On the parallel displacement of arc holding
some intrinsic properties.

To Professor O. Varga on his 50th birthday.
By YOSHIE KATSURADA (Sapporo).

Introduction.

The present author has already introduced the so called parallel dis-
placement of arc ([1])') in a space with affine connection 77 with the aid
of the extended connection parameter [2]. However such a parallel displacement
could not hold properties of the arc, in the general space except a flat space.
The aim of the present paper is to find out a new connection parameter of
an extensor which defines a parallel displacement of arc holding some of
them, making use of the quantities D“0’s introduced by H. V. CraiG [3].

In the present paper we use certain of the ideas, notations and results
given in the papers ([1]—[3]) without explanation.

§ 1. The intrinsic connection parameter of an extensor.

Let us consider an n-dimensional space L, with an affine connection 77/,
then at each point on a parametrized curve Xx'=—x'(f) of class P(P>M),
we can express the «-th order intrinsic derivative of a contravariant vector
in the following extensor form introduced by H.V. CraiG [3]
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(1.1) G = D oW %)
where the symbols D0’y are obviously the coefficients of the @, the
quantities defined by o/, 77/,x"" and these derivatives do not exceed order
«, and for fixed e« they are the components of the extensor of the type

1) Numbers in brackets refer to the references at the end of the paper.
?) Numbers in parentheses denote times of differentiations with respect to f.
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indicated by the indices, that is, excovariant of order one and contravariant
of order one. To illustrate this, we have

Do\, —0; for «=0,

D'o\,,=0d!, D'¢=L, for e«=1, (L being I.x"),
D'y, =¢6!, D'6\y=2L), DOy=L"+L}Li for a=2,
D0y =dj, D'0'9;=3L;, D0y, =3(L" +L} L),

D0y = (L™ + L L) + (L™ + L' L) Li.  for e=3,

------------------------------------------------------------------

€ICi,
where the delta denotes the Kronecker delta.

On putting é?ﬁ,-; D“d'g,, since the (M + 1)n-rowed determinant g of the
quantities g‘;;j ¢=0,...,M does not vanish, i. e, g=1, we obtain the
quantities g/ determined by

M

(1.2) 2 gi.gl" =0}d;.

a={) 14

Then from the fact that ‘Er;jfo for « < 3, we get easily the following

Theorem 1.1. The relation g/*=—0 holds for «>y

i

Corollary. If y< M, then there exists the relation
'-IL 7] % -',1 @ Al
>_'.'. g;,_i%?“_ ;Ig&,.%r;‘.

DerFINITION. With the aid of the M-+ 1 quantities éis; == .v.M:
we define the so called tensorial components of the «-th kind for an extensor
v (x, xM, ..., x#) 3=0,...,e of functional order M and of range M with
the following quantities

3.3) :."'24 B_,.rf’-f' e=0,..., M.

This conception is generalized similarly for a general extensor of the type
indicated by 7"Y4%y; s,

- We are desirous to determine the condition for a connection parameter
I35 of an extensor to satisfy the following relation
(1.4) L E:qﬂ dvhi
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0% being the covariant differential of the vector 7:
(1.5) O —=dvi+ Fhridx:.

On putting
(1.6) 0" = dv¥ + D™ dx®’,

where the displacement dx'®' means difference of the line element at any
two infinitesimally near points lying on any two infinitesimally near curves,
and on making use of the following relation obtained from (1.3)

(1.7) dv ':za«gt aﬂ*-{-Zg dv,
we have 3
dgy v+ gy di? + 2 T8, 1" dx' = gy (dr# + I dx®)
according to (1.4), (1.5), (1.6) and (1.7). Consequently it follows that
{ Ugﬂ-,‘ i T
frf{t%)f + Lugp;dy g,,, rﬂ*"’ dx =0,
Since »# and dx®' are arbitrary, we have
&
T gxtm

and from the corollary of Theorem 1.1, we can arrive at the following result

m
é} b b (L]
ga:. [ + I &y rja__: ’

]

’ g.! :
(]8) f ﬁf.a__%lg. ’x|ip+!!1gg;rr\

These quantities fﬁ ., are called the intrinsic connection parameters of an
extensor, by which we define the excovariant differential, the excovariant
derivative and the parallel displacement of an extensor. Thus we can see
the following

Theorem 1.2. If and only if an extensor +# (x,x", ..., x") of range
M is displaced parallelly, that is, 0% =0, then its tensorial components of

the «-th kind are also displaced parallelly, that is, 0vi=0, ¢=0,..., M.

The theorem is self-evident from that the determinant g does not vanish.
Especially if we write x(**)" for the extensor +/, then it follows that

d“ (he =R

and we have the following
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{x lih
Corollary. If and only if 0x#V—0, 3=0,..., R, then d{d e )—-—-—-0
«a=0,...,R where R<M.

If the curve is analytic and if the connection parameter I}, is also
analytic, then we can consider the quantities /%5 0=0,..., .

§ 2. The intrinsic and parallel displacement of arc.

We consider two analytic curves C and C passing through two infini-
tesimally near points P and P in a certain domain of L, respectively, which
are written in the form of power series in #—f, in the same interval 0 ={—f,=¢:

2.1 x({t)=x+ > —1-,- 2 (t—1)",
a=1 !

2.2) % () =5+ 3 F (-1,
a—1 .

where x' and X' are the coordinates of P and P respectively and correspond
to the same parameter value #,. If the coefficients x¥ and x®* satisfy the
following relations

ii' sl x|+dx: llﬂ']a e x(a] — l“:};; x(ﬂ-rlljdx('\_ilk
XV =5V — xV g, y=1,2,...,00

then we call one of these curves the parallelly displaced curve of the other curve.
When the curve (2.1) is an affine path passing through P, then, as is
well-known, the differential equation of the affine path is written as follows

¥ x(1yi _
(2.3) = ga()x.

Differentiating covariantly the above equation along the curve and substitut-
ing the above result, we have

32 xhi ; ; o x1i o ; ;
g =0 Xt o= (g + g)xV = gux™ (putting g2=1¢1"+9i).

Similarly we can see the following relation

Pt

(2.4) I

= P ()X a=1,2...

¢« being a function of f. Conversely if the coefficients x* of (2.1) satisfy

D 2)
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the relation (2.4) at the point P, then it is self-evident that (2. 1) is the affine
path passing through the point P with the direction x("". Here we can state
the following

Theorem 2. 1. If a curve C is an affine path, then its parallel curve
is also an affine path.

PROOF. A necessary and sufficient condition that the curve C be
the parallel curve of the curve C, is that (x*)=0 e«=12,...,%
9"
dte
lary of Theorem 1. 2. From d(x("") =0, it follows that

and it is equivalent to 6( ] 0 «e=0,1,..., > according to the corol-

tI}l x(l]r_|_I xll)_;dx

Since the curve C is an affine path, on making use of the relation (2.4),

O x(i ;
d(TJ=O takes the following form
ox  Jgxvi i Ox o
"/ e S
1)j
— (0 + Ty 22
= (0;+ Ivdx") g1 X"
= g1 (x"" + I} x" dx")
= gy X1V,
2 2l 1)i 1)i
and from 6(%}: and f’—ﬁ—— ¢.x", we have
d‘_"'(l)f } x(i}e -8 ()’"t {1y d x(l
d’; =2 MW dxt = (8} + [dr) = X,
Similarly we get
drl‘ill}i .
dt =@ X" ¢=123,...%

Consequently (2.2) must be an affine path.
From this theorem, we can easily infer the following

Corollary. An affine path is the curve obtained by parallel displacement
of an arc to itself.
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If our space L, is a Riemannian space R,, then we obtain the following

Theorem 2.2. If the curves C and C in R, are parallel, then the
derivative of the are length of (2. 1) with respect to t is equal to that of

(2.2) at the point P and P respectively, that is, (“g_:] 7 (%)

Proor. Differentiating covariantly the following equation

(ds\® dx' dx/

dt) =& gy dr
we have
ds .('ds e A (dx'\dx
(—"’ “:]—"ng?rngv” =

because dg; =0 and d ) 0. Therefore it follows that

( ds) ds)
dt)e \dt)s
Theorem 2.3. If the curves C and C in R. are parallel, then the

first curvature o of (2.1) is equal to the first curvature o of (2.2) at the
point P and P respectively.

Proor. Differentiating covariantly the following equation

T Ext P
G O
and on making use of d(g;)—0 and ¢ ( f;:f l 0, we have d(0),=0

and o,=— 0

s

Corollary. If the curves C and C in R, are parallel, then the deriva-
tives of the first curvature e-times with respect to s have the same value at
the point P and P respectively.

Les us take the arc length s in place of the parameter ¢ of the curve C,
then (2. 1) becomes as follows
(2.5) xi(s) = x' + 2 — X (s—s0)".

If the curve (2.5) is a geodesic circle whose differential equation is
written in the form

Fx L dx
(2.6) dss = ¢ gs’
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then we obtain the following relations

j-l i d i d"... i
o — I e
(2.7) ' g5t (,_ .
| 55 @+t T 290 0%
l .................................... etc.

Conversely if the coefficients x®7 of (2.5) satisfy the relation (2.6) and (2.7)
at the point P, then it is self-evident that (2.5) is the geodesic circle passing
through the point P with the given x{" and x®7 whose arc length is s.
Hence we can see the following

Theorem 2.4. If a curve C in R, is a geodesic circle, then its parallel
curve is also a geodesic circle.

PROOF. Let us put the parallel curve C of the curve C given by (2.5)
as follows

2.8) () = ¥ D

then we have ‘ : _
¥V = x" £ rfexV dx* = (0} + Fdx")xV,

Zx* &Fx i OF O xi
a? d‘! +Irfd:dx _(d+lﬂ-d )d R
0 x ; = 0% x/

d 8 (d ¥ [lﬁd ) ds®’

0“x' x

F——(r+[_;kd )du'

Replacing (2.6) and (2.7) in the above equations, we have

o 2 dX g%

ds® = (0 +dx)e ds .7 ds’

0% ) dx P

1 e = (0; + I} dx") { (0%) + s
= (o* )‘“—**‘ +0° ((};x*

ox X

=@ ey I a0 T,
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Accordingly the parallel curve C is the geodesic circle passing through the
point P with the given X and X, whose arc length is s.

In particular, if our space L, is a flat space, then in the parallel
coordinate system, the connection parameter of an extensor: /7. expressed
by (1.8) vanishes identically. Therefore it becomes Xx@"= x{@", that is
0x@'=0. Thus the following theorem is obtained without difficulty.

Theorem 2.5. If the curves C and C are parallel in a flat space,
then one of these must be the translation of the other curve.

REMARK. For any analytic curve, in order to show the existence of its
parallel curve, we must prove that when the right hand member of (2.1) is
convergent, the right hand member of (2.2) is also convergent. We shall do
it next time.
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