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On limit operations in a certain topology
for endomorphism rings of abelian groups.

To Professor O. Varga on his 50th birthday.
By S. A. GACSALYI (Debrecen).

§ 1. Preliminaries.

Let G be an arbitrary (additively written) abelian group, and let £(G)
be the complete endomorphism ring of G. Consider an arbitrary subring P
of E(G), which may in particular coincide with E(G). Following T. SzeLe
[1], we introduce in P a concept of convergence by the following definition:

An infinite system @ = {¢, v € N} of elements of the ring P is said
to converge to the limit ¢ € P, if for any x € G the relation x(¢,—¢)=0
holds with the exception of a finite number of »’s.")

If @ converges to ¢, we write Iirrl ¢, = ¢. It is easy to see that the
limit is uniquely determined. 2

It will perhaps be worth while to point out that the concept of con-
vergence just introduced gives rise in a natural way to a topology. Let us
indeed make the following conventions:

A subset A(OS AS P) of the set P is said to have the accumulation
point ¢ € P, if A converges to ¢. (We see that by this definition a finite set
can have no accumulation point, while an infinite set can have at most one
such point.)

Closed sets can now be defined in the usual way:

A set in P is closed, if it contains all its accumulation points. (I. e. a
set is closed if it contains its accumulation point, in case such a point
exists.)

More explicitly this definition can be stated as follows:

A subset A of the set P is called closed if 3¢ P belongs to A whe-

1) We remark that a similar phenomenon of convergence arises also in purely algeb-
raical investigations on endomorphism rings. See [2].
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never for every x € G all but a finite number of the elements « of A satisfy
L¥=Xc.

From this definition it follows trivially that

1. O and P are closed sets,

2. any finite subset of P is closed,
since the requirement expressed by the definition is irrelevant in these cases.
Moreover it is easily seen that

3. the union of two closed sets is closed,

4. the intersection of any class of closed sets is closed.

Thus P becomes a topological space, in fact a 7,-space.

It is the purpose of the present note to clarify a certain aspect of the
concept of convergence just exposed. We shall indeed consider double limits
and investigate their interrelations.

§ 2. Convergence in two variables.

The definition of convergence to a limit just given carries over in a
natural way to double limits, in the sense of the following

DEFINITION 1. An infinite system @ = {¢,, « € M, v € N} (here, as well
as in the sequel, both index sets are supposed to be infinite) of elements of
the ring P is said fo converge to the limit ¢ € P, if for any x € G the relation

X(fur—g) =0

holds with the exception of a finite number of pairs (g, »).%)
It is also possible to introduce iterated limits by the

DEFINITION 2. An infinite system @ — |¢,,} is said to have the ite-
rated limit
lim lim qu,=g«,
uEM rEN
if the following conditions hold:
I. for all but a finite number of the u’s there exist elements «, € P
such that

lim ¢ = «,,
reN
and
II. there exists an « € P such that

lim ¢, = .
ueM

2) To different elements of G there can correspond of course different sets of “excep-
tional pairs”. We require only that the set of exceptional values be finite for any x € G.
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The other iterated limit,
lim Iim ¢, =3,
reN uelM
can of course be defined in an analogous manner.”)
Comparing these conditions with the one expressed by Definition 1,
we immediately get the following

Theorem 1. If the double limit

limeg,.,

ueEM
reN

exists, then both iterated limits exist and they are equal to each other and to
the double limit.

It is also easy to get a simple necessary and sufficient condition for
the two iterated limits to exist and to be equal to each other. We indeed
have the following

Theorem 2. The two iterated limits

lim lim ¢,, and lim lim ¢,

pedl yeEN reN neN
both exist and are equal to each other if and only if there exists an « € P
and for any x € G there exist finite subsets M. of M and N, of N so that for

HEM—M. ., re N—N.

DIt will perhaps be worth while to point out the intuitive meaning of this defi-
nition. Let us call sets of the form
{@,., u:fixed, »EN)|

rows, and sets
(., | v:fixed, p€ M)

columns. Then, as one easily sees, our definition says that

lim lim ¢, —a,
uweM pyeN
if for each x€ G
x(p,,—a)=0
holds, if only we except a finite number of rows, and in each of the remaining rows a
finite number of places. (Of course, the “tableau” determined by the required omissions is
dependent in general on the element x € G.) Similarly
lim lim ¢ -8,
reEN pelM
if for each x£ G y
x(‘p_u = !‘) 5 n
holds, if only we except a finite number of columns, and in each of the remaining columns
a finite number of places.
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the relation
X(¢up—a)=0

holds with only so many exceptions that each single row as well as each
column contains only a finite number of them.

Proor. If both iterated limits exist and are equal to each other, then
for any x € G the exceptions to x(¢.,—e«) =0 will surely be eliminated, if
we eliminate finitely many rows, and in each remaining row a finite number
of places; the exceptions can however also be eliminated by cancelling fini-
tely many columns and in each remaining column a finite number of places.
Now if we take the first steps of both these procedures, i. e. if we eliminate
both the (appropriately chosen) finitely many rows and the finitely many
columns, then the remaining exceptions will clearly be capable of being
eliminated by the second step of any of the two procedures, i. e. any (remai-
ning) row as well as any (remaining) column will contain at most a finite
number of the remaining exceptions. This proves the condition to be necessary.

On the other hand, if the condition is fulfilled, then for any x € G all
exceptions to x(¢.,—e)= 0 can clearly be eliminated by cancelling finitely
many rows and in each remaining row finitely many places, as well as by
an analogue for columns of this procedure.

§ 3. Uniform convergence.

Let us now introduce a concept of uniform convergence, which will
allow us to establish a further (sufficient) condition for the existence and
equality to each other of the two iterated limits.

DEerFINITION 3. We say that the system @ — {¢,,} converges in the
variable »( € N) uniformly to the limit ,, if

a) for € M, with but a finite number of exceptions, there exist ele-
ments ©, € P for which

lim @, = 7,
reN
holds;
b) for any x € G there exists a finite subset N. of N, such that for

any u € M for which lim ¢,, = 7,, the relation
re N

x(({ur’_—'ru) :0
holds, if only »€ N—N...")

1) The uniformity of this sort of convergence consists of course in the fact that the
subset N. depends only on x but not on pu.
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c) the “exceptional” subsets N, do not exhaust the set /N, in the sense that
N—{ UN.}
el
is an infinite set.
Now we are able to formulate and to prove the following

Theorem 3. Let the system @ = |¢,,} converge uniformly in each
variable with respect to the other, i. e. let

a) limeg,, =7,
uEM
uniformly on N, and
b) lim @uy =17,
reN

uniformly on M. Then both iterated limits exist and they are equal.
Proor. By a) lim¢,, =7y, for € N—N,, where N, is a (fixed) finite
neEM

subset of N. — Moreover, for any x € G there exists a finite subset M, of
M, such that x(@.,—7y,)=0 for u€ M—M.,» € N—N,.
Similarly, by b) lime,, =, for we M—M,, where M, is a (fixed)
reN

finite subset of M. — Moreover, for any x € G there exists a finite subset
N. of N, such that x(¢,,—1,)=0 for u¢ M—M,, v€ N—N..
For an arbitrary x € G let now be

ueEM—(M, UM,)— M,

and
rée N—(MUN.)=N:.
For any pair («, ») satisfying these conditions,
X(t‘f..,,» e } ;-) = 0 and .’C(‘f,u- — 'ru) = 0,
&

x'f_ru' 2 -\';'V = -JCT'_” .

Now let w € M? and »,, r, € N:. Clearly

xff 1y 'x:’r', _— X'l'_,,,
XPuyp, = X}’;-,.. = XTu-

We see that xy, remains constant while » runs through N., and this
constant value is equal to xv, for an arbitrary « € M7. If we denote this
common value of the xy,’s and the xt.’s by xe, then we can say that for
we€M: and » € NY one has x¢,, = xe or equivalently x(¢.,—«)=0.

Clearly xe is defined for every x € G, so we have a mapping ¢ of G
into itself. Let us show that this mapping belongs to P; then, by Theorem
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2, the existence and equality to each other of the two iterated limits will
follow.
We see that by the finiteness of M, and of N,, and by condition c)
in Definition 3,
Mi=M—Mu(U M),
and ey
Ne=N—{N.u( U N}

are both non-void (and even infinite) sets. Let w, € M, and », € N,. Then clearly
u, € M? and »,€ N: for every x€ G, and so x¢,.,,— x«(x€ G),i.e. « = ¢, , €P.)
This completes the proof of our theorem.
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7) If we wish only to show that the mapping a is an endomorphism of G, then we
can avoid making use of condition ¢) in the definition of uniform convergence. Let indeed
for x,y€ G be

pM—[M UM UM, UM,._]
vEN—[N,UN,UN,UN_I
Then
X +Nae=E&+))Pup =X Py + ¥ Pup=Xa + ye.

If the ring P considered is the centralizer of some subset @ of the complete endo-
morphism ring E(G) of G (the investigations of SzeLe’s paper [1] are restricted throughout
to such rings), then we can drop altogether condition c¢) from the definition of uniform
convergence, since a€ P can be proved without it. In fact, for x€ G and # €O there exist
indices u and » satisfying

PEM—(M UM_UM,,).

vEN—(N,UN_UN ),
and for any such pair (i, v) we have both xa= xg¢ , and (x#)a-—(x ) ¢, Since ¢, € P,
i.e. @,, commutes with any # € 0, we get (xd)a — (xP) ¢, (x¢,,)? = (xa)d, i.e. atoo
commutes with every # € ©, and this shows that a € P.



