On a problem of Hardy and Littlewood
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1. In a paper published recently, we referred to a problem essentially
due to G. H. HABDY and ]. E. LITTLEWOOD:") obtain sharp estimates for sums
of the type > B,(n.x—[n,x]) and for their quadratic integral means,

I=y=N

respectively. Here B,(u) denotes the BERNOULLI polynomial of degree r, ge-
nerated by the expansion we'*/(e"—1)=1-+B,(u)w+--- (w|<2x), n.(v=
=1,2,...,N) is a finite sequence of distinct positive integers, [n,x] the
integral part of n,x; the stress is laid on upper bounds depending upon N
only, which are common for all N-tuples considered. This difficult question
is of importance in the theory of diophantine approximations®) and has not
been treated yet in full generality. The particularly interesting case of the
integral mean ofl .\ B,(n X —|n, x])— Z (n .x—[n,x])—N/2 has been

solved completely by l S. GAL,”) on the ba5|s of the well-known fundamental
identity

1

(1.1) .l‘(afg—[flfz]— %) (hbtl*[bu]-— %) dit = ]g;:ab)b}

(where (a, b) signifies, as usual, the greatest common divisor, {a, b} the least

common multiple, respectively, of the natural numbers a, b); by (1.1), he

discussed the sums > (m., m)/{n,,n} and concluded at the same time
1= N

P
k=

an estimate for > (n,x—[n,x]) (N—o), almost everywhere.
I=v=N

1) Cf. [9], [10], [21].

2) Cf. [13], Ch. VIIL.—IX. and [14]; a question corresponding to the case r=1 has
been seted as a prize problem for 1947 by the Scientific Society at Amsterdam.

%) See [5]. — The problem has been posed to him by P.Ernds who gave a littie
less sharp upper bound.
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After having given some time ago — in connection with certain ana-
lytic number-theoretical investigations — an extension of (1. 1) for BERNOULLI
polynomials,') we proved in [21] a. o. the still more general integral relation

1
I c(1—s,au—lau])s(1—s, bu—|bul)du —

(1.2) 0
. £(23) ((a, b))

20 {a, b} | (.’”(‘*) >5))

(which becomes (1.1) for s==1) and, getting the formula

= 2I(sy’

(1.3 I ‘f_: L(1—s, n,u—[n,u)) r du —

=20(s)' (@) “E(25) 2 Y fﬁf:ﬂ";) [#e>)

raised the question of estimating the right—hand sum.”) Since Z(s, u), the well-

known zeta-function of HurwiTZ (arising from > (u+m)”, N(s)>1,

=

analytic continuation with respect to s) “interpolates” between B,(u), B.(u), ...
in view of

(1.4) {0—ru)=—@—DB,@@) (r=1,2,...),

(1. 3) yields a near extension of the problem above-mentioned.

Now, the present paper has a double intention: to obtain the widest
“natural” generalization of the characteristic integral formula (1.2) and to
study the correspondingly generalized problem of HARDY and LITTLEWOOD.

It proves to be very useful to introduce the function

(1.5) 3u(u) = I'(s) "E(1—s, u)

where (s, u) = {(s,u) (O<u=1), having the period 1 with respect to u, i. e.
S(s, u)=2C(s, u—|u)) for u not-integer; (1.5) is, as easily seen, an entire
function of s and plays an important role in a theory of differentiation and

1) Cf. [16], Lemma 5., p. 106 and [21], p. 45; cf. also [26], f. (21). — Reading the
proof-sheets, we get knowledge (from a review) of certain interesting articles of N. P. Romanov
([27], [28]), in which the mentioned formula for Bernoulli polynomials is used likewise.

%) The last restriction is essential, since the left-integral, as we showed there, does
not exist in Lebesgue’s sense for N(s) =1 2.

) Cf. [21], p. 52. — In consideration of several reflections received by the author,
the subject of [21] seems to arouse some interest. We also refer to quite recent related
papers of L. J. MorpeLL and L. Carurz ([24], [1]—[3]); the last has been written, whilst
the present work was under press.
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integration of complex order, published lately by the author.”) — Next we
obtain a “transcendental” functional equation for 3.(u), involving a resultant”)
of the form 3, (cu)* 3.,(3u)|(x) (¢, 3 arbitrary integers £0) and A = { e, |3}
(Theorem I.). This result is a simultaneous extension of (1.2) as well as of
the “semi-group property” (cf. [23], (11.19))

06 ) 30 () % 3e(1) [ () = Bupsn ()
' 10 <x<1; R(s)) >0, N(s.) >0)
and implies, in particular, the following generalization of (1. 3):

| feraeim,0n-
1.7 4

n:_l . n::

N

St 7T 2 )

] — 2(2.‘!) ’ }COS 5 (S|"_33):~(Sl +Sg) 2 i ?
mi= {g, my

where N(s,)+ MN(s.)>1 and
N
(1.8) OF (A, u)= 2> 3.(n,u).
=1

(Observe that, by (1. 4—(1.5), we have @) (i,,x)—=— 2> B.(n.x—[n.x]),
1=Sv=N

o P S
The second part of the article deals with the sums

v

N 0 ]
1.9 > LAY ¢ R, (,m) _ ~o
( ) l. —( ) "I.JZl nglnr;! LJH_] {nky nf}{’

(=0, 6,=0, 6,=0).

+r O+ir,
Hﬁ S

By means of a new form of (1. 9) (cf. Theorem Il.), we obtain general O-results
of the desired type, namely in any case where this is possible altogether —
apart from a limiting one; the simple method permits also the evaluation of
certain double series and asymptotic formulae when n,=—»r (r=1,2,...)
(Theorems IIl.—IV.). The last-mentioned applications lead to a generalization
of the idea “average order” for functions of several variables. — Finally, on
the basis of (1.7)—(1.8), we deduce an o-estimate for |@ (i,,x)|, holding

7) See [23). — We take, of course, 3,(u) — lim I"(s)'$(1—s, u) — —1.
sl

%) We use the usual notation for a resultant (convolution) over (0,1):

1 1
Ji(a) % fo(@) (%) = | Fy(x— D fu(dt = | LOL(x — i,
0 I\

where f,(u), fo(u) are L-integrable functions, having the period 1.
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almost everywhere ; here we use a theorem of I. S. GAL and J. F. KOKSMA on
the order of magnitude of summatoric functions (Theorem V.).

2. In what follows, s= o+ ir denotes a complex variable, while x, ¢
and u are always real. — All integrals are to be taken in LEBESGUE’s sense.

Theorem 1. Let s, = o, iv,, s, = 0.+ it be arbitrary complex numbers
with 0,>0, 0,>0, « and  arbitrary integers =0, A the least common
multiple of |«| and |3|.

Then we have for all x=v/A (r=0, +1, +2,...), in the case 6,4+ 0,>1
even for Ax integer, the relations :

3 () % 3., (Bu)| (x) =

8y 0,:52 . y
% Beia((sg @) AX), if sga—=sgp;

2.1
( )= le|™ |8

A" sin (s, +5.)
when sge==sgp and s, s, is not integer.
Proor. Let s, s,, «, 8 be fixed.

1° We begin with the statement that, by certain properties of (s, u)
published elsewhere (cf. [21], p. 47—50; [20], p. 145—147), 3.(u) is con-
tinuous everywhere if 0>1 and for u=0, +1,... when O<o=1; in the last
case, we have

[sinzrs, 3. ((sg @) AX)+sin s, 3. ((sg 3) A X)),

(2.2) lim 3.(u) = I'(s) '£(1—s),
but '
(2.3) J)=IG)"d"'+00) (u—+0),

so that | 3.(z)| remains bounded (with o=1) or becomes infinite as u”!
(with o<1) for u— 40, respectively.

Hence, using also the periodicity of 3.(«), we conclude that 1. 3, (cu),
3., (Bu) are of the class L(0,1); 2. the resultant in (2.1) exists for almost
all x and is L-integrable in (0, 1).")

2° In order to obtain the Fourier series (over (0, 1)) of 3 (cu)* 3..(51)|(x),
we apply the representation
(2.4) ;%(zt)zcosﬁig—cm sin:rsjw
= (2kay 25 (2ka)
(0>1; —x<u<x),

%) Cf. e. g (11}, p. 10, Th. 4.
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resulting immediately from the so-called Hurwitz formula for Z(s, u) with
o< 0;") since we showed recently this to hold even for 0=0<1, O<u<l
(cf. [21], p. 49 and [20], p. 148), one finds that (2.4) remains valid for
O<co=1, a0, +1,... 100

Next we use the well-known fact, that if the Fourier coefficients over
(0,1) of fi(w)eL(0,1), fi(u)e L(0,1) are A',2A4,,2B,, (m==1,2,...) and
A, 2A5,28, (m=1,2,...), respectively, then™)

.5 H@*L@0)~AA+2 > [(A, Ai— B, Bi) cos 2mztx +
- m :—1
+ (B A + A, By sin 2m e x].

Since, by (2.4) and a theorem of DE LA VALLEE PoussIN,”) for fi(u) =
= 3o (cu) we get (m=1,2,...):

A:r'_' 0;
TN LR R N

A:ﬂ__stl?i“],r) cos — with Tl integer,
(0 otherwise ;

s (2|“|.r) sin — with ] integer,
0 otherwise,

and A7, A.., B.. are similarly obtained in case of f,(u)= 3.(3u), the appli-
cation of (2.5) yields

l 3"!(“ U) * 3‘.-2(}3“) i(x) o
|“|I‘|1 !id i' ;‘ - (SEs) [ T P .

(2.6) - J [ = (2k:7) c0s o (5 + sg (e P)s.) cos 2kt Ax)+
I -+ sin _27_ ((sg @)s, + (sg #)s.) sin (2k:v.1x))

with 4 = {|e|, |3|}.

3° Now, we know (cf. (2.4)), that the sums
“l‘s(ﬂ)z '\‘22005 2k.;-ru
= (k=)

( (1) = \‘f 2sin2k:tu
\ = (2ka)

2.7 (o 0)

10y Cf. [30], p. 268.

1) Cf. e.g. [11], p.23, Th. 29. — In our case, it is more convenient to write “real”
Fourier series.

12) Cf. [11], p. 91, Th. 100.
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not only exist but also are continuous for u=£0, +1,... and, if 6 >1, even for
all u. Hence the Fourier series in (2. 6) converges to the continuous function

e[ "

I\,+a-

cos ((sg @) s, + (sg 3)8:.) Ry, o, (1 X) +
(2.8)
+sin - 2 ((sg @) 8, + (8 ) 8:) Qs 5, (- -lx)J 2

provided that ./x is not an integer i.e. x==»/ 4 (r=0,+1,+2,...); and
this holds also at the points x last-mentioned when o,-40,>1. At the same
time, it follows that (2.8) must be equal to the convolution (2. 6) for almost
all x.

On the other hand, we can verify immediately, that 3, (cu)* 3..(5u)|(x)
is continuous at every point in question. — For, suppose first that o, + 0, >1.
Then 3, (cu) and 3. (Su) belong to conjugate L-classes, namely for o, =1,
a,=1 because of their boundedness and integrability, otherwise, e. g. if
0,<1, because of 3 (eu)€ LV1-7#0), 3, (Bu) € L' @ (>0, sufficiently small ;
cf. (2. 3)). Therefore, by a well-known proposition on resultants,") our asser-
tion is now valid for all x. — Secondly, consider the case 0,4+ 0,=1, a point
x#0, +1/4, +~2/d,... being fixed. Then write

=
A

@9 3B h— )3 (BNt = 3

and split the »-th integral on the right into three parts

S
A

(210) | 3.(DI3(Bcth—D)— Bu(Fx—0)lat = l' + |+ )

o =3 Sl 2
with 0<d<(2.1) ". We observe that 1. if # runs over ((»—1)/4, v/1), then
«-t is between (r—1)/.4, and »/ A4, with A4, = .1/« (integer), i. e. in an interval
which contains no integer except possibly at the ends; 2. there is an interval
J»» of the type (p, | 4|, (p.+1)|4,)7") with p, integer, .1,= .1/3, containing
the point g(x—(vr—1)/A)=(Ax—r-+1)/4, in its interior, and thus two
points: &, 1<& can be marked in /, such that the |8 d-neighbourhood of
#(x—(r—1)/4) and of #(x+h—(r—1)/.1) belong also to (&1, &) — if only
o and |h| are chosen sufficiently small.

) [11], p. 11, Th. 5.
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Let us assume that this last restriction is fulfilled, then after giving an
£¢>0, we have

r-1 r-1

_(i.-+d ‘_+6
| <2 max [3.(u)|- | 13 ()| dt <~
| ‘ (‘: 1 f, -1 3
'A—
x |
[{<2  max 3@ [ |3.(enldt<
o8 (Gra— AT, & — A5 L7

for 0 small enough and (0 fixed)

a? 5
A ”_lma’: RACHIE | | 3u(B(x+h—1))— 3.(3(x—1))| dt<
‘_;_14.5. (-A-—M,I—d) :Tl

provided that |A| is suitably small. Consequently, the integral (2.10) remains
<é& in absolut value for |h|< 3= 3(¢); since this is true alike for » =
=1,2,...,4, (2.9) yields the desired result.

After all, we get that 3 (cu)* 3, (5u)/(x) equals the expression (2.8)
for every x when 0,4 a,>1, and for x=0, +1/.4, =2/, ... otherwise.

4° We have still merely to verify that (2.8) may be written in the
form (2. 1).

In fact, when sg«=sg g, then considering that (cf. (2. 4))

‘ oS ; V() = % [3:(u) 4+ 3:(—u)]
(2.11) (0>0),")

)Sm - Qi) = [33-(11)—35(— u)]
the terms in brackets give ;,x,ﬂ,g(.fx) for « >0 and 3.+, (—Ax) for ¢<0,i. e.
3. () % 3.,(8u) | (x) =
= _i_.-;;llf cos— (814 82) P ie. (A x) + (58 @) sin - ($,+s)L.,s o~ !x) =

) el |8

= r_—r— Jeia((sg @) A x).

1) Hence it is easily seen, that ¥, (u) and T (u) are also entire functions of s, since

s s
the poles of sec — 2" cosec? are “cancelled” by the corresponding zeros of 3 (1) + 3,(—u).



On a problem of Hardy and Littlewood. 165

If sge=—sgg and s,+s.5r (r=1,2,...), then the use of (2.11) leads to
Ju(eu)* 3.(Bu) |(x) =

o it L 23.?,?@(&)

5 g cos (s, $,) sec > (sI +8)+(sge)-

+ Buon(—40) |

-sin - > (9, S)) cosec - 5 (s, 4 s,,) cos . 5 (s, s,) sec (s, + 8,)—
- s 3% T T ]s .
(sg «)sin > (s;,—s.) cosec ) (5,+5.) (5

this is by the identity (f,-}—n:f:O + L, +22 )

2 e 1
2sin 2, .
——r—————  With x==0,
cos (1, — )+ (—1)" sin (r,—1y) __)sm 2(vy +14)
Cos (# + ) sin (;-, +-:'2) 2sin 23_-__, ith .
sin 2(v, 4 1) hoiadtl. deeit.

equivalent to the second part of (2.1), as an easy survey on the sign pos-
sibilities shows. Q. e. d.

3. Consider now the remaining case (*) sge+sgg, s,+s,=r (0,>0,
a,>0,r>0 integer) and a few remarkable particular cases.
For (*), we remark first that")

@ 2cos2k: LU
Bo(u)= D' ——
()= = 2kn)
(3.1) S(_l)ﬁlf_’?—“(“)s if r=2p (v=1,2,..),
= (1" | [ Bowes () — Bor ()] ctg se(t—u) dt,
( ¥ r=2p+41 (p=1,2,...);
= 2sin2k:tu
n e Y —_— ==
B e e
(3.2)

‘ (—1)" | [ Bou(t) — Buw)] ctg se(t—u) dt,
i if r—=2u (p=1,2,...),
8(_1)-“'*‘ Bais(iy, #f p=2pb1 Gi=0,1, .

15) Cf. [25], p. 65—66. — We use another notation of B, (u) (cf. § 1, see Knorp,
Infinite series), which differs from that of NorLuxp by the factor 1/r!.
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Here B,(u) signifies, as usual, the periodic function with period 1 for which
B,(u)=B,(u) (0=u<]l), i.e. B,(u)= B,(u—[u]). Both formulae hold for
all # as r>2 and for us£0, +1,... if r=1; incidentally, in the last case
(3. 1) becomes

33) w@=X 2 Lig@sinan) @0, +1,..).

k=

On the basis of the proof of Theorem 1. and of (3.1)—(3.2) we can
write

o g B0 ]9 =
@.9) | — €08 S, - Bou (Ax) 4 (sg @) sinzws,- Lo (Ax), if r=2u,
) —sin 28, fouer (A x) + (sg @) €08 78, Bayur (Ax), if r=2u+1,
where
(3.5) I,(u) :ﬁj'l[B,(r)—B..(a)] ctg 7t(t—u)dt.

Summing up, we have (cf. (3.5))
Js(eu)* 3, . (Fu)|(x) =

(3.6) I = Li-j—';r [(sg &) sin 7ws,-1, (A x)—cos zts,- B, (1 x))
l (—Asge)

(sRafegl; Ococr; r=12,...)

and this holds for all x if r=2, for xs£0, +1,... when r=1. — Therefore,
in the case in question, the convolution of 3 (¢cu) and 3. (su) can be
expressed with the aid of Bernoulli polynomials; it is worthy of notice, that
— as the above considerations show — (3.6) may be regarded as a special
(limiting) case of (2.1), arising for 6,4+ 0,—r.

If «=pg=1, (2.1) becomes

3.7 3s, (1) % 3, ()| (x) = 3s,00.(%) (6,>0,0,>0; 0<x<1),

i. e. the “semi-group property” of the functions 3,(u) with respect to the
resultant operation, proved and used in [23], § 11. — On the other hand,
by putting ¢ =a>0, 3= —b<0, . = {a, b} =ab/(a, b), assuming 6, + 0,>1
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and writing x=0 we get")

~a"b” sinas;+sinas, {(1—(s,+5s))
[J} SRR {a, b)"*" sinzz(s+$.) F(si+s)

__(a, ) il 2 5
arh ey

(3-8)

08 % (5, —58)5(s+5.);

in particular, for s,=s,=s=o0+4i7r and for s,=s, s, = §, =75, respectively,
(3. 8) yields the formulae

oy g _ (a,b)" 28(2s) RS
(3.9) ‘f&mn&wnm—-aw,(mﬂﬁ (o> 5 ).
(a,b)" (a)" 2t.(20)ch T PR
(3. 10) jg,(ar)g(br)dr_ 2 (0] e (0) 2J' )

which are equivalent to the results given for I(s, #) in [21]. — Hence we see,
that Theorem 1. represents the simplest common generalization of (3. 7) and
(3.9)—(3.10) — namely in form of a functional equation.

1
Another interesting case is: «—=a>0, g—=—b<0 with x= - 5 where
we obtain

_|‘3~,(a HRM (bH— %] e

@.1) {__a'b" sinas+sinzms, (1);
@ oy sl ts) ow\z)=  (320.%>0

- (a, b)sﬁ-m_. 2(21 (5, l-x:}_l) A
ax, bx. (2 :_'_).w; by

since, as we know,

05 5 (=) 5(s+52),

t(sg)=@-nte G+

1%) We apply the functional equation of .-.“(s*) in the form:
&(1—s)=2(2a)™" cos F(s) £(s).

17) Concerning (3.10), we used also the well-known facts, that I'(s) = I(s) and
£(s) = £(3)-
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We mention, that 1. as we proved quite recently, the functional equa-
tions (3.7) and -J-a;-l- 3s1(1) = 3s(u) substantially suffice, to characterize 3.(u)

uniquely (cf. [22]); 2. (3.8) for a=b=1 implies also the orthogonality
relations given elsewhere for C(s, u) (cf. [20], Th. 3.); 3. all the above for-
mulae furnish certain “integral properties’ of the Bernoulli polynomials for
$;, S, integers by (cf. (1. 4))

(3.12) 3. (u)= —B,(u) (u not-integer; r=0,1,...).

For example, (3.7) becomes for s,=p, s,=—¢q (p,q positive integers)
1

(3.13) | B,(t) B,(x—t)dt — By, (x) (0<x<1).

Furthermore, writing « =a>0, #=—b<0 and putting s, =p, r=p-+4q in
(3.6) or s,=p, s,=¢q (p,g=1,2,...) in (3.8), it follows

1
(3.14) J B, (at)B,(bt)dt — (—

1yt @0 By
a'’ (p+o!’

where B,., = (p+¢q)! B,+,(0) denotes the corresponding Bernoullian number; ')
we conclude similarly from (3.11):

. ”” 3 -
(3 11) 1 )S’JI,((”')B“i tb{+ %J df:(_l),ﬂ-l(zl-u-rq) ) (ﬁ' b) B,H

a't’ (Pt

(3.13), as well as (3.14) and (3.15), are at the same time extensions of
certain results of NORLUND (cf. [25], p. 31.).
Finally let us notice, that the apparently more general formula

1
J 3., (6 +aur) 3., (. + bur)du =

@ o

3.16) J _ lal[b]* ;cos—[(sgu)s'i—(sgh)si]].m,, [ (——“)]+

+ sin = [(sgn)s,—(sgh)s]wﬁ,( (%_.:_n!

— where a, b denote integers =<0, ¢={la|,|bl}, %, >0, 6,>0 and

1¥) Here take into consideration that B, B,,... are equal to zero and {(r)=
= (=1)"?'B (22)/(2r) if r=2,4,.... — For (3.14), see also [24], (14).
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(¢/a)x,—(¢/b)x,=0, = 1, ... should be taken — is a consequence of (2.1)
in the (2.8) form; we have only to write ¢ =aq, #=——0 and x = x,/a—Xx,/b.

4. Let n, < n,<---<ny denote an arbitrary finite sequence of positive
N

integers. As a natural generalization of > B,(n,x) (r=1,2,...), we consider
y=1
the sum (cf. (3.12))

4.1) O (#,,x)= _‘é 3s(n,x)=I'(s) 'ig(l—s, n.x—[n,x])  (6>0)

r=

and connected integrals of the form (s, =o,+iv,, s.=0,+i1.)

1
(4.2) G, () = | O (ay, u) O (1, w)du;

by (3.8), this last may be written (0, +0,>1)

1
l Gl (i) = X | 3u(mu) 3u(mu)du=

(4.3) 1SN ¢
l = 2(2:2) “** cos 21 (51— 5)5(5: + 8) Yo, o, (1)
with
N ) __Sg N §+5a
(4. 4) L 1 S B, T e
1, #a x,.ik-:l {nx, nl}h',+n-._a u?l n;"ln;

It is clear, that the estimation of G2 .(1,) from above depends on
upper estimates for A, . (@,), namely we get from (4. 3)

5 . ¢
g |3 (@, u) O (i, wyd u | =
(4.5) L |

[ =2y en X (=) (04 ) ()

Hence, in connection with the generalized problem of HARDY—LITTLEWOOD,
next we turn our attention to the sums of following type:

: N : e
(4.6) w0, i) = > Lot

k=1 Rp N

where 0,>0, 0,>0 and ¢ arbitrary real.
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5. Before we deduce a fundamental identity concerning (4.6), we
need the following extension of Euler’s arithmetical function ¢(m):
Let m==pypi:---p/» be the standard decomposition of an integer m>1 into
prime factors, and ¢ a fixed real number, then we define

5.1 ¢, (m) = me(1—p;¢)(1—p;0)---(1—p,?),
furthermore, in addition,

(5.2) (1) =1.

Thus e. g.

s 3 {1l i m=1,

(5.3) (M) =0 it m>1

and

(5. 4) ¢i(m) = ¢ (m)

for all m.

As is at once to see, ¢,(m) is multiplicative and can be expressed by
means of the Mobius function w(m) in the following way :

(5.5) Folm) = m' 2 u(d)d ¢ = 2 d'n [%)

the summation extending over all positive divisors of m; (5.5) implies, in
view of the MOBIUS inversion formula'):

(5. 6) 2 pe(d) = me.

o

(5. 1) shows that ¢,(m)>0 if >0 and sg¢g,(m)=(—1) for 0<0; we
have plainly for all m>1

{5:7) go(m)y<me (0>0)
and
A T
5.8 ) gl———u| =] 0<0).
5.8) /<[, <1 <o)

Since, by the well-known multiplication rule of DIRICHLET series and
by (5.6), it subsists

. TRy

(5. 9) ( NPe(m) 1) ST 1
e TR o o e’

) Cf. e. g [12], p. 236.
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provided that each series here converges absolutely, one finds the generating
function (cf. (5.7), (5.8))
Ss—0) N %e(m)

(5.10) 10 T (0> max (1,04 1)).

Note that ¢,(m) has been applied incidentally by A. SELBERG ([29]) in
connection with the investigation of C(s) on the critical line and, for negative
integer o, implicitly in [16], [18] (cf. also [19]);*) to the conspicuous relation-
ship of the last-mentioned functions with u(m), we will come back elsewhere.

6. Now, it seems to be useful to state explicitly the following general

Lemma. Let E be given set of pairs a,b of positive integers, f(a, b)
an arithmetical function defined over E, then

(6.1) 2 fa, )= > pnd) 2 fldedB)?)
o, bEE dl(a, b) ] L
(a, by =1 o, bEE e=—, f=-
integers
a, beR

In fact, to obtain the sum on the left, we have to omit from

(6.2) > f(a, b)

o, beE

the terms corresponding to a, & which have af least one common prime factor,
that is to form the difference

> fab)— 2 f(pe,pd);
m be K p prime
i b
o=—, P:
P "
integers
a, bEFE

but, in this way, we taked into account twice the pairs a, b having two or
more distinct common prime factors, hence consider

N N\ ~ , .
2 flab)— X flpe,p)+ 2 f(pp'e,pp'd),
o beE 1 prime i " prime
o= iﬁ h. a_._‘_r_ —
o v PP "
integers integers
o, hEE a. bEFE

2) Doing the proof-reading, we find that qrfp(m) has been used quite recently by
B. Gvires ([8]) to give an elegant extension of the determinant theorem of Smir.

2) The left-hand sum extends plainly over all pairs a, b of the set E for which a
and b are relatively prime, etc.
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etc. — The final step leads clearly to a sum which may be written as the
right-hand expression in (6.1) and, on the other hand, we see that then all
terms of (6.2) have been “sifted” for which (a, b) >1.

Next we establish

Theorem I1. For every sequence n, (v=1,2, ..., N) of distinct positive
integers and for arbitrary o, 0,, 0., it holds the formula (cf. (4.6))

6.3) Wit )= X LD 20 )2k d)
1=9 l'N
with
(6.4) Z (iid)= 2 ¢’
r;,,ruﬁ'-:int.
I=y=N

The summation in (6. 3) is extended over all different divisors of the N-tuple
(n,),”) while {6.4) is to form in considering all the quotients n,/d,..., nxd
which are integers.™)

PrROOF. Applying (6.1), we can write

Wit (iy—= > (o) Z b 3

oy, oy 4 H —1'_'_
gy et A P L (0)7 ()
(l‘;. ﬂ” =1
1=k I=<N
- FET D By 2 )T =
(6.5) - =

I=r=N d —-'—ITI‘ 9;= T'flﬂt.
I=p=N 1=k I=N

— z’ 3‘9 (o +ers) \u ;;tr((fz Z ( ,,fd)Z.r (nl’ )

1 il
I=»=N 4 —r int.

1=yp=N

=) Therefore the dash on the summation sign indicates that eventual common
divisors of the n,-s are to be taken only once.

*) We remark, that (6.3) may be state also in a little more general form: in case

of Z Y‘ (n,, n)° n}’ln, (N;=N,) we have only to write N, in (6.3) under the
1Sk=N, 1= I"" N,
summation sign and Z;}I', Z: for Z,‘:I, 2y,

Ta

respectively.
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Hence, by further appropriate rearrangements, we get (cf. (5.5))

\][N 0 (H )_ Zr U(d) Z f"‘ (o + rrlzm(ﬂl ,df)z (ﬂ, . df)

d|n,, d‘rl‘—p’ [ Ty

I=r=N t|—-int.
1=y=N
Z» |ﬂ & (d)d"'-'f'p"("’*””zc;‘; (ﬁ.,»; 1,.) Zn;‘._:(ﬁ:-; ,,.) P
T|iny, dalr
=N

(6.6) el

t|n
1=v»

A

=N

i t3‘“"(T)Z (3 1) Zo (1,5 T).

Oty
T|n,, T

1=¢y=NXN

Q. e. d.

7. We are coming to the question: what conditions must be fulfilled
by the parameters o and 0,>0, 0,>0, in order that %7 $.(7,) should have
an upper bound depending (apart from o, 0,,0,) on N only; in other words:
if N is given, when will 9% (7,) remain under a constant P— P(N)=—
— P(N; 0, 0,, 0,) simultaneously for all N-tuples (n,) of distinct positive
integers ?

Since (ni, m)) — m. if n,— n;, it subsists the trivial inequality

(7.1) m.m)*‘nﬂm”

whence we see at once, that

(1.2) 0=0,+0,

is a necessary condition. — Assuming (7.2) and putting (n., n) =, n, —
— b0y, m =10, we find

N
(T. 3) :’[‘..:Ii?r'(ﬁ',) ) 2‘ ri’f ll?:"’.?:}{j,‘:ol(j;o':<N"f,
K, i=1
whatever be (n,), so that (7.2) turns out to be also sufficient.
Our next purpose is to sharpen (7.3) in a possibly simple way, but
persisting in the most general case. — To fix our ideas, we suppose throughout
O<)n<n,<---<ny and (0<)o, =0,.
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Theorem 1III. 1. Let (*) 0=0, or (**) O<o¢o<o,+0,—1. Then, in-
dependently of the choice of (n,):
c-£(0)E(my), if 0,>1,0,>1;
c-E(a)(log N+ 1), if 0,=—1,0,>1;
c-(log N+1)* for 0, 0,=1;
c-L(a)(1—a) (N "—ay), if 0,<1,0,>1;
c-(1—a) (N "—a)(log N+1), if 0,<1,0,—1;
c(1—a) ' (1—a) ' (N "—a)(N " "—a)), if 6,<1,0,<1;
where ¢ means 1 or J(o,4+ 0,—0)/=(0,+ 0,), according to the case (*) and (**),
respectively.

2. Let 0>0 and o,+0,—1=0<0,+0,. Then there exist constants

Ci—Ci(o,0,,0,) (j 1,2,3) such that, simultaneously for every N-tuple (n,),
we have

AL ()=

( C\N, if 0,>1;
Ari¢. () <{ C:Nlog N, if 6,=1;
GN . ael

3. If o= 0,40, and 0,>1, then the last inequalities keep their validity
with o, for o,.

Proor. We premise the elementary estimation formulae (x=1):
_',(Imu)"l(x["’—rr), if 6=0,051;
logx-+1, if o 1.
1. Suppose first o =0. — Then obviously

(1.4) Z.()— ﬁ v =1+ u " du

N
(1.5) A8 ()= 2> : _ —[ > n,;.“")( b n:"”']gzy,(N)Za,(N),
= O e 1=kE=N JLUST=N j

and the inequalities III. 1, with ¢=—1 follow by (7. 4) at once.
Secondly, let 0<o< o, +a,—1. Then, using the convergence and sum

of the series with positive terms > ¢, (d)d """ (cf. (5. 10)), we obtain by (6. 3)
=1

d

N
|is =S80 > )20«
(7. 6) ' o U=¢=N ] l1=¢=A
;(fll -+ 0,— 9)
ki _Zﬂ’ N Zo.. N 3
l (o, -}-(;2) 1( )Z:.(N)

so that (7.4) implies again the assertion with ¢ — {(0, + 0.—0)/C(0, + ).
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2. In the case ¢>0, 0,+0,—1=0<0,+0,, the result lies deeper a
little. Now write our sum in the form

‘ Wit = > 2D zd) Spnm

f| L
1.7) 'I v
- '\1 ’ 'fu \_' ‘fﬂ(d) Z ( )
l 1= E‘l'_'I_ N d H . ’

L

and consider the estimation involved here (cf. (5.7)):

(1.8) JZ(n,)f‘ > ni ’“]Z N).

1= r—- din,,

By certain well-known investigations of WIGERT and GRONwALL (cf. e. g.
[7] and [12]), we have for the “divisor functions”

(7.9) To(m) — ﬂ'::d (m arbitrary real)

the inequalities (¢>0, arbitrarily small)

(7.10) To(m)< Ko, e m®** (w=0; m=1,2,..),
(7.11) To(m)=m*T_.o(M)< Ko .m* (w<0; m=1,2,...),
where K, . denotes a suitable constant, depending on « and ¢ only. — For

|m|>1, one can put besides #—0 and K., .—=S(lm]).

If 0,4+ 0,—1=0<0,4+0,, choose # such that ¢, =¢; on the other hand,
if max(o,, 0,4 0,—1)=0<0,+0,, let us fix & in accordance with ¢ =0, +
+0,—e&. Then (7.11)—(7.12) yield

| Koy-0,6y "' = Ko,-p,s When ¢<as,
112w Tenlm)<) T
9 o, e My I = 0-03, & OtherWISE

consequently, applying (7.8), we get for any case in question
(7.13) Ai2 ()< Kig-0yye-NZs (N).

(7.13), together with (7.4), leads to the estimates IlIl. 2; the above
considerations hold, of course, when the role of o, and o, is interchanged,
but the result is weaker by o, = 0..

) Therefore, the last sum extends over all terms of the sequence 7, < n,<:--<ny
which are divisible by d.
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3. Finally, take o - 0,40, and a,>1.
Then we obtain, as before (cf. (7.8)),

(1.14) 02 = | 30 T ) 2, V)

and hence, in view of

(1.15) m=T,(m)< Z(m) (0>1; m=1,2,..)
the inequality _

(1.16) Ao ()< S(0) NZ, (N).

The use of (7.4) clearly completes the proof.
Let us remark, that Theorem IlIl. does not imply GAL’s main result in
[5] (C>0, constant)

(1.17) b [ [ ) ) ("!:'fz’) < CN(log log NY’,
..F__-I k
since IIl. 2. concerns the limiting case o= 0,4 0, merely with the supplem-

entary condition o,>1. — The “nearest” particular estimation included in [II.
2. is (cf. (7.16) with 0,=1, a,—1+¢)

N N
(.18 i m)=23 ("*”“) <E(1 4N~ O(NlogN),
=t T =

£3
v

where #>0 is arbitrarily small.

[t seems, however, probable that an appropriate refinement of the method
applied above would yield a. 0. a simple verification of (7.17), which is got
in [5], as well-known, by a quite complicated argument of combinatory cha-
racter. We hope to treat this problem on another occasion.

8. In the most important particular case: n,=—» (r=12,...), (6. 3)
becomes (cf. (7.4)):

N

W Ny— > & S 9. pdP AL
(8_ ]) [L"l s (N) ;Iﬁll k”'frr"‘ - I i L] ZU'| dJ Zcr: ld .]‘

it is easy to see, that (8.1) may also be written e. g. in the form (cf. (6.6)):

(]

(8.2) A, 0, (N) = Z Atly 8 ‘”Z(%]Z'm

=" d}|-—l!‘ f-
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By (8.1)—(8.2), one can plainly determine (with several systems of
values o, 0,,a,) the actual asymptotic behaviour of Aj ., (N) as N-—»oc,
our previous O-results being thus improved for the special sequence in
question.™)

As an illustration, next we give the very simple

Theorem IV. Suppose o,=0,>1 and 0=o<o,+ o,—1. Then holds

(8.3) A, (N) % Z(0, + 0,— o)+ O(N® log N),

where Q— max(¢+ 1—a,—a,, 1—a,); in particular, for N—~ we have

o (k1 L(0)E(0)

T e B

(8.4)

PRrROOF. Since
(8.5) Z,(x) = L(a)+ O(x'?) (o>1),
(8.1) yields (cf. (5.7), (5.10))

(Nl oy

%« (V) — > L@ 2(@)3(0) 40| |+

()

£(0) () n..((l,—{—fl ))+O(an(tr| <r:)+

'\' \ N‘ s 51 “’ﬂ ')\
+0 (N""' ?}_l‘d?""*"') + O(N""'-'z a‘*""-”'] 3 o(N- it > af"'-].
¢ J =1 J ks =1

+0(N

(7.4) shows that, in any case, the remainder is O(N"log N), and (8. 3)
follows. — For (8.4), we have only to observe that, by hypothesis, Q is
negative.

%) Sums of type ‘.‘lgl_aﬁ(N) occur in connection with various investigations; cf. e. g.
[15], p. 175—177; [4], [16], [17].
) If e. g. s >¢ -1, o, >1, then the double series (8.4) converges also in the more
restricted sense of Prixasuemm. (Cf. Bromwich, Infinite series, 2. ed., 1926, p. 85.) — For
@

¢ =0 arises the well-known formula: Z k0 % ={(a)$(as).
k, =1
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Further interesting examples are :

N
(8.6) WH(N)= > e @N ‘+ O(Nlog N),
K= (K, 1)
, S | -
(8.7) A, 1 (N)- #_?;lgf,—,—}-:_,}g!og--Nﬂ- O(log* N),
N
(u-l(N) -3 (’; 2 - D-N+ O(log* N),
(8.8) ’ N T
- S AT
: b=rm=d ="

(8.6) can be deduced from (8.1), (8.7) from (8.2), while (8.8) requires
the identity

(8.9) S ) o>l [":]( \‘1 [ ] N.

P 1 0 R B R

We mention, that our asymptotic relations suggest an extension of the
usual idea of average order for functions of several variables, namely the
following

DEFINITION. Let f(v,, vs,...,7,) = 0 be an arithmetical function defined
for all systems of p positive integers. If there exists a positive function
M,.(f; N) such that
(8.10) N7 D fn, vy ..., )~ D(f;N)

=N

J==
(j=12 ..

as N—mn- then we say that f(r,, v.,...,v,) is of the mean order Mi,(f; N)
for vi=N (j=1,2,...,p), N—+c.7)

Thus, in virtue of (8. 3)—(8.4) and (8.6)—(8.8), the mean order of
(k, )* k""" for k, =N (N—=) in the case 0,=0,>1, 0=0<0,+0,—1 is
given by £(0)5(0.)5(0, +0,—0)l(0,+0,) 'N*, furthermore (k,0)', {k 1},
(k,)/{k, I} have the mean order 6C(3)/7* (2/:t%)(log* N/N*) and D/N,
respectively; results which may be interpreted in rather instructive manner.

9. In view of the connections found in § 4, it is natural to ask, how
estimates for sums of type (4.1) can be got with the aid of the inequalities
for 9, %.(a,), proved in Theorem III.

-) For p —1, M, (f; N) does not cover exactly the average order in the sense of [12],
Ch. 13., but the difference is unimportant.
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Now, we formulate still an immediate corollary of Ill. 2. and of a theorem
of I. S. GAL and ]. F. Koksma : %) let g,(x) € L*(0,1) (» =1, 2, ...) and suppose

1
| guia()+ -+ +gun(x) fdx— O(Nlog' N) ~ (#=0)

uniformly with respect to M, then the limit relation
1 5 B
g (x)+ -+ +gx(x)] :0(!\?’2 log* £ N] (¢ - 0, arbitrary)
holds at almost every point x € (0, 1).

Theorem V. If a>1, we have in case of any sequence n,<n,<n,<---
of positive integers, for almost all x, the relation

N 1 N
9.1) O (ity; X) = > 3u(nex) =0 (N_ log? " N] ;
=]

where & denotes an arbitrarily small positive number.

In fact, putting s,- - s- o-ir (o>1) in (4.5) and combining it
with (7.16), we obtain

on ||

M4N

3 3.(mx) dx<2@a) ¥ chatiRo)L@PN  (M—1,2,..);
v—M+1

by the above-cited result, (9.2) implies the assertion at once.
Note that for s=r (r>1, fixed integer), (9.1) yields p. p.

N 1 3,
(9. 3) >'B,(n.x—[n,x])= o(N? log** N]
r=I1

(cf. (3.12)), while trivial is only the estimate O(N), holding everywhere.
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