Two of the problems of L. Fuchs.

To Professor O. Varga on his 50th birthday, By D. K. HARRISON (Haverford, Pa.).

L. Fuchs in his recent book (see [1]) on Abelian groups has listed 86 unsolved problems. It is the purpose of this paper to answer two of these problems:

Problem 42. Do groups G and H exist whose endomorphism rings are not isomorphic, but their endomorphism groups are isomorphic?

Problem 56. Find the structure of the tensor product of a torsion group and a mixed group.

We answer the first question in the affirmative. Theorems 65.3 and 65.4 of [1] give the structure of the tensor product of two torsion groups and of a torsion group and a torsion-free group respectively. Hence we are able to answer the second problem with the somewhat unsuspected fact that the tensor product of a torsion group G with any group H is isomorphic to $(G \otimes T) \oplus (G \otimes (H/T))$ where T is the torsion subgroup of H.

§ 1. Endomorphism group of a torsion group.

Theorem 56.1 of [1] states that two p-groups with isomorphic endomorphism rings are necessarily isomorphic. Hence our search is for two nonisomorphic p-groups G and H with $\operatorname{Hom}(G, G) \simeq \operatorname{Hom}(H, H)$.

Lemma 1. If T and L are groups and T is a torsion group, then Hom(T, L) is a co-torsion group (see section 2 of [2]).

PROOF. It is enough to show that $\operatorname{Ext}(Q, \operatorname{Hom}(T, L)) = 0$ and $\operatorname{Hom}(Q, \operatorname{Hom}(T, L)) = 0$ where Q is the group of rational numbers. $Q \otimes T = 0$ since Q is divisible and T is torsion, and $\operatorname{Tor}(Q, T) = 0$ since Q is torsion-free. By pages 116 and 28 respectively of [3]

 $\operatorname{Ext}(Q, \operatorname{Hom}(T, L)) \oplus \operatorname{Hom}(Q, \operatorname{Ext}(T, L)) \cong \operatorname{Ext}(Q \otimes T, L) \oplus \operatorname{Hom}(\operatorname{Tor}(Q, T), L)$ = $\operatorname{Ext}(Q, L) \oplus \operatorname{Hom}(Q, L) = 0.$ and

$$\operatorname{Hom}(Q, \operatorname{Hom}(T, L)) \cong \operatorname{Hom}(Q \otimes T, L) = \operatorname{Hom}(O, L) = 0.$$

Lemma 2. If T is a torsion group with basic subgroup T_b (see chap. 5 of [1]) and B is a divisible group, then $\operatorname{Hom}(T,B) \simeq \operatorname{Hom}(T_b,B) \oplus \operatorname{Hom}(T/T_b,B)$.

PROOF. If *n* is any integer we let Z_n denote the integers modulo *n*. Since $\operatorname{Ext}(T/T_b, B) = 0$, we have the exact sequence

(1) $0 \rightarrow \text{Hom}(T/T_b, B) \rightarrow \text{Hom}(T, B) \rightarrow \text{Hom}(T_b, B) \rightarrow 0$ and since T_b is pure in T, we also have the exact sequence

$$0 \rightarrow Z_n \otimes T_b \rightarrow Z_n \otimes T \rightarrow Z_n \otimes (T/T_b) \rightarrow 0$$

and thus

$$0 \leftarrow \operatorname{Hom}(Z_n \otimes T_b, B) \leftarrow \operatorname{Hom}(Z_n \otimes T, B) \leftarrow \operatorname{Hom}(Z_n \otimes (T/T_b), B) \leftarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Hom}(Z_n, \operatorname{Hom}(T_b, B)) \leftarrow \operatorname{Hom}(Z_n, \operatorname{Hom}(T, B)) \leftarrow \operatorname{Hom}(Z_n, \operatorname{Hom}(T/T_b, B)).$$

Hence (1) is a pure sequence. But $\text{Hom}(T/T_b, B)$ is a torsion-free co-torsion group, and thus by propositions 2.1 and 3.6 of [2] together with the properties of Pext, any pure extension of $\text{Hom}(T/T_b, B)$ is trivial. The lemma now follows by the sequence (1).

We say that a property holds for all large cardinals α if there exists a cardinal number β with the property holding for all α with $\alpha \ge \beta$.

Lemma 3. If T and L are reduced p-groups, I_{α} is a direct sum of α copies of the p-adic integers, and T_b is a basic subgroup of T, then for all large α , $\operatorname{Hom}(T,L) \oplus I_{\alpha} \simeq \operatorname{Hom}(T_b,L) \oplus I_{\alpha}$.

PROOF. By the theory of co-torsion groups (sec. 2 of [2]), it is enough to show that $\operatorname{Hom}(T,L)$ and $\operatorname{Hom}(T_b,L)$ have isomorphic torsion subgroups. Since L is reduced, $\operatorname{Hom}(T/T_b,L)=0$ so the exact sequence $0 \to T_b \to T \to T/T_b \to 0$ gives that $\operatorname{Hom}(T/T_b,L)=0 \to \operatorname{Hom}(T,L) \to \operatorname{Hom}(T_b,L)$ is exact. We must show that if $f \in \operatorname{Hom}(T_b,L)$ and $n \cdot f = 0$ for an integer n, then $\theta(g) = f$ for some $g \in \operatorname{Hom}(T,L)$. Since T/T_b is divisible, for any $a \in T$, there exist $c \in T$, $b \in T_b$ with a - nc = b. We let g(a) = f(b). To show g is well defined, suppose a - nc' = b' with $b' \in T_b$. Then n(c' - c) = b - b' and since T_b is pure, b - b' = nd for some $d \in T_b$. Hence f(b) - f(b') = nf(d) = 0 or f(b) = f(b'). It is clear that g is a homomorphism and that $\theta(g) = f$.

For any integer n, we shall use the notation L_n to denote the set of all $a \in L$ with na = 0.

Lemma 4. If T_b is a direct sum of cyclic groups and if L and L' are two groups with $L_n \simeq L'_n$ for all integers n, then $\text{Hom}(T_b, L) \simeq \text{Hom}(T_b L')$.

PROOF. If $T_b \simeq \Sigma Z_n$, then

 $\operatorname{Hom}(\Sigma Z_n, L) \simeq \operatorname{\Pi Hom}(Z_n, L) \simeq \operatorname{\Pi L_n} \simeq \operatorname{\Pi L_n} \simeq \operatorname{\Pi Hom}(Z_n L') \simeq \operatorname{Hom}(\Sigma Z_n, L').$

Proposition 5. If T and T' are reduced p-groups with isomorphic basic subgroups, if L and L' are reduced p-groups with $L_n \simeq L'_n$ for all integers n, and if B_α denotes a direct sum of α copies of $Z(p^\infty)$, then for all large α

$$\operatorname{Hom}(T \oplus B_{\alpha}, L \oplus B_{\alpha}) \simeq \operatorname{Hom}(T' \oplus B_{\alpha}, L' \oplus B_{\alpha}).$$

PROOF.

$$\operatorname{Hom}(T \oplus B_{\alpha}, L \oplus B_{\alpha}) \simeq \operatorname{Hom}(T, L) \oplus \operatorname{Hom}(B_{\alpha}, L) \oplus \operatorname{Hom}(T, B_{\alpha}) \oplus \operatorname{Hom}(B_{\alpha}, B_{\alpha}).$$

 $\operatorname{Hom}(B_{\alpha}, L) = 0$ since L is reduced. Hence with lemmas 2 and 3 we have for α large enough.

$$\operatorname{Hom}(T \oplus B_{\alpha}, L \oplus B_{\alpha}) \simeq \operatorname{Hom}(T_b, L) \oplus \operatorname{Hom}(T_b, B_{\alpha}) \oplus \operatorname{Hom}(T/T_b, B_{\alpha}) \oplus \operatorname{Hom}(B_{\alpha}, B_{\alpha}).$$

Since each of $\operatorname{Hom}(T/T_b, B_a)$, and $\operatorname{Hom}(B_\alpha, B_\alpha)$ are torsion-free co-torsion groups and since by section 2 of [2] a torsion-free co-torsion group k is completely determined by the dimension of $k/p \cdot k$, we see that by choosing α larger also than the cardinality of T/T_b , we get all of $\operatorname{Hom}(T/T_b, B_\alpha) \oplus \operatorname{Hom}(B_\alpha, B_\alpha)$ completely determined by α . By lemma 4, $\operatorname{Hom}(T_b, L) \simeq \operatorname{Hom}(T_b, L')$ and clearly $\operatorname{Hom}(T_b, B_\alpha) \simeq \operatorname{Hom}(T_b', B_\alpha)$. The proposition follows.

By the existence part of the theory of countable p-groups (see chap. 6 of [1]) there exist nonisomorphic p-groups T and T' with isomorphic basic subgroups and with $T_n \simeq T'_n$ for all integers n. We let $G = T \oplus B_\alpha$ and $H = T' \oplus B_\alpha$ where α is large enough and have that $\operatorname{Hom}(G, G) \simeq \operatorname{Hom}(H, H)$ with G not isomorphic to H.

§ 2. Tensor product of a mixed group with a torsion group.

Theorem 6. If $0 \rightarrow H \rightarrow G \rightarrow L \rightarrow 0$ is a pure exact sequence and T is a torsion group, then $G \otimes T \simeq (H \otimes T) \oplus (L \otimes T)$.

PROOF. We have the exact sequence (see [2])

$$(2) 0 \rightarrow H \otimes T \rightarrow G \otimes T \rightarrow L \otimes T \rightarrow 0.$$

By proposition 4.2 of [2], $Hom(T, H \otimes T)$ is a direct summand of a direct

product of finite cyclic groups. Hence $\operatorname{Pext}(L, \operatorname{Hom}(T, H \otimes T)) = 0$. This means we have the exact sequence

Hence the identity map of $H \otimes T$ to itself comes from some $f \in \text{Hom}(G \otimes T, H \otimes T)$. But from this it is standard procedure to show that the kernel of f is the image of $H \otimes T$ in the sequence (2) and that the kernel of f is a direct summand of $G \otimes T$.

Corollary. If G is any group with torsion subgroup G_t , and if T is any torsion group, then $G \otimes T \simeq ((G/G_t) \otimes T) \oplus (G_t \otimes T)$.

ADDED IN PROOF: 1. Let $\alpha(T, L)$ be the cardinal number determining the torsion free co-torsion part of Hom (T, L). We (with section 2 of [2]) have shown that Hom (T, L) is determined by T_b the L_n , and $\alpha(T, L)$. Hence it is very desirable to see a calculation of $\alpha(T, L)$.

2. In the meantime E. Sasiada (On two problems concerning endomorphism groups, *Annales Univ. Sci. Budapest* **2** (1959), 65—66) solved Problem 42 for torsion-free groups and L. Fuchs (Notes on abelian groups. I, ibid. 5—23) described the tensor product of a mixed and a torsion group, and also the torsion part of the tensor product of any two groups (cf. also L. Fuchs, Notes on abelian groups. II, Acta Math. Acad. Sci. Hungar. **11** (1960), 117—125).

Bibliography.

- [1] L. Fuchs, Abelian groups, Budapest, 1958.
- [2] D. K. Harrison, Infinite Abelian groups and homological methods, Ann. of Math. (1959), 366—391.
- [3] H. CARTAN and S. EILENBERG, Homological algebra, Princeton, 1956.

(Received May 16, 1959.)