Discussion of the geometry of affinely
connected spaces by direct method

By M. FARKAS (Budapest)

§ 1. Introduction

We call direct tensor calculus the method grounded on the geometrical
definition and properties of tensors, which does not use coordinates in de-
monstrating the theorems and properties independent of the system of coor-
dinates. The most consistent cultivators of this method, mostly Italian mathe-
maticians, called this method absolute. The method was applied to discussion
of n-dimensional euclidean and Riemannian spaces first by BURALI-FORTI and
BoGaio (see [1], [2]). They discussed by this method Riemannian spaces
embedded into greater dimensional euclidean spaces, and in their treatment
the embedding euclidean space was thoroughly employed.

In the years of 1920—1930 there was a debate about the question of
methods in differential geometry. From that time on the direct method was
scarcely employed in the investigations of differential geometrical spaces.
However, the direct method has its role, and significance beside the other
important methods of differential geometry. It makes superfluous the intro-
duction of coordinates in investigations and demonstrations of properties in-
dependent of the system of coordinates. Hence, it makes superfluous inves-
tigations connected with invariance, covariance, etc. At the same time it gives
a deeper insight into the geometrical essence of the theorems and makes
possible the demonstration, and the underlining of essential features, which
are hidden behind the formulae of the Ricci calculus.

This paper contains the setting up of the geometry of affinely connected
spaces by direct method, without introducing coordinates. The spaces are not
embedded into greater dimensional affine spaces. The affine space, on which
our affinely connected space is mapped, plays an important part. For instance,
vectors are defined by means of that affine space. In the definition of the
affinely connected space we make use of the concept of parallel displacement
due to LEvI-CiviTA. We may say briefly that we attain the affinely connected
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space by modifying the geometry of the affine space making use of the
parallelism of LEvi-CiviTA. We give a geometrical definition of the tensors
and use directly this definition in demonstrations.

§ 2. Tensor calculus

Consider the topological space L of the points P, and suppose that L
can be topologically mapped upon the n-dimensional affine space A or upon
a connected, open part of it. We denote the topological transformation of L
upon A with f. If gL and the image of g by the mapping f is a curve
g of A, then g is called a curve of the space L. If L,c L (m<n) and the
image of L, by the mapping f is an m-dimensional surface L; of A, then
L, is called an m-dimensional surface of L. The (n—1)-dimensional surfaces
of the space L are called the hypersurfaces of L.

Let the point P € A be the image of the point P€ L. The vectors of A
setting out off the point P’ are called the vectors of the space L in the point P.
The algebraic operations among these vectors are defined in the same way
as in the space A. Only, the vectors of L in the point P are considered as
attached to the point. Hence, if P, and P, are two distinct points of L, then
apriori no relation exists among the vectors of L in P, and in P, respectively.

Let P= P(f) be the equation of the curve g of L, and P,—= P(t,) a
point of g. Denote the image of g and P, respectively in A with ¢’ and P.
Since the equation of g’ is P'= f(P(t))= P'(f), the parameter f can be con-
sidered as a parameter on the curve g. Furthermore denote the vector
P,P'(t) with /. P and t—t, with /.f. The vector

dP .. AP

—— = lim =
dt atso Nt

as a vector of L in the point P, is called the tangent vector of the curve g
in the point P,. The tangent vectors of an m-dimensional surface L, of L
are similarly defined.

We say that « is a first order tensor of the space L in the point P, if
« represents a linear homogeneous transformation of the vectors in P to the
vectors in P, i. e. if « possesses the following properties:

a) If @ is a vector of L in the point P, then v=w«a is also a vector
of L in the point P.

b) If @ and b are two vectors in P, and r and s are two real numbers,
the equation

a(ra +sb)=r(ea)+s(ab)
holds.
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We say that the first order tensors «, and «, are equal, «, = «,, if
@@= a,a for every vector @ in P. We define the tensors re and «,+«,
respectively (r is a real number, «, «,, @, are first order tensors) by the equations

(re)a=r(ea); (¢ +a)a=ea+ wa.

We say that g is a second order tensor of the space L in the point P,
if @ represents a linear homogeneous transformation of the vectors in P to
the first order tensors in P, i.e. if # possesses the following properties:

a) If @ is a vector of L in the point P, then « —ga is a first order
tensor of L in P.

b) If @ and b are two vectors in P, and r and s are two real numbers,
the equation

B(ra +sb)=r(a)+s(8b)
holds.

We define the equality of second order tensors, the product of a real
number and a second order tensor, and the sum of two second order tensors
similarly as in the case of first order tensors.

In general, we say that u is a p-th order tensor of the space L in the
point P, if it possesses the following properties:

a) If @ is a vector of L in the point P, then »=ua is a (p—1)-th
order tensor of L in P.

b) If @ and b are two vectors in P, and r and s are two real numbers,
the equation

w(ra +sb)=r(ua)+s(ub)
holds.

We say that the p-th order tensors g, and u, are equal, u,= u,, if
ua = wa for every vector @ in P. The product of a p-th order tensor x and
a real number r and the sum of the p-th order tensors w and » are defined
by the equations

(riye=r(uv); (u4+r)e=uv+rv
respectively.

If we apply the p-th order tensor w to a vector v,, we get the (p—1)-th
order tensor pv;; let us apply the latter tensor to a vector v,, we get the
(p—2)-th order tensor (uw,)v,= ui,v,; continuing this procedure, after the
p-th step we get the vector

E= ,“F'[Fn' > '?_'.po
Hence, by a p-th order tensor to every sequence of p vectors there is made
to correspond a well defined vector. Clearly, this relation is linear homogeneous
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in each vector argument, i. e.
POy Ty (P, - STL) Vigre o Up =
=Ty Vit Uiy Oig1e Uy SUTy e+ Tima Viglisr o=+ Tp  ((=1,..., D)
It can easily be seen that the definition of the p-th order tensor given
above is equivalent to the following one: u is called a p-th order tensor of
L in the point P, if for every sequence #,,...,7, of p vectors in P the
vector u = uv,---v, is defined and is a linear homogeneous function of each
vector argument.
It is also easy to see that » = u#,---7 (k<p) is a tensor of order p—k.
The product o —uv of a p-th order tensor x and a g¢-th order tensor

v is defined as follows: it is made to correspond by ¢ to the vectors
Uy, ..., Up g1 the vector v=p (VU +-Uy)Uygss**Ugsp-1, i. €.

(s" 1’)51 o 'Hp-w-l =M ("El . 'Eq)ﬁqﬂ . ‘Eq+p—l B

Clearly o=u» is a tensor of order p+4qg—1.
The product of the tensors p,, ..., u, is similarly defined. If the order

m

of the tensor w; is p; (i=1,...,m) and p= > p,—(m—1), then the product
=1

I w: of these tensors is a tensor of order p for which the equation
=1

if:(i]:'_:[m)ﬁl...m:

— F‘l(l“’.’.' 8 '(J"m - .El'm)ﬁl‘m“ e ')EP—J'&?' el

holds for every sequence of p vectors u, ..., u,.
It can be demonstrated as usual that the multiplication of tensors is an
operation distributive and associative, i. e.

V(i ) = v vy (A )V =¥ + 7,
where the tensor » is of order p, and the tensors g, and u, are of order g,
Vi(Vevs) = (1 V) Vs = 1,7,
where the tensor »; is of order p; (i=1, 2, 3).
The p-th order tensor k;u (i<j=p) is called an fransposed tensor of
the p-th order tensor p, if for every sequence of p vectors m,...,u, the

equation
(ki) iy« Ui +ljo = Uy == Qllye Uiy Uy Uigy e+~ Uyoy Uil » o+ 1y

holds. Clearly, k; is a linear homogeneous operator on tensors, i. e. if # and
v are tensors of order p, and r and s are real numbers, the equation
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kij(ru+sv)=rk;u-+sk;v holds. The operators k, and k,-1,, which occur
several times, we denote briefly with &* and k respectively.

If kiju=u, the tensor w is called symmetric in its i-th and j-th argument.
If kju==—u, the tensor u is called skew-symmetric in its i-th and j-th
argumentum.

Up to this point we dealt with operations on vectors and tensors de-
fined in a single point P of the space L. Now, let us see the most important
definitions in tensor analysis.

Consider the vectors vp, vp,,...,7p,,... given in the points P,, P,, ..., Ps,...
of the space L respectively, and let lim P, = P. If the sequence vp, is con-

k>

vergent as a vector sequence in the space A and limvp,=v, then the

k—+»m

sequence vp, is said to be convergent in the space L, and the vector v of
the L space in the point P is called the limit vector of the sequence.

If in each point P of L there is given a vector 7(P), we say that a
vector field is defined in the points of L. The vector field +#(P) is said to be
continuous in P, if for every sequence of points P, convergent to P

lim 7(Py) = i(P)

holds.
Consider the p-th order tensors wp, up,,..., tp,, ... given in the points
P,P,...,P,... of the space L respectively, and let hm P.=P. The

sequence up, is called to be convergent, and the p-th order tensor up of L
in the point P is called the limit tensor of the sequence, if for every con-
vergent sequence of p vectors wp,, Usp,, . .., yp, (Uip, is defined in the point

Py and lim &ip, = wip, where @y is a vector in the point P, (i=1,2,.. D)
the vector sequence vp, = up Uyp-+Uyp, is convergent and limvp =
:{“'I’Elf""ﬁpf’zr‘!‘- P"_yP

If in each point of L there is given a p-th order tensor u(P), we speak
of a tensor field defined in points of L. The tensor field «(P) is called to

be continuous in P, if for every sequence of points P convergent to P
lim w(Py) = u(P)
Py»P

holds.

We say that the vector field #(P) is differentiable, if it is differentiable
as a vector field in the space A, i.e. if to the vector field #(f ' (P") a first

order tensor field SP of the space A can be found, such that

Si=o(f P+ TP —i(f (P = 2o TP++(P)IP, (1)
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where the tensor &(JP) of the space A tends to zero if JP—O0. %)- is

called the derivative of v.

Note that a tensor of L can be considered also as a tensor of A, but
the inverse statement does not hold. A linear homogeneous vector function
defined on the vectors of the space A, that is a tensor of A, can be cons-
idered as a tensor of the space L if and only if it assigns to vectors of the
point P’ of A vectors of the same point P’

We say that the p-th order tensor field w(P) is differentiable, if it is
differentiable as a tensor field in the space A, i.e. if a (p+ 1)-th order

tensor held = af the space A can be found, such that
A';::,u(f‘l(P’-{-.Tﬁ))—p(f‘l(P'J)=d—;_rp+s(zﬁ’-)ﬁ (2)

du N

where the tensor #(4P) of the space A tends to zero, if JP—0. 4P

called the derivative of w.

§ 3. Parallel displacement;
the definition of the affinely connected space

Let be given in every point P of the space L a second order, linear
homogeneous operator y(P) associating to every pair of vectors of L in P
a vector of the space A. Of course, y(P) can be considered, just like the
tensor fields of L, as a tensor field of A. y(P) is assumed to be arbitrary

many times differentiable, i. e. we suppose that a third order tensor gf; of

the space A can be found for which the equaiion

dy=7(f(P'+4P))—r(f (p))_ - JP+F(1P)4P 3)

holds, where &(4P)—0, if 4P—0, etc.

Definition. We say that the vector # of the space L in the point P is
obtained from the vector #, of the space L in the point P, by y-parallel dis-
placement, if the difference of the vectors v and #, considered as vectors of A
can be expressed by the formula

A% = b —Ty = —y(Py) 8, AP+ ¢(4P) %, P, 4)

where the vector JP—= PP’ is considered as a vector of L in the point P,
&(4P) is a second order tensor of A, and &(4P)—0, if 4P—0. Of course
(4) is not a vector of the space L.
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Consider a curve g in L. Let the equation of the curve g be P= P(f)
and P,== P(t,) be a point of the curve. We shall define in accordance with
the preceding definition the parallel displacement of a vector along the curve g.

Definition. We say that the vector field #(P(f))=v(f) defined in the
points of the curve g of L is obtained from the vector #, of the point P, by
parallel displacement along the curve g, if the equations

dv R A :
E__K(P)t_d?"! ‘!(P(fﬂ))::in
hold, where % is the derivative of the vector field #(f) considered in A with

respect to the parameter f.

Note that Q cannot be considered as a vector of L, since

dt
dv . dv . w(Pt+40D)—v(P()
R A At ‘

i. e. in forming % there are subtracted vectors of different points. This

cannot be done in L.

It is easy to show that the definitions (4) and (5) are equivalent.
However (4) can be applied only to point sequences tending to P,, for about
¢ we know nothing except that it tends to zero in case of such a point
sequence. It is seen from (5) that y-parallel displacement in L depends on
the path along which it is done,

Theorem. The y-parallel displacement along a given curve g is uniquely
determined.

PrROOF. Let us suppose that the equations (5) are satisfied by the vector
fields #, and #, defined in points of g:

dy,__ .3 di__ TP
gl R gp g g
‘;1 (rg) = ;g(ro) —_— 1_.'0.

Hence by subtracting the second equation from the first we get the equation
d(v,—7, o e MRS
=1 G- ©

Since #(f)—u (%) =0, from equation (6) and from its successive derivatives

there follows that all derivatives of the vector field #,(f)—u.(f) are equal to

zero in the point #,. Thus, at least in some neighbourhood of the point, £, the
equation #,(f)—,(f)==0 holds, which proves our statement.
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An immediate consequence of the foregoing result is the following

Theorem. Let P, and P, be two points of the curve g, and denote by
¥, the vector arising in the point P, by y-parallel displacement of the vector
v, of the point P, along g. Displacing the vector v, y-parallelly along g from
P, to P, we obtain in P, the vector v,.

It will be demonstrated, that y-parallel displacement conserves the linear
dependence of vectors, i. e. the following theorem is valid.

Theorem. Suppose that among the vectors vy, s, . .., 'me Ziven in the
point P, of the curve g the linear relation

Z a;vin=0 (7)

holds. Displace the vectors v y-parallelly along the curve g and denote the
vector fields obtained in this manner by vi(t) (i==1,..., m). Then, at least in
some neighbourhood of t, there holds the relation

Z a; v (f) =1
i=]1
ProOOF. From equations
dF'- 2 dP 2 a3 Y e
b e b b % vi(t) = vo, (i=1,...,m)

it follows, that
i " I m_1 @-— i \ -_'_d ]-__. ‘' m _.]d——P
df(ga;h]—%ﬂ'n dr_;l aa(-—/h—t'l— /(gaﬂ, di -
Hence

From the foregoing relation it follows, that all the derivatives of > a;i(f)
i1

are equal to zero in f,. Hence we get immediately the theorem which was
to be proved.

Definition. The space L in which we defined the parallel displacement
in the foregoing manner is called an affinely connected space of n dimensions.
v is called the operator of connection.

Let #(P) be a differentiable vector field of L. Displace y-parallelly the

vector #(P) from the point P to the “neighbouring” point P, and denote by
i the vector obtained in such manner in the point P,. First, we shall de-
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termine the difference of the vectors u and #(P,) of the point P,. From equa-
tion (4) it follows, that

Py ?(P);(p)(_.:f_p) + S(JP)F,

where JP— PP’ (’ denotes everywhere the image in the space A of the object
in question of the space L). Hence

@ =i(P)+7(P)i(P)4P+#(dP)idP =

—i(P)+ 45| AP+ y(P)H(P)TP++,(TP) TP,
where the first order linear operator &(JP) tends to zero, if 4P—0. Thus
d—i(P) — [jp 4 r(Pu)r-(Po)] AP+ &,(1P)P.

If the points P, and P are connected by a curve P= P(f), P,= P(t,), and
we divide the foregoing equation by 4{=1f—{,, and the point P tends to P,
along the curve P— P(f), we get the relation

. E_—F(P)_ld?- ] dP
}132}) g “fﬁ+/‘ p, dt |’ ®)

Since %}3 can be any vector of L in the point P,, and the left side of equa-

tion (8) is obviously a vector of L in P, the first order linear homogeneous
operator

-  fAo =
Vi=g5+77 ©)

is a first order tensor of L in the point P,. The tensor \/# is called the
absolute derivative of the vector field #. The vector

Dt =7 vdP (10)

of the space L in the point P, is called the absolute differential of . On the
basis of the foregoing results we may say, that D7 is the difference of the
vector obtained by y-parallel displacement of the vector #(P) to the point
P, and of the vector #(P,), if the second order terms are neglected. In general
a linear homogeneous function of vectors is said to be of order m in 4P, if
m quantities (vectors or tensors) tend to zero in it, if 4P—O0.

Clearly, a vector field #(P) is y-parallelly displaced along a curve
P= P(t) if and only if

=0. (11)

D3
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§ 4. Geodesics

Definition. We say that the direction of the vector field ¥(f) defined in
the points of the curve P= P(f) is y-parallelly displaced along the curve,
if a function c(f) twice continuously differentiable can be found which is
nowhere equal to zero, and for which the vector field c(f)#(f) is y-parallelly
displaced along the given curve, i. e.

dle(®)v(t)] . an 'GP
e mmai ve(t)e(t) F o 0. (12)
From equation (12) there follows

0|9 4770 2P| = —c i,

or, introducing the notation a(f)= — c—({)—,
c(t)
05 ool :
47 F70 G =aOF). (13)

Let the direction of v(f) be y-parallelly displaced along the curve
P = P(t). From equations (8) and (13) there follows, that y-parallelly displacing
the vector #(f) from the point P = P(f) to the “neighbouring” point P,= P(,),
the difference of the vector thus obtained and of the vector v(#,) is a vector
directed in the direction of #(f,) (the second order terms neglected).

Definition. The curve g of the space L is called a geodesic of the space,
if the direction of the tangent vector of the curve is y-parallelly displaced
along the curve.

If P= P(t) is the equation of the geodesic g, then it follows from the

definition that for the vector F(f)z‘:;—f the equation (13) holds, which now

takes the form
d°P . _dP dP dpP
ar Y75 ar —Oar e
This is the differential equation of geodesic lines given in general parameters.
We introduce a new parameter s on the geodesic line g, which satis-
fies the equation

ds d*s
E—ﬂ(f)—"—d'f{-_ 0. (15)

Clearly such a parameter s can always be found. Expressing the derivatives
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of P= P(t) with respect to ¢/ by derivatives with respect to s in equation (14),
and making use of equation (15) we get the differential equation of the geo-
desics in the form

d"P dP dP

Y ds ds ok (16)

Hence it follows that the vector %ﬁ_—) is y-parallelly displaced along the geo-

desic. The parameter s in which the tangent vector possesses the foregoing
property is called a canonic parameter. It is easy to show, that if s is a can-
onic parameter on a geodesic, then r= as-b is also a canonic parameter
(a and b are constant numbers).

§ 5. The tensor of torsion

Let P;, P;, P., P, be the vertices of a “small” parallelogram in the
space A (the vertex opposite to P, is denoted by P:). This parallelogram can
be derived by moving the edge vector P,P,— 4,P to the point P, and the
edge vector P,P,— 4,P to the point P,. Denote the image of the point Pl in
L by P; (i=0,1,2,3). If we displace y-parallelly the vectors 4,P and 4P
(considered as vectors of L in P;) to the points P, and P, respectively, we
get the vectors 4, P—y(P)4,P4,P+¢4PA4,P and 4,P—y(P)4,P 4P+
+&4,P4,P. Let us consider again what does this process yield in the space A.

Fig. 1

The third order terms will be neglected. The vectors

P,Qi=4,P+(4,P—y4,P 4P)
and e s Pt . i
R:Q.’ ='J1P+(J2P—3’J3PJI_P)

will not be equal, that is the point Q] does not coincide with the point Q;,
since

Q:‘c‘zi:ﬁa‘i—-ﬁa’;:ﬁ+ﬁ—ya.. py -

‘—JQP J;P‘i"‘c'JlPJ P——(/—k ) P
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Thus the parallelogram “opened”. See Fig. 1. The vectors P,Q, and P,Q, can
be considered as vectors of L in the point P,. Their difference, which is a
linear homogeneous function of the vectors A4, 1,P, 4,P, is also a vector of L
in P,. Thus the operator 7 -y—ky is a second order tensor of the space L,
and it is called the fensor of torsion of L. The torsion shows in a certain
manner the difference between the geometry of the space A and that of the
space L. If the operator of connection y is symmetric, v=0, and the vector
Q,Q; is at most a third order small quantity. In this case the space L is
called torsion-free. 1f L is torsion-free, the departure of its geometry from
the geometry of the space A is “in small” less striking, than in case of
spaces with torsion different from zero.

Here we note, that if y is symmetric, its derivative g; is also symmetric
in its last two arguments. So, if 4P= Ata is substituted in the relation (3),
where @ is a fixed vector and 4t a scalar number, division by At yields
the equation

r(f (P’+Je';1)—/(f ) L +e(41).

Hence we get

lim /(f“(P'+dra))—x(f (PY) _
at »0 dP

Since y(f'(P") and y(f ' (P’ + 4ta)) are symmetric, %‘;—E is also symmetric
for every a, which proves our statement.

§ 6. The curvature tensor

Let P= P(f) be a curve of the space L, and P,= P(t,), P,= P(t;) two
points of the curve. We suppose that P, and P, are “neighbouring” points
(by that we mean, that #,—¢, is small enough). Let v, be a vector of the
space L in the point P,, and let us displace v, y-parallelly along the curve
P = P(t) to the point P,. The vector obtained in such way in P, is denoted
by 7,. We determine the change 47 =#,—u, of the vector #, by this parallel
displacement taking into account the second order terms too.

The vector field obtained by y-parallel displacement of 7, along the
curve P=P(f) is denoted by #(f); ©(&)=r1,, v(t,)=1,. The vector ©(f)
satisfies equation (5), i. e.

dr i D
v 3am —7(P(®)(®) r’
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hence

A% =t —7, ::J %dr —— /(P(t))a (*) f— dt.

ftl
For determining the integral taking into account also the second order terms,
it is enough to determine the integrand taking into account only the first
order terms. From equations (4) and (3) it follows, that within first order
terms

#(t) = ty—7(Py) 10 4P,

) qar| p
/(t)__/(})“)-l_ dP POJP’

where JP— P,P’(t) ('denotes the image of the respective point in A). Sub-
stituting these expressions we get 4 in the form

dv=— /(Pu)'l‘ jﬁ-| [to—7 (P) Fuﬁ]%fﬂz

t t,

_ dP dp
——[reon 2P at+ [| PPy AP LE

flI

t

|a't+J j};‘ JPy(P)7, AP jf

fo

_dP
JPJU i

Here the last term is a third order small quantity, since its integrand is of
second order. Thus this term can be neglected and we can write the pre-
ceding expression in the form

+Jﬁ|r(Pu);»(R.)— ~’ |7ap LT vl

fa
Suppose now, that the curve P = P(f) is closed and P,= P(t,) = P, =
= P(t,). Equation (17) now yields the change of the vector #, in second
order terms if we displace parallelly the vector #, round along the curve
P=P(f) till we get back to the point P,. In this case both #, and #, are
vectors of the point P,, thus their difference 47 is also a vector of L in the
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point P,. Since from P,= P, it follows that the first term on the right side
of equation (17) is zero, we get

t

gi = [|reyrey—r 25

7o AP ——dlt. (18)

If P==P(u,v) is the equation of a two dimensional surface of L con-
taining the curve P= P(f), the equation

dP oPqu P .
dt au v

holds, and equation (18) takes the form

G —ﬂ[ @YYk 3t| |7,7P a1
[ Py Py—k 9L | ]z‘,ﬁ‘;—?azdr:
—953[;/(,00){(&) e ar ]-O;I_P%du+
+[7(P0)7(P0)—k" g;, ]:UJP"_ﬁ (
Using Green's formula we get
45 = Jj(i [y(ﬂ.) r(P)— 5L n,] P27 0P Pl
— 2 reorey—r 31 ‘,in"ii]dud,

where the double integral must be calculated on the u» range corresponding

to the surface bounded by the curve P— P(f). From equations _aduP ’;5,
04P _ 0P 4 tollows, that
or av

so=J[llreorer—e gh), [ 50 55 -

el e o d¥] e 8P 6P
[/(PO)J(PD) k dPI ] i du\d udrv.
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In our second order accuracy we may replace here the integrand by its value
in the point P,, then we get

. d/]q aP aP [ " a'/]_ aP aP|
4 l[‘”’_k’ dP|™ au av — S av ody>

where s— [(dudv is the area of the uv range corresponding to the surface
bounded by the curve P= P(f). The argument P, was already everywhere
omitted. Finally, neglecting the terms which are of higher order in s, we may
write the change of a vector displaced y-parallelly along a closed curve in
the form

PETM - . dy d}'] aP 0P
J’“S[/J_k(//)‘l‘kk aP k’dP Y TR (19)
From this we get the exact equation
A " d/ _ 9P 3P
{3{{}— [// k(/f)+kk‘ —k i
Since 7, ai,i—f and IlmJ?r are vectors of L in P,, the linear homo-
geneous operator
o W Y. o dy _ 40 dy
e=yy—k(ry)+kk dP k dP (20)

is a third order tensor of the space L. ¢ is called the curvature tensor of the
space L.

If y=0, i.e. if L is the n dimensional affine space, then the tensor
of torsion 7 and the curvature tensor ¢ are identically equal to zero. The
geometrical interpretation of the latter fact is obvious: if a vector is displaced
parallelly along a closed curve in the affine space, its change is equal to
zero. The more ¢ differs from the zero tensor the greater will be the change
of the vector y-parallelly displaced along a closed curve, i. e. the greater will
be the departure of the geometry of the affinely connected space from the

geometry of the affine space.
Two properties of the curvature tensor will be demonstrated. First, the

curvature tensor is antisymmetric in its last two arguments,
ko= —o.

This follows at once from the equation (20) and from the known properties
of the operator k. Secondly, if the tensor of torsion =0 and a, b and ¢ are
any three vectors of L in the same point, the equation

abc+obia 4 ecab=0 (1)
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holds. Equation (21) is called the equation of Ricci. In order to prove equa-
tion (21) we introduce the notation

. a;
a=yy+kk m{_,. (22)

From the symmetry of the operators y and dﬁ)}f}’ and from the definition of

the operators k& and 4" it follows, that the third order operator « is symmetric
in its first two arguments, i. e.

¢=kea or eabé=abac.
By using notation (22) the curvature tensor can be written in the form
0o—a—kea.

From these remarks the equations

'b
Q*I
ll
<

7~

R

S
=|
Nall
L]
Q
S
S|
L]
a
t =]
izl

follow. Summing these equations we get (21).

Definition. If in the affinely connected space L the y-parallel displace-
ment does not depend on the path, we say that the space L possesses ab-
solute parallelism.

For instance the affine space is a space of absolute parallelism.

Theorem. The space L possesses absolute parallelism if and only if
its curvature tensor is identically equal to zero:

0=0. (23)

PROOF. First we demonstrate that the condition is necessary. Suppose
that (23) is not true. In this case the space L has a point P, and a closed
curve g passing through this point, so that y-parallelly displacing a vector
of P, along g, the change will be different from zero. From this it follows
already that dividing the closed curve g by points P, and P into two parts
&£, and g,, the y-parallel displacement from P to P, along g, and g, res-
pectively does not yield the same result.

Before demonstrating that the condition is sufficient, we demonstrate,
that the equation

o|com 2P| 2P _ -..—_Q 5 P aP
T|om B2 _g|mIB|E_ 5 IR IR g
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holds, where P= P(u,») is a two dimensional surface and w is a vector
field of L. For
_oP

o) P _ oW ooP
(V#) B TREANTE

au
and taking the absolute derivative of this vector field and applying it to the

vector ‘;—f), we get the equation

[,_..aP|aP _o'w , dy 3P_ 3P , oW aP
7[( %) du | av *auda.-+dP gv 4 au LD dv du +
7P ,_owaP, 3P iP =
B T TR T T A T T
Interchanging the letters # and » in equation (25) we get the equation
|, P|aP _ #W  dy 3P_ P __ oW P
[( £ 0#'] ou  gvou " dP au " av ti du av T
S ey = (26)
e aw P - 8P 3P
. (’)udi'_l_/ dr du T wn(‘}_r'_r}T°

Subtracting (26) from (25) and applying the operators k and &* we get (24).

Now we demonstrate that condition (23) is sufficient. Let P, and P, be
two arbitrary points of L and w(P,) a vector in P,. Let the points P, and
P, be connected by the curves g, and g, and displace the vector w(P,) pa-
rallelly along g, and g. respectively to P,. It will be demonstrated, that the
vectors w,(P,) and w,(P,) thus obtained in P, are equal.

Let g, and g, be members of a one parameter family of curves P= P(t,c¢),
connecting P, and P,. Suppose that the equation of g, is P= P(¢, ¢,) and
that of g, is P— P(t,¢,); suppose furthermore, that the equations

P(tl, C):Pl al'ld P(fg,C)IP_; (27)

hold for each member of the family, that is for every ¢. We displace y-pa-
rallelly the vector w(P;) along each member of the family to P, and denote
the vector of the point P-==P(f,c) obtained by y-parallel displacement of
w(P,) along the curve P= P(f,c) by w(t, c). In accordance with the foregoing
notations we have w,(P,) = w(t,, ¢,) and wy,(P.)=w(t,, ¢;). We write now for
this case the equation (24):

leom 2Pl 2P g |ow

ac | at

0P| aP _ - aP aP
at | ac = " oc ot
From equation (23) and, since for ¢ fixed w(f, c) is y-parallelly displaced
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along P(t,c), from equation (11) it follows that the right side and the second
term on the left side of the last equation is equal to zero. Thus we get the

equation

v|om ]2 o

This means, that (?W)f_}—f is y-parallelly displaced along each member ot
the family of curves. From equation (27)

8P(f,,c) aP(fj,c)
ac ac

=0, (28)

follows. Thus (° -‘W)i—f is equal to zero in the point P,. Since y-parallel

displacement preserves linear relations among vectors, in every point P= P(t,¢)
the equation '

W E_
(V™) éc
holds. Specially, this equation holds also in the point P,, i.e.
e ¥ aw(t,,c) = dP(tsyc)
( w) ac I ’ +¢ (fn ac —0.

From this equation, in view of equatlon (28) we get

g_ﬁ(ﬁ, c) _ 0.
dc
Thus w(t,, ¢) is constant, that is
Wi (Py) = w(ty, ¢) = w(ty, c)) = wy(P)).

This is just what was to be proved.

§ 7. Relations among affinely connected spaces

Let be introduced in the space L two operators of connection y and y*.
We demonstrate the following

Theorem. The second order operator » — y*— v is a tensor of the space L.

PrROOF. We displace y-parallelly the vector = #(P,) of L from the
point P, to the point P. The change of the vector is
At = —yT AP

where JP— P,P’, and the second order terms on the right hand side are
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neglected. The vector »+4 4+ will be displaced y*-parallelly from the point P
back to the point P,. Taking no account of the second order terms

P+ di=v—yidP
and in view of

t

r'Py=7P)+ 45 ‘ 4P,
the change of the vector will be
J(F+JF)=—~'(P)(f-+ﬁ)(—ﬁ)=

— " TAP+ " A7 JP+ JP: d”" &5 dP45dP—

= 7*v4P,
where, again all the second or higher order terms are neglected. The differ-
ence between the vector ¢+ 4+ d(r-+ 4v) obtained in such way in the

point P, and the original vector »(P,), i. e. the change of the vector v during
the whole process is

[F 4+ 47 4+ 4G+ 4B — v = A7+ v v AP = (y° —7) v AP. (29)
This equation is not exact, since the second order terms do not occur on
the right hand side. Let the points P, and P be connected by a curve
P=P(t) and let P,= P(t,), P— P(t,+ 4t). Let us divide equation (29) by
dt, and let the point P tend to P, along the curve P= P(f). Since the

second order terms, which do not occur in equation (29), tend to zero even
when divided by ¢, we get the exact equation

. v4+dv4Ad(c+ dv)—v dP
o It D S o T
Since the limes on the left hand side of equation (30) is obviously a vector

(30)

of L in P, and ¥ and % can be arbitrary vectors of L in P;, we get that

the second order linear homogeneous operator x—y*—y is a tensor of L.
This is just what was to be proved.

Definition. 1f between two n dimensional affinely connected spaces there
exists a one to one correspondence in which the images of geodesics are
geodesics, then the two spaces are said to be projectively equivalent.

Suppose that in the space L there two operators of connection, y and
7", are introduced. We determine on what condition the affinely connected
space L, defined by y is projectively equivalent with the affinely connected
space L.« defined by 7.
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First we demonstrate the following simple lemma. If ¥ is an arbitrary
vector of L in the point P, there can be found a canonic parameter ¢ on the

geodesic of L, passing through P in direction of ¥, such that %=E in P.

Indeed, if s is a canonic parameter along the geodesic passing through P
in direction of 7, the equations

"-ua@ 4P _dP dP _
’ ds |[p’ ds? +"ds ds

hold. The parameter wanted is

=0

S c

r;_———__

a a

where ¢ is an arbitrary constant. Obviously ¢ is a canonic parameter. If the
substitution s=af--c is performed in the function P— P(s), we get
@P_dPds_dP, .
& angE- oy
which was to be proved.
If P=P(t) is an arbitrary geodesic in the space L, and { is a canonic
parameter on it, the equation
& dP dp
aF ~ 7 ar dar By
holds. The necessary and sufficient condition of P = P(f) being a geodesic
also in the space L.« is

&P dP aP

dp
7w =7 g @ T g (32)

Subtracting equation (32) from equation (31) we get

b RGP s AR
O =Gr ar ="Oar

From the lemma it follows that an arbitrary vector @ of L can be considered
as a tangent vector %’tg of a geodesic line of L, given in canonic parameter.
Hence the affinely connected spaces L, and L.« are projectively equivalent
if and only if the tensor x»—= y*—y has the property that applied to an ar-
bitrary vector » twice it yields the vector ¥ multiplied by a scalar number.
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Theorem. A second order tensor », applied to an arbitrary vector v
twice yields this vector multiplied by a scalar number, i. e. the equation

XVt =Cv (33)
holds for every t, if and only if the equation
(z+kx)u v =cu +c,r (34)

holds for every pair of vectors u and 7 (c, and c, are scalar numbers).

ProOF. Suppose that the equation (33) holds for any vector 7. Then
there hold the following equations:

zur=x(U—v+0r)(r—utu)=x(u—2v)(r—u)+
+ 2t (@—7)T + 57 (F—T) + #7l =
= —x(U—0)(U—0)txuu—xrd 42 —xrl +2vll =
= (U —7) + U — %7 +¢y7,
from which we get
(x+kx)uv=(c;+c)a 4 (c;—c3) 7,

i. e. equation (34) holds. Inversely, suppose that equation (34) holds and let
#+k» be applied to the vector » twice:

(x+kx)rv=c, v+ c0=2ci
xrv+kzve=2cr
2xvv = 2¢7,

from which equation (33) follows.
Since conditions (33) and (34) are equivalent we get as an immediate
consequence of this fact the following

Theorem. The affinely connected spaces L., and L., are projectively
equivalent, if and only if the condition (34) holds for the tensor » —y*—y
and for two arbitrary vectors u and 7.

Let in the space L be introduced two operators of connection y and ",
These operators define the affinely connected spaces L, and L.s respectively.
We determine on what condition the spaces L, and L.« possess the following
property : if #(f) is an arbitrary vector field defined in points of an arbitrary
curve P= P(f) whose direction is y-parallelly displaced along this curve,
then the direction of #(f) is also y*-parallelly displaced along this curve and
conversely.
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Thus we suppose that if equation

2y P it

holds, then the equation

dv , . dP &
d;-wf g — @O0

too necessarily holds. If we subtract the former equation from the latter we get

=792 b (35)
where b(t) = a,(f)—a,(f). We may write equation (35) in the form
k=0 25— b7 (36)

Since equation (36) should hold for arbitrary vectors # and ‘;f,

k(y*—7y) = k= has to possess the following property: the tensor kx applied
to an arbitrary vector a yields a first order tensor which makes correspond
to every vector itself multiplied by a scalar number. The necessity of this
condition was proved. But it is also sufficient; this can easily be shown by
accomplishing inversely the preceding procedure. Thus, there holds the fol-
lowing

the tensor

Theorem. By a one-to-one correspondence of two n-dimensional affinely
connected spaces L. and L. vector fields whose direction is y-parallelly dis-
placed turn into vector fields with direction y*-parallelly displaced and inversely,
if and only if the condition

k(y*—y)ur=kxuv=ar
holds for arbitrary vectors u and v (a is a scalar number).
If the spaces L, and L.« are torsion-free, that is y and 7" are sym-
metric, then » is also symmetric. If the preceding relation exists between
these spaces, i. e. if the images of vector fields j-parallelly displaced are

vector fields y"-parallelly displaced and conversely, then we get for arbitrary
vectors u and » the equation

av=KkxUv=xuv=xvll = kxva = bu.
This can be true for any vectors # and ¢ if and only if a=0=0, i. e. if
zuv=0.
Hence we get x=y"—y =0, or y*=y. Thus the two affinely connected
spaces are equal.
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§ 8. Geometry of surfaces in affinely connected spaces

Let F be an m-dimensional surface in the affinely connected space L
with equation Q= Q(u,,...,u,). The principal aim of this Section is the
definition of the parallel displacement on F “induced” by the y-parallel dis-
placement defined in L.

Some definitions and theorems are wanted.

The m dimensional vector space created by the tangent vectors of the
smooth curves of F passing through the point Q is called the fangent plane
of F in the point Q. Any vector of the tangent plane can be expressed by
a linear combination of the vectors 3—3 (i=12,...,m).

Consider those vectors of L in the point Q which are linearly independ-
ent of the tangent vectors of F.

The (n—m)-dimensional vector space created by these vectors is called
the normal plane of the surface F in the point Q.

Clearly, any vector » of L in Q can be expressed as the sum of a vector
of the tangent plane and a vector of the normal plane. It can be easily
shown that this decomposition is uniquely determined. Indeed, suppose that

F:é]-l_hl
v=2g4m,

where e. g. ¢, ¢, are vectors of the tangent plane, n, and n, are vectors of
the normal plane. From the assumptions we get n,==n,. Subtracting the
preceding two equations from each other we get

0=e]_é2+!_l]_'ﬁgo

But this equation is in contradiction with the fact that e,—e, is a nonzero
vector of the tangent plane, n,—n, is a nonzero vector of the normal plane,
and thus they are linearly independent.

Definition. We denote by »(Q) the operator defined in the point Q of
the surface F of L, which makes to correspond to a vector v of L in Q the
vector component of # in the tangent plane of F.

The operator @(Q) is, obviously, linear homogeneous. Since the vector
component of # in the tangent plane of F is a vector of L, the operator @ (Q)
is a first order tensor of L.

Suppose that @(Q) is arbitrarily many times differentiable. Of course,
in the equation

0(Q)—w(Q)— j—Q IQ+¢1Q 37)
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defining g—g the vector /Q = Q,Q" cannot be arbitrary; Q, and Q have to

be points of the surface F. On basis of equation (2) (—;%’— can be considered

as a second order tensor of the space A, but it is not defined for every pair
of vectors in Q,. However it is defined for tangent vectors of F and for
vectors Q,Q’, where Q is also a point of F. That is for us sufficient.

Theorem. The second order tensor of the space A defined on tangent
vectors of F is symmeltric.

PrROOF. Let @ and b be arbitrary tangent vectors of F in the point Q.
The equation

will be demonstrated.

If Q= Qi(f) and Q.= Q.(s) are curves of F passing through the point
Q and the tangent vectors of these curves in Q are @ and b respectively,
we may write

Q — Ql (tu) == Q!(Sl‘) ;

Denote the vectors Q' Q; (f,+ 4f) and Q Qi (s,+ 4s) by 4Q, and JQ, respec-
tively (Q’, Qi(t,+ 1), Q.(s,+ 4s) are the images in A of the points Q,
Q. (t,+ 4t), Qy(s,+ 4s) respectively). On the basis of the definition of a
tangent vector and of equation (37) we may write

dm dow dQ, dQ, . dw JQ, JQ -

dQ b—dQ dt ds F-.Arll&{enmdQ At _J_S

dQ,
d

—a
t ]f.. g

_mhﬂ"_”_’ [(Q: (% +-”))JQ —m(Q)JQ]

and
oo do dQ, dQ _ . do 1Q. 1Q, _
dQ = dQ ds dt = sas0dQ ds At
1 d@dQ) —

2 Jf“JTme ds dQ dQyr=

«lgppthJ ["’JQ e an— AQu|] =

:ml As- -qu‘J [{U(Q (t +-ﬁ))JQ —m(Q)JQ ]
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From the equality of the right hand sides of these equations follows the
equality of the left hand sides, which was to be proved.

Definition. The field of surface vectors of F defined in points of a curve
Q= Q(t) of F is said to be y-parallelly displaced along the curve Q= Q(f)
with respect to the surface F, if

. =d
( +yF Q) 0. (38)
Thus 7 is a surface vector 7 =». Hence we get
dv dom e di  do dQ _

o = @I~ G =G~ 4g g’
Substituting this expression into equation (38) we get
dv do dQ & Y Q
ar G dr TR
Since ge

aQ

is symmetric the latter equation can be written in the form

-g-;:—[u)y dQ] 799, (39)

Clearly, equation (39) is equivalent to equation (38). Therefore it is reason-

able to make the following

or : dw
Definition. The second order linear homogeneous operator y = w7y — aQ’

which makes correspond to any pair of surface vectors a vector of the space A,
is called the operator of connection of the parallel displacement induced on F
by the y-parallel displacement introduced in L.
Using this notation the formula defining the y-parallel displacement
induced on F can be written in the form ]
v el
dt 47 gt
which is analogous to equation (5).
Theorem. If the y-parallel displacement defined in the space L is tors-
ion-free, then the y-parallel displacement induced by that on F is also torsion-

free.
PrROOF. The tensor of torsion = of the y-parallel displacement induced

on F is

d D] do

T=y—ky=oy— k(w o)

- k(tu‘,)—(r)"—wk/—-w(f ky)=o<.
=

Hence if v =0, then 0.
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§ 9. Introduction of coordinate systems

Let in the space A be introduced the system of general coordinates
x', x%, ..., x". This, clearly, can be considered as a coordinate system of the
space L. Let the equation of the x* parameter line passing through an arbi-
trary point P(x},...,x}) of L be

P PN s PR e Ny XD TS P | 3
We introduce the notation
F_P
L R T
The n vectors e; of L in the point P form the basis of L in P in the system
of coordinates x’. Once given the system of coordinates the basis is uniquely
determined in every point. We know from affine geometry that the vectors

e; are linearly independent. Hence an arbitrary vector #© of L in P can be
expressed uniquely as a linear combination

v=10'¢,+ +++ +v"€, = v'€;
of the basis vectors of that point. (The summation convention is used.) The

vector v determines uniquely in the given system of coordinates the numbers

', ...,v* and conversely. Therefore +' is called the i-th coordinate of the
vector v.

Let @ be a first order tensor of L in P, and denote the vector made
to correspond by e to e. with a, i. e.

0y = aéy (k=1,...,n). (40)

Denote the coordinates of the vector a; with a; (i=1....,n) i.e.

a.=—ae (k=1,...,n). (41)
If « makes correspond to the vector #(+',...,¢") the vector u(d',...,u"),
using the equation (40) and (41) we get

Ue; =il — v = ev*ey — v* a8, = v* @ = 1*a,é.

This equation holds if and only if

u'=a;o* (i=1,...,n). (42)

With the aid of equations (42) from the coordinates of a given vector © the
coordinates of the vector # can be directly determined, u being the vector
made to correspond by « to v. The tensor « determines uniquely the system
of the quantities a] (i,k=1,...,n) with the aid of formulae (40), (41).
Conversely, once given a system of quantities a; the tensor which makes cor-



The geometry of affinely connected spaces 51

respond vectors to each other by formula (42) is uniquely determined. There-
fore the quantities aj are called the coordinates of the tensor e.

Let « be a p-th order tensor of L in P, and denote the vector made
to correspond to the vectors ék,,ék,,...,?,..p by my,..x,, i.e.

Pty =Wty (ke=1,...,n5 r=1,...,p). (43)

P

Denote the coordinates of the vector m,..x, by m;';,___kp ((=1,...,n) i. &

iy, ..k, = M, ... %, k,=1,...,n; r=1,...,p). (44)

p ]

If « makes correspond to the vectors 7,,..., 7, the vector u, using equations
(43) and (44) we get

do - - Ty k, =
W& =T=pv...V=p(vi'6x,) .. (r.'pPekp) =
Ky T = key  p—
=91 ... UPUC...C,, = V1 ... V. PNy =
1 » ey, Ky 1 p My by
T ."1 .kl i .
= Ur'ee. O P M, 0 i

where v} is the i-th coordinate of the vector # (/=1,...,p) and u' is the
i-th coordinate of #. This equation holds, if and only if

u' =m0, (45)

The signification of formula (45) is analogous to that of formula (42). Thus
the quantities m,. .+, are called the coordinates of the tensor u.

It can easily be shown that the operations defined among tensors (vectors)
can be accomplished as follows, if the tensors (vectors) are given by their
coordinates.

The coordinates of the sum of two p-th order tensors (vector) are the
sums of the respective coordinates of the tensors (vectors).

We multiply a tensor (vector) with a real number by multiplying each
coordinate with the given number. _

Let the coordinates of the p-th order tensor x be denoted by m;, .., and
those of the ¢-th order tensor » by n};,‘_,kp. Using these notations the coor-

dinates rf,...aq:.-e__la.-P of the tensor ¢ = u» are yielded by the equations
i i k .
rf,..‘!qk,...kp . mkﬁ',”.kpnll...lq (f’ kﬂr seuy kj—u I‘l) sy !Q': ]l srey n)'

If the coordinates of the p-th order tensor u are mi,,‘,;..p, the coordinates
of the alternated tensor k,.u of u will be

i i
My by by by == Ry B ey By
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Obviously, the preceding results of this Section hold also for those
tensors of the space A which are not tensors of the space L.
Let now another system of coordinates x” be introduced into the space.
Suppose that the functions
XV == x¥(x*) (46)
are twice continuously differentiable and the variables x* can be expressed
from equations (46) as uniquely determined functions of the variables x*.
The relations
_ P aPax _ _ ax'
F=ar T ax o ox

(k=1,...,n) (47)

hold among the basis vectors ékzie of the old, and the basis vectors

o~ a x*
éi-Z;TI? of the new coordinate system.

Let the vector © of the space L be expressed in the old coordinate
system by equation

v =1*% (48)
and in the new coordinate system by equation
7=1"8. (49)

From equation (48) we get using equation (47)
a R,
v KOy = ——_ 1B
T T A
Comparing the latter equation with (49) we obtain the transformation formula
of the coordinates of the vector #, namely

'f—(ljx‘l' k

Gl ‘a—x'r v (50)
or inversely
g BXE 4
UL = 5}-{7 v. (5 1)

With the aid of the transformation formulae of vector coordinates the trans-
formation formulae of tensor coordinates can easily be obtained. If the coor-
dinates of the p-th order tensor w are in the old system mj, ., and in the

new system ml_ .., the formulae

o ! !
AT Lk LN .4
T ax xt ax"

2
m,...1,

(" =1,...,n; si=1,...,n; k=1,...,p)
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and conversely

(i=1,...,n; h==1,...,n; k=1, .., p)
hold.

From the results of this Section it is seen, that in constructing the
affinely connected space we used only tensors contravariant of the first order
and covariant of higher order. For this reason the multiplication of tensors
was defined more specially, than usual, namely so that, by the usual phrase-
ology, the product of tensors contravariant of the first and covariant of higher
order is again a tensor contravariant of the first and covariant of higher order.

Suppose that x” is an affine coordinate system in the space A and
denote the coordinates of the points P; and P’ with x and x” respectively.
Then, the coordinates of the vector 4P — P,P’ in this coordinate system are
dx" =x"-—x. Using formula (51) we obtain the coordinates p* of the vector
AP in a general coordinate system x* in the form
ax

P=ordx'.

Thus, neglecting the second order terms, the equation
PF=Adx* (52)

holds. Hence, if the curve P— P(t) of the space L is given by the functions

x'=x'(t) (i=1,...,n), the coordinates of the tangent vector % of the

dx' dx"
W EREEY] WJ .

Taking into account formula (52) and writing equations (1) and (2)
respectively in coordinates, we obtain that the coordinates of the tensors

dv

curve are (

nd a8 of the space A are

— a
dP dP
i i ri i am‘:l Ip
”_W and mk.’,‘..rp—?
respectively, where « are the coordinates of the vector # and mf,,,,;’, are the

coordinates of the p-th order tensor .

Now, the transformation formula of the coordinates of the operator of
connection y can be deduced. Denote the coordinates of the second order
linear homogeneous operator y with F}}‘ in the system x‘ and with I'’v in the
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system x respectively. In coordinates equation (5) takes the form

%:-r-‘;x-"% 0 (53)
or
L . 7 ¢’
%—=—r;;--r";—’; r=1,...,n). (54)
Differentiating the equation
i axi ]
gk

with respect to ¢ we get
de' X o dax” g axt dv*
dt  9xex 4t ixtdt’
Substituting this expression into equation (53) and expressing the coordinates

of vectors taken in the system x* by coordinates taken in the system x" equation
(53) takes the form

9’ x' b dx"+ axtdv’ i X o ax* gx"
ax*oxt dt 'ax* dt = *ax*  ax* ot

If the latter equation is multiplied by % and summed with respect to i we
have

dv’ _ _[ox” oxi oxt i | 9x” _0'X' ] dx'
dt axi ax” axt " * TV axt axox* | dt °

Since ¥ and % are arbitrary vectors of L in P, comparing the latter equa-

tion with (54) we obtain finally that

T - B3 G 0xNg X K
Fov =% o o L F x Gxan -
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