this section,we give characterizations of (1.2) for even f and for
odd f , as well as other special solutions of (1.3). These will be combined
in the following section to obtain the main results.
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Lemma 2.1. Necessary and sufficient conditions for F : G×G −→ H
to have the decomposition (1.2) with odd f : G −→ H are

F (0,−y) = −F (0, y),(2.1)

F (x, y) = − 1
2F (0, x + y)− 1

2F (0, x− y) + F (0, x) + F (0, y).(2.2)

Proof. If F has the form (1.2) with f odd, then setting x = 0 yields

(2.3) F (0, y) = −2f(y).

The oddness of f gives (2.1), and (1.2) with (2.3) translates into (2.2).
Conversely, suppose F satisfies (2.1) and (2.2). Then clearly F has

the decomposition (1.2) with f definied by (2.3). Moreover, the oddness
of f follows from (2.1). This completes the proof.

Remark. Lemma 2.1 holds when H is any uniquely 2-divisible abelian
group. The same is true of the following.

Lemma 2.2. F : G × G −→ H has decomposition (1.2) with odd
f : G −→ H, if and only if F is an odd solution of (1.3).

Proof. Let F be an odd solution of (1.3). Putting y = z = 0 in
(1.3), we get F (x, 0) = F (0, 0). Since F is odd, F (0, 0) = 0, so

(2.4) F (x, 0) = 0.

Putting y = 0 in (1.3) and using (2.4), we obtain

F (x, z)− 2F (0, z) = F (x,−z).

Defining f : G −→ H by (cf. (2.3)) f(x) := − 1
2F (0, x), we have

(2.5) F (x, z)− F (x,−z) = −4f(z).

Also, the oddness of F implies that f is odd.
Now replace (x, z) by (−x,−z) in (1.3) and use the oddness of F to

write the result as

− F (x− y, z)− F (x + y, z)− 2F (y, z)

= −F (x,−y + z)− F (x,−y − z) + 2F (x,−y).

Adding this to (1.3) and applying (2.5) several times, we arrive at (1.2),
as desired. (This could also be derived from Lemma 2.1.)

Conversely, any F of the form (1.2) satisfies (1.3), and if f is odd,
then so is F . This completes the proof.
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Lemma 2.3. Necessary and sufficient conditions for F : G×G −→ H

to have a representation (1.2), where f is even and f(0) = 0, are

F (x + y, y) + F (x− y, y)− 2F (y, y)(2.6)

= F (x, 2y) + F (x, 0)− 2F (x, y),

F (−x, y) = F (x, y) = F (y, x),(2.7)

F (x, 0) = 0,(2.8)

and that the map K : G3 −→ H defined by

(2.9)
K(x,y, z) := 2F (y + z, x) + 2F (x + z, y)− 2F (x, y)

− F (x− z, y)− F (z − y, x)− F (y − x, z)

satisfies condition (1.4).

Proof. Suppose F satisfies (1.2) with f even and f(0) = 0. Then it
is straightforward to verify that F satisfies (2.6)–(2.8). Moreover, inserting
(1.2) into (2.9), we compute that

K(x, y, w) = 2[f(y + w + x) + f(y + w − x)− 2f(y + w)− 2f(x)]

+ 2[f(x + w + y) + f(x + w − y)− 2f(x + w)− 2f(y)]

− 2[f(x + y) + f(x− y)− 2f(x)− 2f(y)]

− [f(x− w + y) + f(x− w − y)− 2f(x− w)− 2f(y)]

− [f(w − y + x) + f(w − y − x)− 2f(w − y)− 2f(x)]

− [f(y − x + w) + f(y − x− w)− 2f(y − x)− 2f(w)]

= 4[f(x + y + w)− f(x + w)− f(y + w) + f(w)]

− 2[f(x + y − w)− f(x− w)− f(y − w) + f(w)]

− 2[f(x + y)− f(x)− f(y)],

using the fact that f is even. The last member of this equation is obviously
a Cauchy difference in x and y for each fixed w, since it is the sum of three
such Cauchy differences. Hence K satisfies (1.4).

For the converse, let us define L : G3 −→ H by

L(x, y, z) := 2[F (x + y, z)− F (x, z)− F (y, z)] + K(x, y, z).
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Then, by the hypothesis on K, we see that L also satisfies condition (1.4).
Moreover, by (2.9) and (2.7) we have

(2.10)

L(x, y, z) = 2[F (x + y, z) + F (y + z, x) + F (z + x, y)]

− [F (x− z, y) + F (z − y, x) + F (y − x, z)]

− 2[F (x, y) + F (y, z) + F (z, x)].

That is, L is a symmetric function of its three variables. Hence, by Theo-
rem 1, we obtain

(2.11)
L(x, y, z) = g(x + y + z)

−[g(x + y) + g(x + z) + g(y + z)] + g(x) + g(y) + g(z),

for some function g : G −→ H.
Furthermore, by (2.7), (2.8) and (2.10), L vanishes when one variable

is equal to 0. It follows then, from (2.11), that

(2.12) g(0) = 0.

Also, the evenness of F yields L(−x,−y,−z) = L(x, y, z), because of
(2.10). So (2.11) shows that we may replace g by its even part. Thus,
without loss of generality, we may assume that

(2.13) g is even.

Finally, consider a cross section of L in (2.10). Using also (2.6)–(2.8), we
calculate that

L(x, y,−y) = 2F (x + y,−y) + 2F (−y + x, y)− F (x + y, y)− F (−2y, x)

− F (y − x,−y)− 2F (x, y)− 2F (y,−y)− 2F (−y, x)

= F (x + y, y) + F (x− y, y)− 2F (y, y)− F (x, 2y)− 4F (x, y)

= −6F (x, y).

Therefore F is a cross section of L,

F (x, y) = − 1
6L(x, y,−y).

By (2.11), we have now

F (x, y) = − 1
6{g(x)− g(x + y)− g(x− y)− g(0) + g(x) + g(y) + g(−y)}.

Defining f : G −→ H by
f(x) := 1

6g(x)

and observing (2.12) and (2.13), this verifies (1.2) and finishes the proof.

Similar to Lemma 2.3 is the following
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Lemma 2.4. Necessary and sufficient conditions for F : G×G −→ H
to have representation (1.2) with f even and f(0) = 0 are (1.3), (2.7),
(2.8), and that the map K : G3 −→ H defined by

(2.14) K(x, y, z) := F (x + y, z) + F (x + z, y)− F (z − y, x)− 2F (y, z)

satisfies condition (1.4).

Proof. If F has representation (1.2) with f even and f(0) = 0, then
it is clear that F satisfies (1.3), (2.7) and (2.8). In addition, for the map
K defined by (2.14), we have

K(x, y, w) = [f(x + y + w) + f(x + y − w)− 2f(x + y)− 2f(w)]

+ [f(x + w + y) + f(x + w − y)− 2f(x + w)− 2f(y)]

− [f(w − y + x) + f(w − y − x)− 2f(w − y)− 2f(x)]

− 2[f(y + w) + f(y − w)− 2f(y)− 2f(w)]

= 2[f(x + y + w)− f(x + w)− f(y + w) + f(w)]

− 2[f(x + y)− f(x)− f(y)],

showing that (x, y) ½ K(x, y, w) is a Cauchy difference. Thus (1.4) is
fulfilled.

Conversely, (2.14) and (2.7) show that K(x, y, z) = K(x, z, y). The
following calculation shows that K is also symmetric in its first two argu-
ments. By (1.3), (2.7) and (2.14), we deduce that indeed

K(x, y, z) = F (x + y, z) + F (x + z, y)− F (z − y, x)− 2F (y, z)

= F (y + x, z) + [F (y, z + x)− F (y − z, x)− 2F (y, z)]

= F (y + x, z) + [F (y + z, x)− F (y, z − x)− 2F (z, x)]

= F (y + x, z) + F (y + z, x)− F (z − x, y)− 2F (x, z)

= K(y, x, z).

Hence K is a symmetric function, and by Theorem 1 there exists h:G−→H
for which

K(x, y, z) = h(x+y+z)−[h(x+y)+h(x+z)+h(y+z)]+h(x)+h(y)+h(z).

Because of (2.14), this means that

F (x + y, w) + F (x + w, y)− F (w − y, x)− 2F (y, w)

= h(x + y + w)− h(x + y)− h(x + w)− h(y + w) + h(x) + h(y) + h(w).
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With y = w, x = v − w, this reduces by (2.8) to

2F (v, w)− 2F (w, w) = h(v + w)− 2h(v)− h(2w) + h(v − w) + 2h(w),

or

(2.15) 2F (v, w) = h(v + w)− 2h(v) + h(v − w) + k(w),

where k : G −→ H is defined by k(w) := 2F (w, w)− h(2w) + 2h(w).

Next, by (2.7) and (2.15), we have

h(v + w)− 2h(v) + h(v − w) + k(w) = 2F (v, w)

= 2F (−v, w) = h(−v + w)− 2h(−v) + h(−v − w) + k(w).

That is

[h(v + w)− h(−v − w)] + [h(v − w)− h(−v + w)] = 2[h(v)− h(−v)],

which means that the odd part of h is additive. So we can replace h by its
even part in (2.15), and thus no generality is lost by assuming that

h is even.

Now (2.15) and (2.7) also yield

h(v + w) + h(v − w)− 2h(v) + k(w) = 2F (v, w)

= 2F (w, v) = h(w + v) + h(w − v)− 2h(w) + k(v),

from which we get k(w) + 2h(w) = k(v) + 2h(v) = j (constant). Hence
(2.15) takes the form

2F (v, w) = h(v + w) + h(v − w)− 2h(v) + j − 2h(w).

Finally, (2.8) gives j = 2h(0) and so, defining f : G −→ H by

f(x) := 1
2 [h(x)− h(0)],

we have (1.2) with f even and f(0) = 0. This concludes the proof.

Theorem 2.5. In order for F : G × G −→ H to have representation
(1.2) with even f : G −→ H, it is necessary and sufficient that F satisfy
one of the following sets of conditions. Either

(i) F satisfies (2.6), (2.7), and the map K defined by (2.9) satisfies (1.4);
or
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(ii) F satisfies (1.3), (2.7), and the map K defined by (2.14) satisfies (1.4).

Proof. Given (1.2) with f even, we define f ′ : G −→ H and F ′ :
G×G −→ H by

(2.16)
f ′(x) :=f(x)− f(0),

F ′(x, y) :=F (x, y)− F (0, 0).

Then F ′ is represented in the form (1.2) by f ′, which is even and f ′(0) = 0.
Thus, by Lemmas 2.3 and 2.4, F ′ satisfies conditions (i) and (ii) (as well
as (2.8) F ′(x, 0) = 0). By (2.16), this means that also F satisfies conditions
(i) and (ii).

Conversely, given F satisfying either set (i) or (ii) of conditions, we
define F ′ by F ′(x, y) = F (x, y)−F (0, 0) and claim (by Lemma 2.3 or 2.4)
the representation (1.2) for F ′ by means of an even function f ′ satisfying
f ′(0) = 0.

Defining f : G −→ H by

f(x) := f ′(x)− 1
2F (0, 0)

we have (1.2) for F , with f even. This concludes the proof.

We need a few more preliminary results, and they are collected in the
next two lemmas. A map F : G × G −→ H is called skew-symmetric (or
anti-symmetric) if F (x, y) = −F (y, x) for all x, y ∈ G.

Lemma 2.6. Let F : G×G −→ H be skew-symmetric. Then F satisfies

(1.3), if and only if F is biquadratic (i.e. quadratic in each variable).

Proof. First, suppose F is a skew-symmetric solution of (1.3). By
several applications of (1.3) and the skew-symmetry, we compute

F (x + y, z) + F (x− y, z)− 2F (y, z)

= F (x, y + z) + F (x, y − z)− 2F (x, y)

= −{F (y + z, x) + F (y − z, x)− 2F (z, x)} − 2F (z, x)− 2F (x, y)

= −{F (y, z + x) + F (y, z − x)− 2F (y, z)}+ 2F (x, z)− 2F (x, y)

= F (z + x, y) + F (z − x, y)− 2F (z, y) + 2F (x, z)− 2F (x, y)

= {F (z + x, y) + F (z − x, y)− 2F (x, y)}+ 2F (x, z) + 2F (y, z)

= {F (z, x + y) + F (z, x− y)− 2F (z, x)}+ 2F (x, z) + 2F (y, z)

= −F (x + y, z)− F (x− y, z) + 4F (x, z) + 2F (y, z).



Characterizations of quadratic differences 97

Comparing the first and last members, therefore

2F (x + y, z) + 2F (x− y, z) = 4F (x, z) + 4F (y, z),

which shows that F is quadratic in its first argument. Since F is skew-
symmetric, it is also quadratic in the second argument, hence F is bi-
quadratic.

Conversely any biquadratic function F satisfies (1.3), for

F (x + y, z) + F (x− y, z)− 2F (y, z) = 2F (x, z)

= F (x, y + z) + F (x, y − z)− 2F (x, y).

This completes the proof.

Remarks. (i) It was shown in [2] that biquadratic skew-symmetric
functions are not in general of the form (1.2). In particular, not every
solution of (1.3) has the form (1.2).

(ii) As in Lemmas 2.1 and 2.2, it is only necessary that H be uniquely
2-divisible in Lemma 2.6.

For the next and final lemma of this section, for a given F : G×G −→ H

let Fo and Fe be the canoncial odd and even parts of F . That is, define
Fo, Fe : G×G −→ H by

(2.17)
Fo(x, y) = 1

2 [F (x, y)− F (−x,−y)],

Fe(x, y) = 1
2 [F (x, y) + F (−x,−y)].

Furthermore, we decompose Fe into its symmetric and skew-symmetric
parts Fe+ and Fe−, viz.

(2.18)
Fe+(x, y) = 1

2 [Fe(x, y) + Fe(y, x)],

Fe−(x, y) = 1
2 [Fe(x, y)− Fe(y, x)].

Lemma 2.7. Let F : G×G −→ H satisfy (1.3). Then:

(i) Fo and Fe satisfy (1.3);
(ii) Fe satisfies

Fe(x, y) = Fe(−x, y) = Fe(x,−y);

(iii) Fe+ and Fe− satisfy (1.3); and

(iv) Fe+ satisfies (2.7).
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Proof. Let F satisfy (1.3). Then part (i) clearly follows, by defini-
tion of Fe and Fo and the structure of (1.3).

Now, suppose Fe satisfies (1.3), and put x = 0 to get

(2.19) Fe(−y, z)− Fe(y, z) = Fe(0, y + z) + Fe(0, y − z)− 2Fe(0, y).

Applying the evenness of Fe to the right hand side of this equation, since
Fe(0, t) = Fe(0,−t) we get

Fe(−y, z)− Fe(y, z) = −Fe(0,−y − z) + Fe(0,−y + z)− 2Fe(0,−y).

By (2.19), the right hand side of this equation is equal to Fe(y, z) −
Fe(−y, z), hence we have

2Fe(−y, z) = 2Fe(y, z).

Since H is uniquely divisible by 2, we see that Fe is even in its first variable.
But since Fe is even, we have

Fe(x, y) = Fe(−x,−y) = Fe(x,−y).

Thus Fe is even in each variable separately, which proves part (ii).
As for part (iii), assume that F satisfies (1.3), and define T :G×G−→H

by T (x, y) = Fe(y, x). Then, by parts (i) and (ii) of the proof, we calculate
that

T (x + y, z) + T (x− y, z)− 2T (y, z)

= Fe(z, x + y) + Fe(z, x− y)− 2Fe(z, y)

= Fe(z, y + x) + Fe(z, y − x)− 2Fe(z, y)

= Fe(z + y, x) + Fe(z − y, x)− 2Fe(y, x)

= Fe(y + z, x) + Fe(y − z, x)− 2Fe(y, x)

= T (x, y + z) + T (x, y − z)− 2T (x, y).

That is, T satisfies (1.3). Therefore Fe+ = 1
2 (Fe +T ) and Fe = 1

2 (Fe−−T )
also satify (1.3).

Finally, Fe+ is by definition symmetric, and by part (ii) of this proof

Fe+(−x, y) = 1
2 [Fe(−x, y) + Fe(y,−x)]

= 1
2 [Fe(x, y) + Fe(y, x)] = Fe+(x, y).

Hence Fe+ satisfies (2.7).
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3. Main results

Using the results of the previous section, we can construct several
characterizations of quadratic differences. The characterizations are car-
ried out by decompositions. The decompositions used are accomplished
by the standard definitions of odd, even, symmetric and skew-symmetric
parts of a function. Explicitly these are given by (2.17) and (2.18).

Theorem 3.1. Let F : G ×G −→ H be given, and decompose F into

the sum

(3.1) F = Fo + Fe

using definition (2.17). In order for F to have the representation (1.2) for

some f : G −→ H, it is necessary and sufficient that

(a) Fo satisfies either (1.3) or the pair of conditions (2.1), (2.2); and

(b) Fe satisfies either (i) or (ii) of Theorem 2.5.

Proof. First, we establish sufficiency. Suppose that Fo and Fe fulfill
statements (a) and (b) respectively. Then, by applying Lemma 2.1 or 2.2
(according to (a)) to Fo, we deduce that Fo has the representation

(3.2) Fo(x, y) = fo(x + y) + fo(x− y)− 2fo(x)− 2fo(y),

with odd fo : G −→ H. Furthermore, for Fe, Theorem 2.5 gives

(3.3) Fe(x, y) = fe(x + y) + fe(x− y)− 2fe(x)− 2fe(y),

with even fe : G −→ H. Hence, by (3.1), F has the form (1.2) with
f = fe + fo.

Conversely, suppose F is of the form (1.2). Then Fo and Fe have
the forms (3.2) and (3.3), respectively, where fo and fe are the odd and
even parts (resp.) of f . By Lemmas 2.1 and 2.2, Fo satisfies statement
(a) of the theorem. For Fe, we get statement (b) from Theorem 2.5. This
completes the proof.

We characterize a more general form in the next theorem, in which
we do not assume that the even part of F is symmetric.
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Theorem 3.2. A map F : G×G −→ H has the form

(3.4) F (x, y) = f(x + y) + f(x− y)− 2f(x)− 2f(y) + Σ(x, y),

with Σ : G×G −→ H skew-symmetric and biquadratic, and with arbitrary

f : G −→ H, if and only if F fulfills (1.3) and the map Ke+ defined by

means of Fe+ through either (2.9) or (2.14) satisfies (1.4). [Note: Then

Σ = Fe−. ]

Proof. Suppose that F fulfills (1.3) and that Fe+ fulfills one of the
stated hypotheses. By Lemma 2.7, (1.3) carries over also to Fe+, to Fo,
and Fe−.We write F in the form

F = Fo + Fe+ + Fe−.

By Lemma 2.2, we have (3.2) with fo odd. Also, by Lemma 2.6, we
conclude that Fe− is biquadratic, and we put Σ = Fe−. It only remains
to consider Fe+, and (3.4) will be established as soon as we show that Fe+

has the form (3.3) with even fe.
To this end, let us observe that Fe+ satisfies (2.7), by Lemma 2.7.

Thus (since (2.6) is a special case of (1.3)) Fe+ satisfies either (i) or (ii) of
Theorem 2.5, hence Fe+ has the form (3.3) with even fe.

For the converse, we observe first that any F of the form (3.4), with
Σ biquadratic, satisfies (1.3). Next, we calculate Fe+. Since any quadratic
function is even, we have

Fe(x, y) = fe(x + y) + fe(x− y)− 2fe(x)− 2fe(y) + Σ(x, y),

where fe is the even part of f . Then

Fe+(x, y) = 1
2{Fe(x, y) + Fe(y, x)}

= 1
2{2fe(x + y) + 2fe(x− y)− 4fe(x)− 4fe(y) + Σ(x, y) + Σ(y, x)}.

Since Σ is skew-symmetric, this reduces to a representation of the form
(3.3) for Fe+. Therefore, by Theorem 2.5, the map Ke+ defined in terms
of Fe+, through either (2.9) or (2.14), satisfies (1.4). This concludes the
proof of the theorem.

Theorem 3.2 permits us to state a further characterization of quadratic
differences, which is the following.
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Theorem 3.3. In order for F : G × G −→ H to have quadratic de-
composition (1.2) in terms of an arbitrary f : G −→ H, it is necessary and
sufficient that
(a) F satisfies (1.3),
(b) the map Ke+ defined by means of Fe+ through either (2.9) or (2.14)

satisfies (1.4), and
(c) F satisfies

(3.5) F (x + y, x− y) + 2F (x, y) = F (x, x) + F (y, y) + F (0, 0).

Proof. Suppose hypotheses (a), (b) and (c) are fulfilled. By Theo-
rem 3.2, F has the form (3.4) with arbitraryf : G −→ H and with skew-
symmetric, biquadratic Σ : G×G−→H. For such F , (3.5) is satisfied if and
only if

(3.6) Σ(x + y, x− y) + 2Σ(x, y) = 0,

since Σ(x, x) = 0 by skew-symmetry. We have to show that Σ = 0. Now
we employ the representation (see [1]) for the biquadratic Σ in the form

(3.7) Σ(x, y) = A(x, x; y, y),

where A : G4 −→ H is 4-additive and has the partial symmetries

A(x, y; u, v) = A(y, x; u, v) = A(x, y; v, u).

Moreover, the skew-symmetry of Σ implies

A(x, x; y, y) = −A(y, y; x, x),

and in particular A(x, x; x, x) = 0. Inserting (3.7) into (3.6), expanding
by additivity, and using all properties of A we arrive at

2[A(x, y; x, x)−A(x, y; x, y) + A(x, y; y, y)] + A(x, x; y, y) = 0.

Considering the terms which are even in x, we find that

A(x, x; y, y) = 2A(x, y; x, y).

Here the left hand side is skew-symmetric as a function of x and y, whereas
the right hand side is symmetric. Hence both sides are zero. Therefore
Σ = 0 by (3.7), and (3.4) reduces to (1.2).

Conversely, any map of the form (1.2) satisfies (a) and (b) by Theo-
rem 3.2, and (c) is verified easily by direct substitution.

Finally, Theorem 3.2 has another consequence which offers a slight
improvement over part of Theorem 3.1. Namely, if Fe satisfies part (ii) of
Theorem 2.5, then we can remove the assumption (which is a part of (2.7))
that Fe(−x, y) = Fe(x, y). As shown in Lemma 2.7, this is a consequence
of (1.3) for Fe.
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Corollary 3.4. In order for F : G × G −→ H to be of the form (1.2)
with arbitrary f : G −→ H, it is necessary and sufficient that
(a) F satisfies (1.3),
(b) the map Ke defined in terms of Fe by (2.14) satisfies (1.4), and
(c) Fe is symmetric.

Proof. Condition (c) means that Fe = Fe+, so Fe− = 0. The rest
follows from Theorem 3.2.

Open problem. It is still not known if (3.4), with Σ biquadratic and
skew-symmetric, is the general solution of (1.3).
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