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On the automorphism group of abelian p-groups.

To O.Varga on his 50th birthday.
By L. FUCHS (Budapest).

§1. Introduction.

In this note we shall consider the automorphism group') A of abelian
primary groups G. The well-ordered descending chain of characteristic sub-
groups p*G of G (for ordinals «=0,1,...) gives rise to a well-ordered
ascending chain of normal subgroups A. of A. One can intercalate between
consecutive terms A, and A.;; two normal subgroups of A, A, and A;*, and
it is then easy to conclude that A:/A. and A:*/A; are elementary abelian
p-groups, while A..,/A7 is isomorphic to a subgroup of the automorphism
group of an elementary abelian p-group (thus it is a subgroup of a general
linear homogeneous group’) over the prime field of characteristic p). The
cases when G is countable or contains no element =0 of infinite height are
of special interest. In these cases we can completely determine the mentioned
factor groups and give a necessary criterion for G to have soluble auto-
morphism group.

§ 2. Preliminaries.”)

Let G be an arbitrary p-group and pG the set of all px with x€G.
Define p*G for ordinals « inductively as follows: p°G= G; if «—1 exists,
then let p*G = p(p*'G), while if ¢ is a limit ordinal, then p*G=p?G.

pe

There exists a first ordinal o, not exceeding the power of G, such that
p*1 G = p”G. This subgroup p°G is the maximal divisible subgroup D of G.

1) For the automorphism group of primary abelian groups see Sxopa [9], [10], Seeiser
[11] and Baer [1).

2) See e. g. Jorpan [4], Dickson [2], vax per Waerpen [12] etc.

%) By a group we shall mean throughout an abelian one. For the concepts and
notation not defined here we refer to our book [3].
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In this way we obtain a well-ordered descending chain of (fully) character-
istic subgroups of G,

GopGopGo--opGop'GD---Dp°G=D>DN0.

Every element g of G not in D defines a first ordinal y such that g¢ p>G.
This v is of the form «+1, for if g belongs to all pG with 2 less than a
limit ordinal ¥, then g € pG too. If g€ p*G but g§p*'G, then we say g is
of height ¢ and write H(g)= «. For the elements g of D we put H(g)=o.

Let A(G), or briefly A, be the automorphism group of G. The elements ¢
of A leaving p*G elementwise fixed form a subgroup A.==A.(G) of A. A, is
normal in A, for if ¢ € A, and ¥ €A, then weguy!' carries every element of
p*G into itself. Thus we obtain a well-ordered ascending chain of normal
subgroups of A,

E=ACACAS: - CACALS - SACA

where E is the identity subgroup of A.

Define A% to consist of all automorphism in A leaving p**'G and
(p* Q) [p] elementwise fixed.") Then A.SAZSA..; and A% is again normal
in A. Finally, define AY" as the subgroup of all ¢ € A, leaving the cosets
of (p“G)[p] mod (p“'G)[p] invariant. Now ¢ € A7, v €A and a € (p“G)[p]
imply

ayey =@ + by '=(@ + b)Yy '+ by '=(a +bv '+ (b —b)y'=
= a+b" (6, 6,6" € (p' G)[p])

whence A7 is normal in A. Since obviously AZCAYCA,.;, we arrive at the
following well-ordered ascending sequence of normal subgroups of A:

(1) E=ACAICANCAC - CACALCAS CALE--- SACA

In the sequel this sequence will play a basic role.

§ 3. The factor groups A A..

Every ¢ € A induces an automorphism ¢. of p“G in the natural way:
age=—aq for all a€p*G. If, conversely, we are given an automorphism
¢« of p*G, we may ask whether or not it is induced by some automorphism
of G. This situation is considered in the next two lemmas.

Lemma 1. Any automorphism «, of p'G is induced by some auto-
morphism ¢ of G where n is a natural integer.

) For a group H, the symbol H|[p] denotes the set of all elements x in /A such
that px=0.
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Clearly, it suffices to verify the statement for n= 1. Assume that ¢, is
an automorphism of pG, and let B-X{a;} be a basic subgroup of G.
Then the set [a;] is a basis of G mod pG, i.e. every g € G may be written
in the form

) g=ha+ - +ka,+pg  (1=k=p—1; £<GC)

where the terms kia,,, ..., k.a;,,pg are uniquely determined by g. To each
a; of order =p* we determine a b, € G such that pb,= (pa;)¢: and put
b, =a; if a, is of order p. Writing g in the form (2), we put gg=kib; + ---
+k.b;,+ (pg’ ). The mapping ¢ thus defined is clearly single-valued and
addition-preserving. Suppose that gg=0; then (pg)¢ —0 too and so
pg=0. Thus g may be written in the form (2) with”) O(a;,)= p. But then
go=ka,+ - +ka,+(pg)p—0 whence k;=0, pg’=0 and g=0.
In order to prove that every g in (2) is the image of some h € G under ¢,
choose an x € G with (px)¢1=pg. Since g—x¢ is of order p, g—x¢ =
=ka,+ -+ +ka, +pg with a;, of order p. The existence of a y € G with
(py)g=pg’ implies that g is the image of h=x-4-ka,+---+k.a, +py
under ¢. Consequently, ¢ is an automorphism of G inducing ¢, on pG.
The next lemma is due to ZipPIN [13].

Lemma 2. If G is countable, then every automorphism ¢. of p“G is
induced by some automorphism ¢ of G.

¢. preserves the heights H(a) of the elements a € p*G, for if a has
height 2 in p“G, then it is of height ¢+ & in G. We employ the method of
proof of ULm’s theorem due to KAPLANSKY and MACKEY [5].") Assume we
have a mapping v, with the properties:

(a) v, is a height-preserving isomorphism between the finite subgroups
U, and V, of G;
(b) v, has the same effect as ¢. on U,np*G.

When we extend U, to U,,;, we take an element ¢ in G such that pa€ U,
and a is proper’) with respect to U,, and then proceed to U,.={U.,aj}.
In the cited proof it is shown that there exists an element ¢ proper with
respect to V., pc€ V,, by the aid of which v, can be extended to a height-
preserving isomorphism 4,,, mapping U,.. onto V,.=1{V,,c} such that
ay,.1=c. We intend to show that ¢ can be chosen so that properties (a)
and (b) hold for the index n+1.

%) O(x) denotes the order of the group element x.
%) Cf. also Kapransky [6] or Fuchs [3].
) a€ G is called proper with respect to U if H(a) =H(a-} u) for every u in U.
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If H(a)<e, then H(a+ u)= min(H(a), H(u))= H(a)<e for all u € U,,
thus U,.. np*G=U,np*G, and the same equality holds for V,,,. Conse-
quently, v, has the desired properties (a), (b).

If H(a)=«, then H(ag.) = H(a) and a¢. must be proper with respect
to V., since if we had H(ag.+1)>H(ag.) for some »¢€ V,, then surely
H(r) = H(aga) = @, ag.+v € p* G, whence H(ag.+ )= H(a+v¢.')>H(a)
(rg,' € U,) would be a contradiction. We have further (pa)w,— (pa)g.—p(ay.),
and so we can take ag. for ¢ in the proof of ULM’s theorem.

Now using the same inference as in the proof of ULm’s theorem, we
conclude that the sequence vy,(n=1,2,...) defines a unique automorphism
¢ of G inducing ¢. on p*G. Q.e.d.

By making use of these lemmas we can prove:
Theorem 1. /f G is a p-group, then for every natural integer n we have
A(G)'A.(G) >~ A(p'G).
If G is countable, then for every ordinal «
A(G) Ac(G) ~ A(pG).
If ¢ € A(G) induces ¢, € A(p*G), then put ¢—¢.. This correspondence
is a homomorphism of A(G) into A(p*G) whose kernel is obviously A.(G).

It is onto A(p“G) whenever « is a natural integer (by Lemma 1) or G is
countable (by Lemma 2).

§ 4. The factor groups AJ/A..

Now we turn our attention to the groups A. and want to determine
the structure of AL/A..

Let B” be a basic subgroup of p*G and write B“— > Bi where B

is a direct sum of cyclic groups of the same order p. An;( @ €A S
completely determined on p*G by its effect on the elements of some basis
of B. If ¢€A., then ¢ acts identically on BY. Let a; be a basis element
of Bi4+--+Byu+--- and ¢ €As; then ag—a.+g. with g, € (p~G)[p],
since pa;, = (pa,)p = pa, +pg;: and ¢ is height-preserving. Therefore every
¢ € Az defines an element <...,g,,...> of the complete direct sum of
r(Bi+ - +Bi+ ) =r(pB"/p*B") = r(p""' G/p"” G) copies’) of (p=G)[p).
If peA: defines <...,h,,...> similarly, then (..., 0,..0={..,M,...>
if and only if ¢ and v have the same effect on p“G, that is, ¢y €A..

¥) See e. g. my book [3].
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Because of @9y =av+ gy =a.+h.+g. the automorphism gu €A%
defines the sum <..., g, +h.,...>. We are led to the first half of

Theorem 2.") The factor group Az/A. is isomorphic to a subgroup of
the complete direct sum C. of r(p*'G/p**G) copies of (p“G)|[p). If e« is
a non-negative integer or G is countable, then A,/As~ C..

The second part will be proved if we can show that in the mentioned
cases the elements g; can be chosen arbitrarily in (p“G)[p]. Let {...,g:,...>
be an arbitrary element of C. and define ¢ to act identically on
(p'G,(p*G)[p]} and arg=—a,+g:. It is easily seen that ¢ is an auto-
morphism of p*G; in view of Lemma 1 resp. 2 it is induced by some
automorphism ¢ of G. Evidently, ¢ € A%.

§ 5. The factor groups A A%.

Let [6.] be a basis of (p“G)[p] mod (p**'G)[p]. Then BY—=21{b.} is
a direct summand of a basic subgroup of p*G and hence of p*G;
B ~ (p*G)[p)/(p*G)[p]. By definition, every ¢ € A2* maps b, into some
b.+g. with g.€(p'G)[p]. If weAy carries b, into b.+h., then
Coves@uy oo p=C ooy By, ...» if and only if @ and y agree on (P*G)|[p)
that is, ¢y !'cA,. Since b.py=(b.+g)v=>b.+h.+g. implies
gPp—<...,g.+h,,...>, therefore the correspondence ¢ —<..., gu,...> is an
isomorphism of the factor group AY /A% into the complete direct sum of
r(BY)=r((p"G)[p)/(p"" G)p]) copies of (p“"'G)[p]. This isomorphism is
easily seen to be onto if « is a non-negative integer or G is countable.
Hence we infer:

Theorem 3. The factor group AY'/A. is isomorphic to a subgroup of
the complete direct sum Da of p.—=r((p*G)[p] (p*+' G)|p)) copies) of (p**' G)|p].
If e« is a non-negative integer or if G is countable, then AL /AL~ Da.

§ 6. The factor groups A.. /AL .

Let BT have the same meaning as in § 5. Then p“G = BY 4+ H". Now
if ¢ € Axir, then b, —=c.+g. (c. € BY,g. € H*) and the mapping b,—c, is
easily seen to induce an automorphism v of BY. If ¢, € A,.:1 defines similarly
¥ € A(BY), then g¢,—wyy, and clearly v — vy if and only if ¢, leaves

") The first part of this theorem has been proved in [3], but its formulation is not
quite correct,
10) p, is the ath Ulm invariant of G; see KarrLansky [6].
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every b, in the same coset mod (p*'G)[p], i.e. go:' € Ax*. We obtain an
isomorphism between the factor group A../AZ" and a subgroup of A(B9).
This subgroup coincides with A(BY) whenever « is a non-negative integer
or G is countable.

The automorphism group of BY depends only on the rank r(BY)= p..
A(BY) is known to be isomorphic to the so-called general linear homogeneous
group GL(p«, F,) on the vector space of dimension p. over the prime field
F, of characteristic p.

Theorem 4. The factor group A..i/As" is isomorphic to a subgroup
of GL(pa, F,) where p. is the «th Ulm invariant of G. If « is a non-negative
integer or G is countable, it is isomorphic to GL(pa, F,) itself.

Observe that Theorems 2—4 yield a full description of the factor groups
in (1) in the following two important cases: 1. G is countable and reduced,
2. G contains no elements 0 of infinite height.

§ 7. Remarks.

For infinite groups Kuros and Cernikov [7]") defined different types
of soluble groups (which are equivalent in the case of finite groups). Recall
the following definitions:

A chain 7" of subgroups of a group A is a normal system if (i) /°
contains the trivial subgroups of A, (ii) /” contains the union and intersection
of any set of members of /7, and (iii) A" € I" is a normal subgroup of A" € I’
whenever A’ A” and /" contains no B with A’cB8cA”. If all members of
I" are normal in the whole group A, /" is then an invariant system. [If /” is
well-ordered with respect to inclusion, then it is called a normal (invariant)
series.] /7 is a soluble normal system if all factor groups A”/A" with A", A” as
in (iii) are abelian. — Now the group A is said to be an RN-group if it
has a soluble normal system and an RN-group if every normal system of it
can be refined to a soluble normal system.

The subgroups A., A%, AZ" of A do not form an invariant system, since
they do not satisfy (ii). For limit ordinals 3 we define the groups A"Y as
the union of all Ag with <y to obtain the system

3) Ei MEMCCAE L EMICLELEIPEE. O  CREA

which is obviously an invariant system for A. Clearly, A will be an RN-group
only if in (3) the factor groups Ai/A., A% /A%, Aasi/Aa” (for every «) and
A,/AY (for every limit ) are all RN-groups. The first two types of factor

1) Cf. also Kuros [8).
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groups are always abelian, thus A is an RN-group only if the factor groups
Aair /A% and A,/AY are RN-groups.

Assume that G is a countable reduced p-group or a p-group without
elements of infinite height, and A(G) is an RN-group. Then all the factor
groups Aqi/A. must again be RN-groups, and a fortiori RN-groups. Since
subgroups of RN-groups are again RN-groups, in view of Theorem 4 we
conclude that all groups GL(r, F,) with natural integers r=p, have to be
RN-groups, i. e. soluble in the sense generally used for finite groups.
JORDAN [4]") established a composition series of GL(r, F,), by showing that
it contains a simple non-abelian group with the exception of the following
cases: r=1 for every p and r—=2 for p=2,3 in which cases GL(r, F,)
is soluble. Hence we obtain as a necessary condition the inequalities: p, =2
for p=2,3 and p.=1 for p=5. If this condition is satisfied, then
Aqir /AL are finite soluble groups, and if in case p.=—2 we insert between
AY and A,.; subgroups corresponding to the commutator series of A..; AX,
we obtain from (3) a finer series which shows that in the considered case
A(G) is an RN-group only if the factor groups A,/A” are RN-groups.

Since we have no criterion for A,/A® to be an RN-group, a complete
result can be stated only if G is a bounded group. In this case we have:
If G is a bounded p-group, then A(G) is an RN-group if and only if G
is finite and its invariants are =2 in case p=2 or 3, and are =1 in case
p=D5. Then A(G) is a finite soluble group.

Note added in proof, July 10, 1960. Professor K. A. HIRsCH has kindly
called my attention to the fact that one of his pupils, MRS. FREEDMAN, has
also investigated the automorphism groups of primary abelian groups.
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