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On the singularities of a Riemannian manifold.

Dedicated to Professor Ottd Vargo, at the occasion of his 50th birthday.
By GY. SZEKERES (Adelaide, S. Australia).

§ 1. Introduction.

Riemannian manifolds, such as the ones which find application in the
theory of general relativity, often have regions of singularity where the de-
terminant of the metric tensor becomes zero or the components (or derivatives
of components) of the metric tensor become infinite. Well known examples
are the singular hypersurfaces which appear in Schwartzschild’s and de
Sitter’s centrosymmetrical solutions of the gravitational field equations. The
Schwartzschild field is a Riemannian manifold with the line element
2m ) dt,

r

(1) + ds”:( 1— %-:_ﬂ] dri4-rde’ — (l —
(2) de) — dt# +-cos*bdy*,
it consists of two disjoint regions, 0 < r<2m and r > 2m, separated by the
singular hypercylinder r— 2m. In de Sitter’s Universe
3) + ds* = (1—r/R®)dr* 4 rfdow* — (1—r*/R¥) dF,
there is a singular hypersurface at r— R, the “mass horizon” of Eddington.
Neither the Schwartzschild nor the de Sitter hypercylinders are true
singularities. In the Schwartzschild case this was first noticed by LEMAITRE
[2] and worked out in greater detail by SYNGE [4]; in the case of the de
Sitter Universe by EpDINGTON ([1], Chapter V). In each case the argument
was based on the observation that the singularities can be transformed away
in a suitable coordinate system; but an exact definition of what should be
regarded as a true singularity of a Riemannian manifold has, to my knowledge,
never been proposed.')

1) Synce ([4], p. 100) gives a definition which however depends on the coordinate
system, and refers therefore to singularities of coordinate systems rather than of the manifolds
themselves.
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Superficially, we may conceive of a singularity as a place in coordinate
space where something goes wrong with the metric tensor. But surely this is
not a sufficient criterion, since apparent singularities can easily be produced
by the simple device of introducing “bad” coordinates in otherweise perfectly
well-behaved manifolds. Perhaps the most trivial example of an apparent
singularity is the one at r=0 of the line element of Euclidean space in
polar coordinates,

(4) ds’=—=dr'+4rde’.

Clearly the singularity is due to the coordinate system, and not to any
irregularity of the manifold itself. If we make the substitution 7=r—2m in
(4), where m is a positive number, we get

(5) ds* = dP* -+ (F — 2m) dor”.

Here we have an apparent singularity on the sphere 7= 2m, due to a spread-
ing out of the origin over a sphere of radius 2m. Since the exterior region
7 >2m represents the whole of Euclidean space (except the origin), the
interior 7 << 2m is entirely disconnected from it and represents a distinct
manifold.

In some respects the line elements (4) and (5) are not unlike the
Schwartzschild metric (1). This becomes more apparent if we make the sub-

stitution

i 1

U h Ay
(6) =2, [1—7’) dr,

m

valid for r > 2m; it transforms (1) into

2m

(1) + ds = dmtdP 4 P ot — (12! Jar

where r= f(r) is given by (6). In the neighbourhood of r- 0,

r:-f(f):—-2ml1+-l~f“"—418?‘+...J,

2m 1
1— T 1 ) 12!’ “I— i
and the coefficient of d#* becomes zero, of the same order as the coefficient
of dw’ in (4) or (5); in fact the singularity disappears if we make the sub-
stitution

(8) u = h cosh . , == h sinh

t
4m 4m
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where h = h(r) is a solution of
1

dlog h d?r%-(]— 2;"] L rEO)=1.
In terms of r,
9) h" = 4pe’, p=(r—2m)2m.
In the new coordinate system
(10) +ds' = 4m*{(14p) '€ (du’ —d )+ (1 + p) der’
where p is determined from
(11) 4pe’ =u— ",

Although the transformations (8) and (9) which carry (1) into (10) are only
valid for u* > +*, u >0, the line element (10) is regular in a whole neigh-
bourhood of the line 4=+, #=0, ¢ =0, indeed for uw*— "> —4/e and
— L << %:r, —a < ¢ < n. This shows that the Schwartzschild “sin-
gularity” is just as apparent, brought about by an improper choice of coor-
dinates, as the origin of polar coordinates.”)

Incidentally, the transformation

i : t o t
(8) it — h sinh e == h cosh g,
% = —_— — 5 - _r_ I
(9) h= —4pe’, P 5m 1

carries the region O <r<2m of (1) into the region 0 < * —u* < 4e of (10),
so that the interior of the Schwartzschild hypercylinder is a natural continua-
tion of the exterior.

The manifold (10) differs from (1) in one important respect: each point
of (1) is represented exactly twice in (10). Hence in order to obtain a manifold
which represents physical reality. it seems to be necessary to identify all pairs
of opposite points (u,») and (—u, —r); this is permissible since the metric
at (u,v) is identical whith the metric at (— u, — ). The situation is analogous
to the construction of elliptic space from hyperspherical space,”) but there is
a significant difference. Whereas elliptic space has no singularities, the

?) This of course is not an entirely valid conclusion as long as we do not have a
precise definition of a singularity; it has the same heuristic character as the similar con-
clusions of Lemaitre and Synce. The transformations (8) and (8') are essentially due to Synce.

DBl p- 7.
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Schwartzschild identification introduces an artifical singularity at # =0, +=0,
essentially of the same kind as the singularity at the vertex of a cone obtained
by identifying the points (x,y) and (—x, —y) of Euclidean plane. Since (10)
is a perfectly well-behaved Riemannian manifold which satisfies the gravita-
tional field equations in the whole region u’— "> —4/e, including the
origin (0, 0), it seems difficult to find any physical justification (apart from
a purely utilitarian one) for this identification process.

The problem of continuation of Riemannian manifolds is fundamental
to relativistic cosmology; for on it depends the answer to the question whether
a given cosmological frame covers the whole of the Universe, or only part
of it. In the case of the de Sitter Universe (3) the answer is well known:
if one replaces r,¢ by new coordinates z,t, given by

r = R cos y cosh £, tanh (¢ R) — tanh ¢ 'sin z,

the new system extends beyond the mass horizon') and the line element
becomes

(11) 4 ds* = R? cosh*t{d y* -} cos® y (¥ + cos Hdg?)) — R dF-.
This is the metric on a 4-hyperboloid
Xi+ X+ 5+ x—x5=R’

in pseudo- Euclidean 5-space with signature (- 4+ + 4+ —) and there is no
way to extend it any further.”)
The substitution

X, == C0s # cos g, X, = rcos#fsin ¢, Xs==r 8in 0,
1
F=r(1—r/R2) Ze ”', e ; Rlog(1—r R
transforms (3) into the Robertson frame with the line element

(12) + ds* = &' " (dx} + dxi + dxh) — dF.

This frame covers the same portion of the Universe as (3) but the metric
has no singularities in the finite part of the frame. Since the manifold (12)
obviously admits extension, it is clear that for a consistent theory of continua-
tion it will be necessary to consider also singularities which lie at infinity
in coordinate space.

4) For a full discussion see Scuropinger [3], Chapter I
5) Apart from a trivial extension to the 2-hyperboloid x, = 0, x, =0, x% -+ x{ — x5 — R*
which is not covered by the system (11).
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§ 2. Definition of a singularity.

In analogy with the theory of analytic functions, we may define a
singularity of a Riemannian manifold as a boundary point into which the
manifold cannot be continued in a reasonable manner. The definition can be
made precise if we know what a boundary point is and what we should
mean by a reasonable continuation. In the case of the Riemann surface of
an analytic function the problem is fairly trivial as the surface is super-
imposed upon the number sphere and a “reasonable” continuation can be
accomplished by means of power series. In Riemannian manifolds the analytic
structure is carried by the Riemannian metric, and it is in ferms of this metric
that we have to formulate the process of continuation.

Let us briefly review the conventions that we are going to use. An
n-dimensional manifold is a connected Hausdorff space R with the property
that each point p of R has a neighbourhood U which is homeomorphic to
an open set V in real Euclidean n-space E,. Let ¢ be a homeomorphism
of U onto V, g(p)==x={x,;u=1,...,n}. U and ¢ determine a local
coordinate system or coordinate frame X and we say that p is covered by X.
In a Riemannian manifold there is also given a symmetrical metric tensor
Z.»(x) which obeys the usual transformation laws. In the non-definite case
we agree to choose the sign of the line element

(13) ds'::: ?1‘ Zg_urdx.u dxl'

o
so that always ds = 0. We also assume that R is of class o, thatis, it can
be covered by a set of “admissible” frames so that in these frames the
2.,(x) have continuous partial derivatives of any order. Our standpoint is
that a point which cannot be covered by such a frame is a singularity.

A further restriction on admissible frames is that they cover a connected
domain in which the determinant of the metric tensor does not vanish. Thus
in the example of (1), the exterior r>2m and interior r <2m are covered
by distinct frames, even if it is the same analytical formula which expresses
the metric tensor in both parts. If R is a submanifold of R in the relative
topology of R, of the same dimension as R and relatively to the same set of
admissible frames, then R will be called an exfension of K. In particular,
we shall call R complefe if it cannot be immersed in any proper extension.

An open set D of R will be called a domain if and only if it can be
covered by a single admissible frame. Cur first purpose is to define boundary
points of a domain, and this will be done by means of gecdesic arcs emanat-
ing from that boundary point.

D 19
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Let D be a domain, ¢ the coordinate mapping of a frame X which
covers D. By a geodesic arc in D we shall always mean a semi-open
geodesic arc")

(14) L:p(s)=g¢~'(x(s)), p()eD, 0<s=b

where 0 < b < ~ and s is a distinguished parameter in which the geodesic
equations have the form

% Yo d% d% e
i i Y i e i s

Here x(s)= {x.(s)} and ’g‘(:;: is the Christoffel affinity derived from g..

The parameter s is uniquely determined apart from a constant factor; if L is
not a null geodesic, we make the parameter unique by requiring that b—s
be equal to the length of arc measured from the endpoint p(b) of L.

A geodesic arc will be called an inferior arc of D if y = limx(s) exists

sl

and y € ¢(D). The point ¢=¢~'(y) is called the origin of L. If limx(s)

sl

does not exist, or it does exist but is not in ¢(D), then L will be called a
boundary arc. Note that a boundary arc has always a finite length.

Clearly the definition of an interior arc or boundary arc is independent
of the frame which covers D. If L is a boundary arc, we say that it determines
a boundary point™) of D; if also y- ]i"rl. x(s) exists in a certain coordinate

frame, we say that the boundary point (or the origin of L) lies at y (possibly
at infinity). We agree that every subarc of L, i.e. every boundary arc of

the form
L': p(s)= g7 (x(s)), O<s=b<b

determines the same boundary point as L. A more general concept of equi-
valence of boundary arcs will be needed and established later on.

It may happen that L is a boundary arc in a certain domain D but an
interior arc in a domain D*. We say that L is a boundary arc of R if the
following is true: (i) L is a boundary arc in some domain D of R; (ii) no
subarc of L is an interior arc of any domain D* of R. The boundary point
defined by L is then a boundary point of R; and it is called a singularity
if it remains a boundary point in every extension of R. This at the moment
is a rather loose definition; the final form must take account of the equi-
valence of boundary arcs. Note that if a proper extension of R exists at all

) By definition, L is a bicontinuous map of the interval 0 < s = 0.
7) We disregard possible boundary points which are not accessible by a geodesic
arc. They would not contribute anything new to the extension problem.
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then R must necessarily have non-singular boundary points; and R is complete
if and only if all its boundary points are singularities. Thus every R which
has no boundary arcs is complete.

In order to arrive at a useful theory of equivalence of boundary arcs,
we introduce the concept of normal coordinates relatively to a geodesic arc L.
These are combinations of Fermi and Riemann coordinates, and are defined
as follows. Suppose first that L is a non-null geodesic. Then normal
coordinates relatively to L are coordinates y, with the following properties:

(i) The metric tensor takes Galilean values g,.,= =+ d,, at all points

of L.

(i1) 0 Qur 0y, = 0 for every u, r, o at all points of L.

(iii) The equation of L is y,= 0,,s (0<s = b).

(iv) The equation of any geodesic G [which radiates from a point
p(o), 0 <o =>b of L, perpendicularly to L, is

Ya=7u$ for 1=pu<n, Yu =0,

where the y. are constants.

To construct coordinates with these properties, select n—1 mutually
perpendicular non-null unit vectors a', ..., a"!, each perpendicular to L, at
the endpoint p(b). Through Fermi propagation of these vectors (i.e. congruent
displacement along L) we obtain a set of coordinate directions a”(o) at each
p(0). For the y,-coordinate along L choose y,-—s=b—4 where b is the
total length of L (hence finite) and 4 is the length of arc measured from
p(b); for the coordinate plane y,-— o take the hyperplane P(o) generated by
all the geodesics running from p(o) in the directions spanned by the vectors
a’ (o). Finally, in P(0) itself we choose Riemannian coordinates corresponding
to the n—1 predetermined coordinate directions a”(o). Clearly these coor-
dinates will have the required properties (i)—(iv), the only freedom in their
choice being a rotation of the axes of y., u < n, about the axis of y..

If L is a null arc, some modification is necessary. For if a% ..., a"'
are mutually perpendicular non-null vectors at p(b), each perpendicular to L,
then a' cannot have this same property. However, we can choose a' to be a
null-vector perpendicular to a® ..., a"' and not in the direction of L. This
condition specifies the direction of a' uniquely and yields an admissible set
of coordinate directions. The rest of the construction is same as above, except
that s is not the length of arc of L but a distinguished parameter. By adjust-
ing the magnitude of a' if necessary, we obtain normal coordinates with the
following properties:

() gn.=1,8u=gu.=0, gu= 10, (2= u =r=n—1) at all points
of L;
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(ii) agu/oy,==0 for every u,», 0 at all points of L;

(iii) the equation of L is y,=s0., (0<s = b);

(iv) the equation of any geodesic G which radiates from p(o) on L in
any direction in the coordinate hyperplane of y,, ..., y..1 is

y_u = ;'_n § fOl’ l === w<n, y" == 0,

where the y, are constants.

Again these coordinates are uniquely determined, apart from a constant
rotation of the coordinate axes of y,, 1 <u <n, in the plane of y., ..., y..

Among all coordinate systems which cover L, normal coordinates are
undoubtedly the best behaved in the neighbourhood of L. Two things in
particular should be noted about normal coordinates. First, their construction
is entirely independent of the original frame which covered L. From any
other frame we would have arrived to exactly the same family of normal
systems. Secondly, the construction does not require any knowledge of the
behaviour of the manifold at the origin of L itself. This property is extremely
useful from the point of view of detecting singularities. Suppose that L is an
interior arc; then there exists a geodesic arc L* with the property that (i) L
is contained in L*, (ii) ¢ =1im p(s) is an interior point of L*. Let ¥ be a

normal frame relatively to L. We can introduce normal coordinates y; relatively
to L with the property that yi=y. (u=1,...,n—1), .=y +c¢ for a
positive constant ¢ in a neighbourhood of L. In other words, we can con-
tinue the normal frame of L so that it should also cover the origin of L.
It follows therefore that if gf.f‘,’-(y(t})) denotes any partial derivative of g, of
order k=1 in the system Y at the point p(0)=¢ '(y(0)) of L and
gl (y*(0+c)) the corresponding derivative in the system Y*, we have
2in(v(0)) = gi(y* (0 +¢)) and in particular

(16) gir(y* () = lim g(y (9)).
Hence if for some derivative g\,
an im (v (@)

o)

does not exist (or is infinite) then L is certainly a boundary arc of R and
defines a singularity. Thus normal coordinates provide us with a convenient
method to detect singularities.

We shall call a singularity determined by L ordinary if there exists a
derivative g\, for which the limit (17) does not exist (or is infinite). There
exist non-ordinary singularities for which all limits (17) exist and are finite
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for every k > 0. Such is the case for instance with the origin Q:u=0, r=0
of the Schwartzschild manifold, obtained from (10) by identifying opposite
points. Any geodesic arc whose origin is at O determines a non-ordinary
singularity; this is obvious from the fact that in the complete manifold (10),
0 is an interior point.

In this last example it is clearly undesirable to have a separate
singularity for each boundary arc which originates at . This leads us
immediately to the problem of equivalence of boundary arcs. What we need
is an equivalence relation of geodesic arcs, sufficiently strong to identify all
interior arcs with the same origin, but sufficiently weak to keep interior and
boundary arcs apart.

Let ¥ be a normal coordinate system relatively to the geodesic arc L,
and D the domain covered by Y. Let L* be a second geodesic arc in D, not
necessarily distinct from L, ¥* a normal system relatively to L* and suppose
that Y* covers a sub-arc L' of L. We say that L* is associated directly with
L if the following is true:

(i) If y.(d”) (u==1,...,n, 0< 0" = b") are the coordinates in ¥ of the
point p*(6*) of L* where o" is a distinguished parameter, then

lim y,(0")=0 for u==1,...,n;

¥ i)

(ii) If yi(o) (u=1,...,n,0<0=0b) are the coordinates in Y* of the
point p(o) of L" where o is a distinguished parameter, then

imyn(o)=0 for p=1,...;n

It follows from the definition that if L* is associated directly with L
then L is associated directly with L*. Condition (ii) is essential for symmetry
and cannot be omitted; in the last section we shall give a counterexample
which will show that (ii) is in fact independent of (i).

Generally, given two geodesic arcs L and L* of R, we say that they
are associated if and only if there exists a finite chain of geodesic arcs
L=Ly,L,,...,L,=L"with the property that L, and L,..(»=0,1, ..., m—1)
are directly associated. It is clear from the definition that being associated
is an equivalence relation and that the equivalence class of an interior arc L
consists of exactly those interior arcs which have the same origin as L. As a
corollary we find that the equivalence class of a boundary arc contains only
boundary arcs; hence it is permissible to identify boundary points which are
defined by associated boundary arcs. Thus by definition, a boundary point
of R is a class of associated boundary arcs. The definition is relative to R
and distinct boundary points may become fused in a suitable extension of R.
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If the boundary point defined by the arc L is not a singularity of R
then none of the associated arcs will define a singularity. Hence we can
safely speak of a boundary point being a singularity, and also of being an
ordinary singularity, namely if at least one of the associated arcs defines an
ordinary singularity.

Non-ordinary singularities cannot be detected by an examination of the
limits (17) alone, and study of these singularities should present many
interesting problems. More favourable is the situation with analytic manifolds
which have the property that the g,., are determined in a whole neigh-
bourhood of a non-singular boundary point at which the partial derivatives
are known. This remark may be utilised to construct a unique greatest
extension or universal covering manifold of an analytical Riemannian manifold.
However, we shall not go further into this question but conclude with the
discussion of some examples.

§ 3. Examples.

To illustrate the concepts developed in the previous section, we shall
examine once more the singularities of the de Sitter and Schwartzschild
manifolds. The de Sitter Universe offers no particular problems: all the
boundary points of (3) can be made interior points in a suitable frame, and
the complete manifold (11) is free of singularities.®)

The Schwartzschild manifold (1) is more interesting and we shall examine
its boundary points in greater detail. The geodesic equations of (1) are well
known; they are (in the hyperplane # =0, which is obviously no restriction
in generality),

dy _ h
(18) &P
dt ar
(19) ds r—2m
1
A T h_] ' _g{rf_']' :
(20) T lH— r ‘\1 r ]

where a, h are constants and & has the value -1, —1 or 0, depending on
whether the geodesic is time-like, space-like or null.

%) It is not entirely free of boundary points, as there are exceptional points not
covered by (11), but these can easily be transformed into interior points by a suitable
rotation of the frame.
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There are several types of boundary arcs, in both the exterior and
interior regions. In the exterior region r >2m we have:

a) Space-like arcs

1

(P—2mr) 2, h<2m, 2m<r=2m+d,

d(f 2 2 _%
f—fu, Wh(r—h)
originating at t=+t,, ¢ = qo, r=—2m.

b) Arcs of the form

1

frowfb -2

a2 (o 22

2m<r=2m-+d

where a0, #¢= 41 or 0, and d is a suitable positive number. It originates
at r=2m, ¢ =qo, l = 1 o<,
In the interior region 0 <r<2m we have:
¢) Time-like arcs
1 1

t=={,, %? =h(rP+h) 2Q2mr—r) %, 0<d=r<2m.

d) Space-like arcs
1 1

i==ts. ‘;—T —h(h*—r?) 2 2mr—r) %, h>2m, O<d=r<2m.

e) Null arcs

1
=i, % =+ 2mr—r?) 2 0<d=r<2m.

f) Arcs of the form

t0_arfos o E) 2]

% =ar(2m—r) ’l;ﬂﬂ-l-[s‘}" f_j’) '?rﬂ _]],] :'

as=0, 0<d=r<2m, s===11 or 0.
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g) Time-like arcs ]

. 1+a*|

dt 1
kLR e ar(2m—r) e
a arbitrary, 0 <r =d.
h) Null arcs

¢ = o, %:j_-:'(zm—r) W ¢ f g o

i) Arcs of the form

» i

1
20 s (o) 22 —1)

|
/ » ]
%:ar@m——r) ll.a=+'.%+",)(¥ —1.]') :
a arbitrary, h=£0, O<r=d.

The first three of these originate at {—{#,, ¢ = ¢o, r=2m, f) originates
at r==2m, ¢ =qo, t= +o0, g), h) and i) at r—=0, ¢ =qu, t=t s T .

It is easy to verify that all boundary points defined by these arcs, with
the exception of the last three, are interior points in (10) and therefore do
not represent singularities. In fact they all lie on the lines u*=*; a), ¢), d)
and e) at u=v=0, b) and f) at w>=+*50. Of course a), c), d) and e)
become non-ordinary singularities if we identify (u, ») with (—u, —7).

The arcs g), h), i) originate at =0, i. e. on the hyperbola +* — u* — 4/e;
it is reasonable to expect that they represent true singularities. Consider first
a time-like arc of the type g); for convenience we take a-1, ¢ =0, and
the origin at t=0. If s is a distinguished parameter, we have from (19)
and (20)

1

dt'ds—=r/(2m—r), drids —(2m/r)?.
They give on integration

(21) L:r=2me* t=2mlog ; j{:;—m:m-—%mrr", O<o=d,

where
1

(22) o — (3s/4m)?.

Let us first study a two-dimensional reduced model

(23) -+ ds'—’:(-z-;"- —l]d:f— —dr,  O<r<2m.

r
2m—
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Clearly (21) is also a boundary arc of (23). The equation of a geodesic
which radiates from the point p(o) of L, perpendicularly to L, is
1

L1 At 2m )
i dr - o2m=r' Ay Tl
with
140

(25) r==2ma, t=2mlog

4
—4mo——mao® at s=0.
l1—o 3

Normal coordinates are obtained by setting

(26) N==s, Y= % mao®,
by (22). Equations (24) give
1
at 1 T ar i 1 2m \ 2
where
1
o o (3y:/4m)?,
and (25), (26) give
(29) B e I W i

ay: a0’ 9y2 1—a?

I
©

These formulae allow us to calculate """ r/ayiay., 0" ' t'aylay. at y
(hence on L) for every n.
Now

g _(2m_]] ot ot __ r ar aor

24 r Ve 0¥y 2M—T AP 0Y»
in the normal system, hence g, =1 by (27). A simple calculation gives
furthermore

(30) w=——I1, 7 /i J’f = 'g y—.:"’ on L;

the last expression tends to infinity when y.— 0, so that L defines an ordinary
singularity. But the partial derivatives with respect to y;, on L are the same
in the complete as in the reduced model, so that L defines an ordinary
singularity of (1), as expected.

Next we consider a null arc

O<r=d

(31) LI]:t::_—__.r_i_zm Iog zmzin—r 2
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of the type h). Straightforward calculation gives in the reduced model the
following normal coordinates relatively to Lq:

F=g Yok iy,
(32)

ot e Mg Sl 1+y/2y:
l=—y4 5 Yi—my Vo-+2m log I—ye2m °
The metric tensor in this system is
Zu 0, gun=1,
(33) " (1 1) : "
gu=8my:(2m—y.) '(7 % ) —4myy: (2m —y.)
and

f]:gzz c;'y'f = 4.\'??_]‘31i on L

which again indicates an ordinary singularity.
It can be verified easily that in the system (32), the arc (21) is
represented by

where O(yf_f) refers to y.— 0. This suggests that (21) and (31) are associated
arcs. For this to be true, it would be necessary to verify that in a normal
frame relatively to (21) the arc corresponding to (31) also originates at
y1=0, yo=0. That (34) alone is not sufficient to establish equivalence is
shown by the fact that there is a boundary arc of the form

] 2 i -
(35) - _}’3‘]‘;;2—;?' }':+0(}’:), O<y=d
in the frame (33), corresponding to the interior arc
(36) t=m(1—2log 2), m<r=m-+d

in (23), and this is clearly not associated with L, since the latter determines a
singularity.

It seems likely that the manifold (10) is complete and all boundary arcs
originating at the same point ¢, t, u, 1o with i — uy = 4/e, are associated.
We shall not attempt to prove this here, but conclude with the discussion
of another example,

(37) + ds* =t (dxi + dx3+ dx;) — dF’, t>0.

This line element was suggested by the author some time ago [5] as a
possible cosmological model, with a singularity at the time origin #=0. An
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interesting feature of this line element is that the metric tensor itself has no
singularities, and the only suspicious place is at {— 0 where the determinant
vanishes.

The geodesic equations of (37) have for general solution

2 s Sta—ef |, . o
(38) xk-—'"i';-k log E:}"—*(T'f'_“)_-{-c“ k=1, 2, 3,

t=[(s+e—e8)(8+(s+ “))]-i-

where Zi+/4:+4; =1 and &, &, & are arbitrary constants. Again &=+ 1 if

the geodesic is time-like, ¢ = —1 if it is space-like and #¢=0 if it is a
null-line.

There are two types of boundary arcs: time-like arcs
(39) =g =8, k=1,2,3, O0<s=b,

obtained by setting #=—0 in (38), and arcs with §=£0, originating at =0,
r=o. To examine the first type, we assume that it originates at x; = x. =
="—x3:'-0, L.e

(40) Lit=o, 0<o0o=0b, =0, k=1,23.

The non-null geodesics emanating from L perpendicularly to L are space-

like and have the form
1

5 o5 1 s+o
(41) t=(0*—35%°%, x;,.=?lk log g,
e it 1 s+o
Hence (x4 X2+ x3)* = r= o Iog;__—s, s == o tanh r. Normal coordinates are

obtained by setting
Vi =4S, k=1, 2,3, Yi =0,
L5
Rl Ay = y:/?

where r*==y;+4-y;4y;. The transformation equations are
(42) x;. = (y.'7) arctanh (7 y4), R=1,2,3
1
b= (R —F)",
and the metric tensor in the new system is
@ = (1i/F° — 1) arctanh®(7/y4) (Own — Yo Y,/7°)
(43) + Y YulT s l=m<n=3,

g.H — —] .
Hence L determines an ordinary singularity.
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Among the boundary arcs which originate at r=— o, =0, we shall
only consider then null arc

-%logn, X3 =X =0, =02, O<o=1.

For the normal coordinate directions we choose the space-like vectors

(44) LoiXy ==

1 1 1
0,0 2,0,0), (0,0,0 2,0) and the null vector (—1,0, 0, 6?). They are
derived by Fermi propagation along L,. The general form of space-like
geodesics in the normal hyperplane spanned by these vectors is

(s ll-2a)+3

(45) o aine ; fou 108 “I + J—}-a ]/[l _.0’—8“]

1
t—(0—2as—s)*

1

X) == B log — log g,

N m==2,3.

where g° —«* =0 and 43+ 4= 0/(¢® 4 0). Normal coordinates are obtained
by setting
1
1 ) el 2 ___!-' -
U:y4| (C=§y1y4/f, j-m—_-:ym(Ty-lyl_l_r) y m:2,3,

and substituting in (45). The transformation equations are

' 1 A 1
X1 =—4~(y:.-t,')|0g “1 ok b 0] J’IJ/[]_’:_"Q"-V‘” + 2 log v

(46) x.= ; (y /y? r,]log “] +n— ; y.)/(il—g—%y;)], me=2,3,

1

t=(0—nyi—y:—m)’

with
&
(47 v (4t ot
A lengthy computation gives, for m=2, 3,
3 ,+I' 2
(48) guur — r- N N | Ji d+ (ym r- xmxu)

yi+; .VH.
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where 1, X2, x3, t are given by (46), (47). Again it is seen that L, determines
an ordinary singularity.

From (44) it can be verified easily that in the system (42), L, is
represented by

1
»= ; @—1),  p=p=0 p=-(@+1)
O<co=1.

Hence L and L, are not associated directly, and probably not associated at all.
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