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Filling of a domain by equiareal discs.

To Professor O. Varga on his 50th birthday.
By L. FEJES TOTH and A. HEPPES (Budapest).

Let us place in a given domain') D a given number n of non-overlap-
ping convex discs of the same given area { = D/n. Suppose that the boun-
daries of the discs strive to contract in such a way that the total perimeter
of the discs should take the least possible value. What shape and arrange-
ment the discs will assume under these conditions?

The asymptotic behaviour of the extremal configuration for great values
of n may be described as follows. For small values of ¢ the discs are
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Fig. 1.

circles, the arrangement of which
is not determined uniquely. For a
certain value of {~-,'.'—‘_—. 2 the
/12 n
circles get into close-packing in
which arrangement ““almost every”
circle is touched by six other ones.
Increasing ¢ further, the circles
blow up to “smooth hexagons”
(Fig. 1) which, for t—=D/n, will
turn into common regular hexa-
gons.

Since for great values of n
the special shape of D plays no
part, we shall restrict ourselves
to convex hexagons, i. e. to po-
lygons having at most six sides.

This allows us to give an estimation for all values of n= 1. Our main result

is contained in the following

1) We denote a domain and its area by the same symbol.
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Theorem. If p denotes the average perimeter of n convex discs, each
of area t, lying in a convex hexagon H without mutual overlapping, then

= n_r p—
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Note that n#/H is the packing density of the discs and ://'12 equals
the density of the closest circle-packing.

Denoting the inner and outer parallel-domain of distance o of a con-
vex polygon P by P, and P,, a smooth polygon is defined by (P.,), where
¢ is a positive number less then the inradius of P. It arises by rounding
off the corners of Pby arcs of a circle of radius ¢. Considering a circle and
a common polygon as degenerated smooth polygons, we can say that our
bound for p’/t equals the ‘“isoperimetric quotient” of a smooth hexagon of
area f arising from a regular hexagon of area H/n.

Apart from the case that each disc is a circle, this bound can be
attained only if H is a regular hexagon containing only one disc, namely a
smooth hexagon belonging to it. But it can be approximated with an arbi-
trary exactitude for great values of n.

In order to prove our theorem we start by blowing up the discs®),
preserving their convexity and the property of neither overlapping nor
streching out from H. We obtain n convex polygons P,,..., P, satisfying
the relations

; =
( 41 for

P]+..'+PH§H
V4o, =6n,
P.od,,

»; being the number of the sides of P, and d,,...,d, the original discs.
As second step we show that the perimeter p; of d; satisfies the inequ-
ality p. = @(P;, r;), where
[~ . = . (o = o) ol e W T
‘ ] Prtg 2 —2 I (P—r)[rtg 5 —-:r] fri=P=t = tg = r=3
D(P, v)— - b a0
?2] at ft:)rP‘:»t'J_:t tg"—l_, r=3

denotes the perimeter of a smooth polygon of area 7 arising from a regular
r-gon of area P (Fig. 2).

__T Cf. L. Fejes Toru, Filling of a domain by isoperimetric discs, Publ. Math. Debre-
cen 5 (1957) 119—127.
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For the following proof we are obliged to Professor H. HADWIGER.

Let P be a convex »-gon of inradius r and perimeter L and let ¢ be
a v-gon circumscribed about a unit circle the sides of which have the same
outer normal directions as the sides of P. Further, let P be a regular »-gon
of area P= P the corresponding data of which are r=r,L=L and g =gq
(Fig. 3). We consider the
non-degenerated smooth po-
lygon d= (P ), (0<o<r)
of perimeter p and a con-
vex domain dc P of area
d—d and perimeter p. We
have to show that p=p.

Suppose first that 0<
<o <r. Denoting the cor-
responding data of the inner
parallel domains of distance
o by the index —o, we have

Fig. 2 | d= dn—|—|ﬂ (dt.

Observing that d.,c P, and (d )y cd we obtain d_,=P_, and p 4+ 2zt =p.
Hence
d=P ,+po— o'
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Now we show that P.,= P ,. In consequence of

0
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d
and (ﬁl’ 1= —2¢.¢ we have

d* d
ag Pr=gf —L)=2q-
and, analogously,

P (—L.)=27.~27,
showing that the funktion f(f)= P ,—P. is concave: f"(t) = 2(§—q.) =0.
This implies, in view of f(0)—=P—P—=0 and f(r)=P., =0, the desired
inequality f(¢) = P_,— P ,=0.

Thus we find that
d=P.,+pe—=e'.

Comparing this inequality with
d=d=P.,+po—o*
we obtain p=p.
Assuming now that r=o0 <r, we have

d—=d=p)—:xo*
which involves by

(%(ﬁf—ﬂf“') —p—=2at>0, O<t=rT
the inequality .
d=pr—aoar.
This implies, together with
d=pr—=ar?

again p = p.
Now we shall show that the function @(P, r) is convex.

Since @ (P, r) is for P>t£tg%, r=23 linear and, as a function of
P, for any fixed value of » =3 convex, we have only to show that
for t=P=t"tg"", y=3 the inequality
Dpp®,, — Dy, =0

holds.
We introduce the notations
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and consider instead of @ the function

I % 5 At 33
— P=x*y*—(x—1)*(y—1)2, I=x=y= —-.
TET ¥ el @1) y=—
By the transformations’)

x=ch*u, y=ch'v

z=

this function turns into
/313
pouy

2=ch(r—u), O=u=r= arch
By some computation we obtain
Dpp Dyy— Py = 471t (Zea2yr—Zin) =
41t sh (r—u) [ch (v—u) (U vy — vot.) —sh (v—u) . vyr)-
Therefore, in view of e A
i —-}x'é‘(x—l)':?(zx—l)w,
the inequality @pp®,,— @}, =0 will be proved by showing that v,, > 0.

Writing et we can represent «, in the form

1
R T
where
= £ gp) 2 }’—1 . _sin2em e v A
= (y cos r)) y B == ( m(] S ) 0<u_3,
Hence
tow = — 2 tyu = oz (AwBC+ AB.C + ABC.).

But A, B and C being posnwe, it suffices to show that also A, >0, B, >0
and C, >0.

Since in the interval (0 )

e cost m $in 20 Ccos ¢
—— 1) = —— = {n
y 2

is a decreasing function of @m, A is an increasing function and thus A, > 0.
We proceed to prove that
sdB” 5B' (sin2m , 4

Bo=— 2 B R 77 Y g -{—gsm'm——-l' > 0.

7) We are indebted to Dr. A. Bexéssy for suggesting these transformations.
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For w =1 we have

sinZeo ., 4 .., 1
W-Jr -5— Sin- m >m .2"3——

8w’ 320 128" 4 ( o'
TR R A d

"

— 1+ '12'5(1—*f'33)f"3+ 105 > 1.

7 i ' g Lo 7
On the other hand, for 1=m= —; g;—f;g*{—gsm‘m is, in virtue of

10* (3112[3—,9 + —;:— sin’ m ) =10 cos 2 + (8e*—D5) sin2m <

< IOcosZ—I—S';—-—S-—- —0,38...<0,

a decreasing function. Hence

Sil]g-:-r-
sindw ;. & .13 o e L LR
S A sin mr__~-l +-5--sm 3A——I,013...::»l,
3

on account of which in the whole interval (O—g) B., > 0 holds.

Finally we have

C, = 2 CO—S—)ﬂ (tg o —m) > 0.
(]
This completes the proof of the convexity of @(P, r).
At last we remark that, in view of 1=x=y,
1 1 1 1
2z, =x 2y —(x—1) 2(y—1) =0,
1 1 1 1
2z,=xy * —(x—1)*(y—1) * =0,
from wich we conclude, by y. <0, that @(P, ») is in both variables a non-
increasing function.
Now we hawe, in virtue of the above remarks and JENSEN’s inequality,

P+-4P, ’ T g _:_;-n(fl(g,ﬁ)-

n n

Xp =P, r)=nd
=1 i=l \

This is just the inequality to be proved.

(Received Februar 23, 1959.)



