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Functional equations, DEs and distributions

By J. A. BAKER (Waterloo, Canada)

Abstract. The notion of pullback (which generalizes that of composition) from
the theory of Schwartz distributions is used to find the locally integrable solutions of
certain functional equations involving complex valued functions of several real variables.
In the process the solutions of natural distributional analogues of these equations are
also determined.

Hilbert remarked in connection with his fifth problem that, despite its
power and elegance, the method of solving functional equations by reduc-
tion to differential equations is unsatisfying in that it requires unnatural
smoothness assumptions on the unknown functions; see [1]. In certain
cases this deficiency can be overcome by employing regularity theorems
(for example, of the type “measurability implies differentiability” to be
found in Járai [6]) or by appealing to the theory of Schwartz distribu-
tions (see, e.g., [2] and the references contained therein).

The aim of this paper is to illustrate how distribution theory can be
useful in the study of certain functional equations of the form

(1)
N∑

k=0

ck(ξ)fk(Fk(ξ)) = 0, ξ ∈ Ω.

Here Ω is an open (nonempty) subset of Rn, ck : Ω → C and Fk : Ω →
Rmk , mk < n, are given C∞ maps for 0 ≤ k ≤ N and fk : Fk(Ω) → C,
0 ≤ k ≤ N, are the unknowns. Note that (1) may be written more concisely
as

(1)′
N∑

k=0

ck(fk ◦ Fk) = 0.
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As we will see, if each Fk has surjective derivatives then (1)′ can
be interpreted in a distributional sense in such a way that reduction to
distributional differential equations is at least plausible. In such cases,
regularity theorems for distributional differential equations (e.g. the elliptic
regularity theorem) sometimes allow one to determine the continuous (or
even locally integrable) solutions of (1) and to solve natural distributional
analogues thereof.

Páles, in [8], has studied (1) in the case n = 2 and mk = 1 for
0 ≤ k ≤ N . Assuming some smoothness of the given data and assuming
a kind of independence and spanning property of {F0, . . . , FN} he showed
that each fk◦Fk satisfies a certain linear partial differential equation. This
has provided motivation for the present paper.

Some distributional background

We will, for the most part, use the notation of Rudin [9] but the
operator ∂

∂xi
will be written ∂i when applied to C1 functions and written

Di when applied to distributions.
Suppose that Ω is an open subset of Rn and f : Ω → C. Then we

say that f is locally integrable on Ω provided it is Lebesgue measurable
on Ω and

∫
K
|f(x)|dx < + ∞ for every compact K ⊆ Ω; the set of all

such f is denoted by L1
loc(Ω). If f ∈ L1

loc(Ω) and we define Λf (ϕ) =∫
Ω

f(x)ϕ(x)dx for ϕ ∈ D(Ω) then Λf ∈ D′(Ω) and we call Λf the regular

distribution corresponding to f. For f, g ∈ L1
loc(Ω), Λf = Λg if and only

if f(x) = g(x) for a.e. x ∈ Ω.

By “uj → u inD′(Ω)” we mean u ∈ D′(Ω), uj ∈ D′(Ω) for j = 1, 2, . . .

and limj→∞ uj(ϕ) = u(ϕ) for every ϕ ∈ D(Ω). We will need the fact that
Cc(Ω) is “dense” in D′(Ω) in the sense that, given u ∈ D(Ω), there exists
a sequence {fj}∞j=1 in Cc(Ω) such that Λfj → u in D′(Ω); see [5], page 89.

Composing a distribution with a smooth map

In order to treat (1)′ in a distributional way we must generalize the
notion of composition appropriately. Suppose that U is an open subset of
Rm, V is an open subset of Rn, F : V → U, F is C∞ on V and rank
∇F (x) = m for all x ∈ V. Then F is called a submersion of V into U (see
[4] page 84); this implies that m ≤ n and F is open. Our development
rests heavily upon the following
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Composition Theorem (see [5], pages 133–135 and [4] pages 80–
85.). Suppose that F is a submersion of an open V ⊆ Rn into an open

U ⊆ Rm. Then there exists a unique continuous linear map F ∗ : D′(U) →
D′(V ) such that F ∗Λf = Λf◦F for all f ∈ Cc(U); we will usually write

u ◦ F instead of F ∗u for u ∈ D′(U). Moreover, the following are true.

(i) The chain rule holds: if u ∈ D′(U) and 1 ≤ j ≤ n then

Dj(u ◦ F ) =
m∑

ν=1

(∂jFν)((Dνu) ◦ F )

where F (x) = (F1(x), . . . , Fm(x)) for x ∈ V.

(ii) If c ∈ C∞(U) and u ∈ D′(U) then

(cu) ◦ F = (c ◦ F )(u ◦ F ).

(iii) If W is an open subset of Rd and G is a submersion of W

into V then (u ◦ F ) ◦G = u ◦ (F ◦G) for all u ∈ D′(U).

The map F ∗ is often called the pullback by F . To say that F ∗ is
continuous means that if uj → u in D′(U) then uj ◦ F → u ◦ F in D′(V ).

We will show that if F, U and V are as in the Composition Theorem
and f ∈ L1

loc(U) then f ◦ F ∈ L1
loc(V ) and Λf ◦ F = Λf◦F . Assuming

this for the moment, suppose that Ω is an open subset of Rn, for 0 ≤
k ≤ N, ck ∈ C∞(Ω), Fk is a submersion of Ω into an open subset Uk of
Rmk , fk ∈ L1

loc(Uk) and (1) holds almost everywhere, i.e.

N∑

k=0

ck(ξ)fk(Fk(ξ)) = 0 for a.e. ξ ∈ Ω.

If we let uk = Λfk
for 0 ≤ k ≤ N it follows that

(1)′′
N∑

k=0

ck(uk ◦ F ) = 0.

The advantage of (1)′′ is that we can apply distributional derivatives.
There are two kinds of submersions that are of particular importance;

diffeomorphisms and projections. As we will see, every submersion is lo-
cally a composition of at most three submersions, each of one of these two
types. In proving the following two propositions we will essentially rely on
ideas from the proof of the Composition Theorem given on page 135 of [5].
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Suppose that F is a diffeomorphisms of an open subset V of Rn onto
an open subset U of Rn, i.e. F is a C∞ bijection of V onto U whose inverse
is C∞. For x ∈ V let

JF (x) = | det∇F (x)| > 0 for x ∈ V.

Suppose that f ∈ Cc(U) and ϕ ∈ D(V ). Then, by the change of variable
theorem,

∫
V

f(F (x))ϕ(x)dx =
∫

U
f(y) JF−1(y) ϕ(F−1(y))dy,

i.e. (Λf ◦ F )(ϕ) = Λf◦F (ϕ) = Λf (F#ϕ) where F#ϕ = (JF−1)(ϕ ◦ F−1)

for ϕ ∈ D(V ). It is not difficult to check that F# is a continuous linear
bijection of D(V ) onto D(U) and (F#)−1 = (F−1)#. Now if u ∈ D′(U)
and {fj}∞j=1 is a sequence in Cc(U) such that Λfj → u it follows that

(U ◦ F )(ϕ) = lim
j→∞

(Λfj ◦ F )(ϕ) = lim
j→∞

Λfj (F
#ϕ) = u(F#ϕ)

for all ϕ ∈ D(V ). In summary we have

Proposition 1. If F is a diffeomorphism of an open subset V of Rn

onto an open subset U of Rn then, for all u ∈ D′(U), F ∗u = u ◦ F#, i.e.

(u ◦ F )(ϕ) = u(F#ϕ) = u((JF−1)(ϕ ◦ F−1)) for all ϕ ∈ D(V ). Moreover,

for u ∈ D′(U), u ◦F = 0 if and only if u = 0. In fact F# is a bijection and

(F#)−1 = (F−1)#.

Now suppose that V is an open subset of Rn, m < n, P (x) =
(x1, . . . , xm) for all x = (x1, . . . , xn) ∈ V, U is an open subset of Rm

and P (V ) ⊆ U. Then we call P a projection of V into U ; it is clearly
a submersion. Define 1n−m ∈ D′(Rn−m) by 1n−m(χ) =

∫
Rn−m χ for

all χ ∈ D(Rn−m). If f ∈ Cc(U), ϕ ∈ D(P (V )), χ ∈ D(Rn−m) and
ϕ⊗ χ ∈ D(V ) then

(Λf ◦ P )(ϕ⊗ χ)

=
∫

V

f(x1, . . . , xm)ϕ(x1, . . . , xm)χ(xm+1, . . . , xn)d(x1, . . . , xn)

= Λf (ϕ) 1n−m(χ) = (Λf ⊗ 1n−m)(ϕ⊗ χ).

It follows that Λf ◦ P = (Λf ⊗ 1n−m)|D(V ); see [5], page 127. Using the
denseness of Cc(U) in D′(U) and the continuity of P ∗ we conclude that
u◦P = (u⊗1n−m)|D(V ) for all u ∈ D′(U). We therefore have proved most
of
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Proposition 2. If P is a projection of an open subset V of Rn into an
open subset U of Rm (where m < n), then u ◦P = (u⊗ 1n−m)|D(V ) for all
u ∈ D′(U). Moreover, for u ∈ D′(U), u ◦ F = 0 if and only if u vanishes
on P (V ).

Proof. It suffices to prove the last assertion. To this end, suppose
that u ∈ D′(U) and u does not vanish on D(P (V )). Choose ϕ ∈ D(P (V ))
and χ ∈ D(Rn−m) such that ϕ ⊗ χ ∈ D(V ), u(ϕ) 6= 0 and

∫
Rn−m χ = 1.

Then (u ◦ F )(ϕ⊗ χ) = u(ϕ) 6= 0. ¤
According to the Inverse Function Theorem ([3], page 42) a submer-

sion of an open subset V of Rn into an open subset U of Rm is locally a
diffeomorphism if m = n. When m < n the local nature of a submersion
is revealed by the following (special case of the)

Rank Theorem ([3], page 47). Suppose that F is a submersion of
an open subset V of Rn into an open subset U of Rm, m < n, a ∈ V
and b = F (a) ∈ U . Then there exists an open subset V0 of Rn such
that a ∈ V0 ⊆ V, an open subset U0 of Rm such that b ∈ U0 ⊆ U and
F (V0) = U0, a diffeomorphism G of V0 onto an open subset V ′ of Rn

and a diffeomorphism H of U0 onto an open subset U ′ of Rm such that
H ◦ F ◦G−1(x) = (x1, . . . , xm) =: P (x) for all x = (x1, . . . , xn) ∈ V ′ and
H ◦ F ◦G−1(V ′) = U ′ or, equivalently, F |V0 = H−1 ◦ P ◦G.

The following proposition highlights the local nature of composition.

Proposition 3. Suppose that U, V and F are as in the Composition
Theorem, V0 is an open subset of V and u ∈ D′(U). Then

(∗) (u ◦ F )|D(V0) = u ◦ (F |V0).

Proof. If f ∈ Cc(U) then, for every ϕ ∈ D(V0), (Λf ◦ F )(ϕ) =∫
V

f(F (x))ϕ(x)dx =
∫

V0
(f ◦ (F |V0))(x)ϕ(x)dx = (Λf ◦ (F |V0))(ϕ). That

is, (∗) holds if u = Λf for some f ∈ Cc(U).
Let u ∈ D′(U). Choose a sequence {fj}∞j=1 in Cc(U) such that Λfj →

u in D′(U). Then u ◦ F |D(V0) =
(
limj→∞(Λfj ◦ F )

) ∣∣
D(V0)

= limj→∞(Λfj ◦ F )|(DV0)) = limj→∞ Λfj ◦ (F |V0) = u ◦ (F |V0). ¤
Combining this assertion with Theorem 2.2.1 of [5] we have the

Corollary. With U, V and F as in the Composition Theorem and
u, v ∈ D′(U), u = v if and only if for each a ∈ V , there exists an open
V0 ⊆ V such that a ∈ V0 and u ◦ (F |V0) = v ◦ (F |V0).

The next result implies that if F is a submersion of V onto U then
F ∗ is injective.



108 J. A. Baker

Proposition 4. Suppose that F is a submersion of an open subset
V ⊆ Rn into an open subset U ⊆ Rm. If u ∈ D′(U) and u ◦ F = 0 then u
vanished on F (V ), i.e. u(ϕ) = 0 for all ϕ ∈ D(F (V )).

Proof. We know from Propositions 1 and 2 that the assertion is
true for surjective diffeomorphisms and projections. The general assertion
follows by localization using the Corollary, the Rank Theorem and (iii) of
the Composition Theorem. ¤

Pullbacks of regular distributions

The aim of this section is to prove

Proposition 5. Suppose that F is a submersion of an open subset V
of Rn into an open subset U of Rm and f ∈ L1

loc(U). Then f ◦F ∈ L1
loc(V )

and Λf◦F = Λf ◦ F.

Proof. Suppose first that F is a diffeomorphism of V onto U . By
the change of variable theorem, f ◦ F ∈ L1

loc(V ) and Λf◦F (ϕ) =∫
V

f(F (x)) ϕ(x)dx =
∫

U
f(y)F#ϕ(y)dy = Λf (F#ϕ) for all ϕ ∈ D(V ).

Choose a sequence {fj}∞j=1 in Cc(U) such that Λfj → Λf in D′(U). Then

Λf◦F (ϕ) = Λf (F#ϕ) = lim
j→∞

Λfj (F
#ϕ) = lim

j→∞
Λfj◦F (ϕ)

= lim
j→∞

(Λfj ◦ F )(ϕ) = (( lim
j→∞

Λfj ) ◦ F )(ϕ)

= (Λf ◦ F )(ϕ) for all ϕ ∈ D(V )

by the continuity of F#, i.e. Λf◦F = Λf ◦ F.
Next suppose that F is a projection of V onto U . To see that f ◦F is

Lebesgue measurable note that, for any open O ⊆ C, f−1(O) is Lebesgue
measurable and so (f ◦ F )−1(O) = F−1(f−1(O)) = {(x1, . . . , xn) ∈ V :
(x1, . . . , xm) ∈ f−1(O)} = V ∩ (f−1(O)×Rn−m) is Lebesgue measurable.
Moreover, for each ϕ ∈ D(V ),

Λf◦F (ϕ) =
∫

V

f(x1, . . . , xm)ϕ(x1, . . . , xn)d(x1, . . . , xn).

It follows that Λf◦F = (Λf ⊗ 1n−m)|D(V ). Choose a sequence {fj}∞j=1 in
Cc(U) such that Λfj → Λf . Then, by the prelude to Proposition 2,

Λf◦F = lim
j→∞

(Λfj ⊗ 1n−m)|D(V ) = lim
j→∞

(Λfj ◦ F ) = Λf ◦ F

where the continuity of F ∗ has been used once again.
The general case follows from the Rank Theorem and the Corollary.

¤
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Applications to functional equations

1. Consider the example presented by Páles [8];

(2) f1(x + y) + f2(x− y) + f3(xy) = 0.

Let V = {(x, y) ∈ R2 : 0 < y < x} and U = (0,+∞).
Suppose that fj ∈ C2(U) for 1 ≤ j ≤ 3 and (2) holds for all (x, y) ∈ V .

By replacing x by s+t
2 and y by s−t

2 in (2) we conclude that

(3) f1(s) + f2(t) + f3

(
s2 − t2

4

)
= 0 for all (s, t) ∈ V.

Indeed (3) is equivalent to (2) because the map (s, t) → (
s+t
2 , s−t

2

)
is a

diffeomorphism of V onto itself; for future reference call this map G. Now
differentiate (3) with respect to s to conclude that

(4) f ′1(s) +
s

2
f ′3

(
s2 − t2

4

)
= 0 for (s, t) ∈ V.

By differentiating (3) with respect to t we find that

(5) f ′2(t)−
t

2
f ′3

(
s2 − t2

4

)
= 0 for (s, t) ∈ V.

By differentiating (4) with respect to t we find that

(6) f ′′3

(
s2 − t2

4

)
= 0 for all (s, t) ∈ V

or, equivalently,

(7) f ′′3 (x) = 0 for all x > 0.

Hence there exist β, γ ∈ C such that

(8) f3(x) = β + 4γx for all x > 0.

Now (4) and (8) imply that

(9) f ′1(s) + 2γs = 0 for all s > 0

so that, for some α1 ∈ C,

(10) f1(s) = α1 − γs2 for all s > 0.

Similarly, from (5) and (8) we surmise that

(11) f ′2(t)− 2γt = 0 for all t > 0
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and hence, for some α2 ∈ C,

(12) f2(t) = α2 + γt2 for all t > 0.

Now (2), (8), (10) and (12) imply that

(13) α1 + α2 + β = 0.

Conversely, if (8), (10), (12) and (13) holds then it is trivial to check that
(2) holds for all (x, y) ∈ V. We thus have proved

Proposition 6. If fj ∈ C2(0, +∞) for 1 ≤ j ≤ 3 then (2) holds for all
(x, y) ∈ V if and only if there exists α1, α2, β, γ ∈ C such that (8), (10),
(12) and (13) hold.

We aim to solve a distributional analogue of (2) and thereby determine
those locally integrable f1, f2 and f3 for which (2) holds almost everywhere.

To this end, let F1(x, y) = x+y, F2(x, y) = x−y and F3(x, y) = xy for
(x, y) ∈ V. Note that F1, F2 and F3 are submersions of V onto U . Suppose
that f1, f2, f3 ∈ L1

loc(U), (2) holds for a.e. (x, y) ∈ V and let uj = Λfj for
1 ≤ j ≤ 3. Then it follows from Proposition 5 that

(2)′
3∑

j=1

uj ◦ Fj = 0.

Now suppose that uj ∈ D′(U) for 1 ≤ j ≤ 3 and (2)′ holds.
Then 0 =

∑3
j=1 (uj ◦ Fj) ◦G =

∑3
j=1 uj ◦ (Fj ◦G). But

F1 ◦G (s, t) = s =: P1(s, t),

F2 ◦G (s, t) = t =: P2(s, t) and

F3 ◦G (s, t) =
s2 − t2

4
=: F (s, t) for all (x, t) ∈ V

so that

(3)′ u1 ◦ P1 + u2 ◦ P2 + u3 ◦ F = 0.

Note that (3)′ was deduced from (2)′ in essentially the same way that (3)
was deduced from (2). By applying D1 to (3)′ we find, with the help of
the chain rule, that

(4)′ (Du1) ◦ P1 + (∂1F )((Du3) ◦ F ) = 0

— a distributional analogue of (4). Similarly,

(5)′ (Du2) ◦ P2 + (∂2F )((Du3) ◦ F ) = 0
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Now apply D2 to (4)′ and use the chain rule again to conclude that

(∂2P1)((D2u) ◦ P1) + (∂2∂1F )((Du3) ◦ F ) + (∂1F )(∂2F )((D2u3) ◦ F ) = 0

or

(6)′ (D2u3) ◦ F = 0

since ∂2P1 ≡ 0, ∂2∂1F ≡ 0 and (∂1F )(∂2F )(s, t) = −st
4 6= 0 for all (s, t) ∈

V. Since F maps V onto U , from (6)′ and last part of Proposition 4 we
conclude that

(7)′ D2u3 = 0.

Now the distributional solutions of a linear ordinary differential equation
with C∞ coefficients (and nowhere vanishing leading coefficient) are regu-
lar distributions corresponding to the classical solutions (all of which are
C∞ functions); see [5], page 58. Thus it follows from (7)′ that there exists
β, γ ∈ C such that

(8)′ u3 = Λf3

where f3 is defined by (8). Similarly, by using an argument like that
employed to deduce (10) and (12) we find that there exist α1, α2 ∈ C such
that u1 = Λf1 and u2 = Λf2 where f1 and f2 are defined by (10) and (12).
Now 0 =

∑3
j=1 Λfj ◦ Fj =

∑3
j=1 Λfj◦Fj = Λf , where f =

∑3
j=1 fj ◦ Fj ,

and f is continuous, so f ≡ 0 on V , i.e. (2) holds. By Proposition 6,
α1 + α2 + β = 0. We have proved most of

Proposition 7. Suppose that U, V, F1, F2 are F3 are as above.

(i) If u1, u2, u3 ∈ D′(U) then (2)′ holds if and only if there exist

α1, α2, β, γ ∈ C such that uj = Λfj for 1 ≤ j ≤ 3 and (8),
(10), (12) and (13) hold.

(ii) If gi ∈ L1
loc(U) for 1 ≤ j ≤ 3 and

(2)′′ g1(x + y) + g2(x− y) + g3(xy) = 0 for a.e. (x, y) ∈ V

then there exist f1, f2, f3 ∈ C∞(U) such that (2) holds and,

for each j = 1, 2, 3, gj(x) = fj(x) for a.e. x > 0.
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Proof. It remains only to prove (ii). So assume that (2)′′ holds
with g1, g2, g3 ∈ L1

loc(0,+∞). Let uj = Λgj
for 1 ≤ j ≤ 3 and let h =∑3

j=1 gj ◦ Fj . Then (2)′′ says that h(x, y) = 0 for a.e. (x, y) ∈ V so that,
by Proposition 5, 0 = Λh =

∑3
j=1 Λgj◦Fj

=
∑3

j=1 Λgj
◦Fj =

∑3
j=1 uj◦Fj .

Hence, by (i) there exist fj ∈ C∞(U) such that (2) holds and, for 1 ≤ j ≤ 3,
Λgj = uj = Λfj . Hence

gj(x) = fj(x) for a.e. x > 0. ¤

In the interest of clarity we have included more details than many
readers may find necessary. We will be more concise in the remaining two
examples.

2. As an example of (1) in which conconstant coefficients appear,
consider the functional equation

(14) f(x) + (1− x)αf

(
y

1− x

)
= f(y) + (1− y)αf

(
x

1− y

)

on Ω = {(x, y) ∈ R2 : x, y > 0 and x + y < 1} and where α is a given
real constant. A function f : (0, 1) → R which satisfies (14) is usually
called an information function of degree α. Such functions have been
investigated by numerous authors; see e.g. [7] and its references. We aim
to consider (14) from a distributional point of view. We will also assume
that α /∈ {0, 1, 2}; the other three cases can be treated in a similar manner.
As in the first example, we begin by exhibiting a method for finding the
smooth solutions of (14) and then observe that an analogous strategy bears
fruit in a distributional setting.

So suppose that f ∈ C2(0, 1) and (14) holds. Differentiate with re-
spect to x and then with respect to y to conclude that

(1− α)(1− x)α−2f ′
(

y

1− x

)
+ y(1− x)α−3f ′′

(
y

1− x

)
(15)

= (1− α)(1− y)α−2f ′
(

x

1− y

)
+ x(1− y)α−3f ′′

(
x

1− y

)

for all (x, y) ∈ Ω.

Let H(s, t) =
(

t−st
1−st , s−st

1−st

)
for (s, t) ∈ Ω. Then H is a diffeomor-

phism of Ω onto itself and H−1(x, y) =
(

y
1−x , x

1−y

)
for all (x, y) ∈ Ω. It
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follows that if in (15) we replace y
1−x by s and x

1−y by t and simplify we
obtain the equivalent equation

(1− s)2−α[(1− α)f ′(s) + sf ′′(s)](16)

= (1− t)2−α[(1− α)f ′(t) + tf ′′(t)], (s, t) ∈ Ω.

By differentiating (16) with respect to s we conclude that there exists
λ ∈ C such that

(17) sf ′′(s) + (1− α)f ′(s) = λ(1− s)α−2 for 0 < s < 1.

If f0(s) = λ
α(α−1) [sα + (1 − s)α] for 0 < s < 1 then f0 is a particular

solution of (17). The associated homogenous equation is easy to solve and
it follows that, for some a, b, c ∈ C,

(18) f(s) = asα + c(1− s)α + b for 0 < s < 1.

But (18) and (14) imply that b + c = 0. Thus

(19) f(s) = asα + b(1− (1− s)α) for 0 < s < 1.

Conversely, any such f satisfies (14).
Let P1(x, y) = x, P2(x, y) = y, F1(x, y) = y

1−x , F2(x, y) = x
1−y ,

c1(x, y) = (1 − x)α and c2(x, y) = (1 − y)α for (x, y) ∈ Ω. Notice that
P1, P2, F1 and F2 are submersions of Ω onto (0, 1) and c1, c2 ∈ C∞(Ω).

Arguing as we did in the first example we can prove the following
proposition concerning a distributional analogue of (14).

Proposition 8. If u ∈ D′(0, 1) then

(14)′ u ◦ P1 + c1(u ◦ F1) = u ◦ P2 + c2 (u ◦ F2)

if and only if there exist a, b ∈ C such that u = Λf where f is defined by
(19). If f ∈ L1

loc(0, 1) and (14) holds for a.e. (x, y) ∈ Ω then there exist
a, b ∈ C such that

f(x) = axα + b(1− (1− x)α) for a.e. x ∈ (0, 1).

3. With the aid of tensor products, see Chapter V of [5], it is possible
to fruitfully apply our method to certain nonlinear equations. For example,
consider the famous “cosine equation”:

(20) f(x + y) + f(x− y) = 2f(x)f(y).
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If we let A(x, y) = x + y and S(x, y) = x− y for (x, y) ∈ R2 then A and S

are submersions of R2 onto R and the following is a distributional analogue
of (20):

(20)′ u ◦A + u ◦ S = 2u⊗ u.

Suppose that u ∈ D′(R) and (20)′ holds. By applying D1 to (20)′ and
using the chain rule we find that

(Du) ◦A + (Du) ◦ S = 2(Du)⊗ u.

Similarly

(Du) ◦A− (Du) ◦ S = 2u⊗ (Du),

(D2u) ◦A + (D2u) ◦ S = 2(D2u)⊗ u

and

(D2u) ◦A + (D2u) ◦ S = 2u⊗ (D2u)

so that

(D2u)⊗ u = u⊗ (D2u).

Assuming that u 6= 0, choose χ0 ∈ D(R) such that u(χ0) = 1. Then, for
all ϕ ∈ D(R) we have

D2u(ϕ) = (D2u⊗ u)(ϕ⊗ χ0) = (u⊗D2u)(ϕ⊗ χ0) = u(ϕ)D2u(χ0).

That is, D2u = −λ2u where λ2 = −D2u(χ0). Hence there exist a, b ∈ C
such that u = Λf where f is defined by f(x) = a cos λx + b sin λx for all
x ∈ R. Since u ◦ A = Λf ◦ A = Λf◦A, u ◦ S = Λf◦S and u ⊗ u = Λf⊗f ,
(20)′ implies that (20) holds (for almost every (x, y) ∈ R2, and hence by
continuity) for all (x, y) ∈ R2. It follows from well known properties of the
cosine equation that a = 1 and b = 0.

Using arguments that have been illustrated in the first two examples
one can deduce the following Proposition which may have some novelty.

Proposition 9. For f ∈ L1
loc(R), (20) holds for almost every (x, y) ∈

R2 if and only if either f(x) = 0 for a.e. x ∈ R or, for some λ ∈ C, f(x) =
cos λx for a.e. x ∈ R.
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Remarks. In all three examples, assuming that the functional equa-
tion is satisfied everywhere, the local integrability assumptions can be
replaced simply by measurability according to Járai [6]; our method may
be viewed as a (partial) alternative to such regularity theory. The main
point is that, in certain instances, the method of reduction to differential
equations may be useful, even in case the unknowns are assumed only to
be locally integrable, provided differentiation is interpreted in the sense of
distributions. As we have seen, by using distributions one can essentially
arrive at the same conclusion by assuming only that the functional equa-
tion holds almost everywhere instead of everywhere. In many cases, as we
have illustrated, functional equations have natural distributional analogues
which can be solved by reduction to (distributional) differential equations.
Like [8], which has provided motivation, our discussion has been somewhat
algorithmic. Our main concern has been with methodology and not with
substantial new theorems concerning functional equations.
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