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Abstract linear dependence relations’)

By M. N. BLEICHER (New Orleans, Louisiana) and
G. B. PRESTON (Shrivenham, England)Z2)

In 1935 H. WHITNEY [1], using what he called a rank function, an in-
tegral valued function on the subsets of a set, initiated an abstract treatment
of the notion of linear dependence. An equivalent generalization of this con-
cept of linear dependence over a vector space, in terms of /-functions (see
below § 3), was given by RADO in 1943 [2]. In a later paper RADO extended
WHITNEY’s rank functions to sets with possibly infinite rank [3]. T. LAzARSON
has recently shown that not every linear dependence relation defined by an
[-function can be faithfully realised (in the obvious sense) as an ordinary
linear dependence relation on a subset of a vector space [4] (Cf. also A. W.
INGLETON [5]).

In this note we introduce another definition of an abstract linear de-
pendence relation on a set. Our axioms are closely related to the well-known
axioms found, for example, in v. . WAERDEN’s Moderne Algebra [7] and the
immediate deductions from them in § 1 follow familiar lines. Linear depend-
ence relations defined by /-functions are shown (§ 3) to be equivalent to
what we call proper (linear) dependence relations. We show (Theorem 1), as
does RADO [3], that any set, over which a proper dependence relation is
defined, has a uniquely defined rank or dimension.”) As corollaries follow
the corresponding theorems for abelian groups, vector spaces, fields etc. It
seems to the authors that the present approach has certain advantages. Apart
from the fact that the theorem on the existence of ranks is achieved at
considerably less cost the present treatment preserves more of the flavour of
vector space theory. We are lead (§ 4) to define what we call generalized

1) Presented to the American Mathematical Society, August 26, 1958. This work was
supported by the National Science Foundation Grant to Tulane University.

?) The authors would like to thank Mr. N. F. Wiuiamson for his interest in and
constructive criticism of this work.

3) For a closely related discussion of linear dependence see the paper [8] by A. Kertész
which appeared in the meantime.
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vector spaces, and we hope to develop the properties of such spaces elsewhere.
As a result in this direction we prove an analogue of an important lemma
of v. B. BANASCHEWSKI [6, Lemma 4].

1. Notations, definitions and elementary results. We use 1 to
denote the empty set, AN B to mean the set of elements in A but not in B,
and x to denote either the element x or the set {x} as the context demands.

A binary relation £ on the subsets of a set A will be called a dependence
relation on A if it satisfies the conditions:

L1. If XSV then X£YV.

L2. If X;LY for all ¢ in any index set 7 then U{X:: t€ T}LY.

L3. If XY and Y€ Z then XEZ.

L4. If y€ X and y€ X\ x then x€(X\.x) Uy, for any elements x,y in A.%)

For example inclusion is a dependence relation on A; and, in fact, be-
cause of L1, the inclusion relation is the intersection of all dependence rela-

tions on A.
If € is a dependence relation on A and if BE A, then it is clear that

the restriction of £ to the subsets of B induces a dependence relation on B.
It will cause no confusion to denote such an induced relation also by €.
The following definitions are now the natural ones. X is an £-independent
set if for all x in X, xS X\ x. X is $-dependent if it is not £-independent.
If X$Y and Y€ X then X is £-equivalent to Y. The relation of £-equivalence
is clearly an equivalence relation on the set of subsets of A.
We now give some immediate implications of the axioms L1—L4.

Lemma 1. /f X is an £-independent subset of A then every subset of
X is L-independent.

Proor. If VY is a subset of X which is not £-independent, then there
exists y in ¥ such that y€ Y\ y. But then y € X and by LI and L3 we have
y€ Xy in contradiction to the £-independence of X:

Lemma 2. If X is $-independent and y< X, where y is an element of A,
then XUy is £-independent.

PROOF. If XUy=Y, say, is not £-independent there exists x(sy) in
Y such that x&(V\ x). Since X is £-independent x&{(Y X))} (=X\x)
and hence, by L4, y€{((Y “x)"»)Ux} = X, which is contrary to hypothesis.

Lemma 3. Any two maximal (relative to inclusion) <-independent sub-
sets of A are $-equivalent.

4) € denotes the negation of <.
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PrOOF. Let X, Y be two maximal £-independent subsets of A. Let y€ Y.
Then y£ X, for otherwise, by Lemma 2, X would not be maximal. Hence,
by L2, Y€ X. Similarly X€Y.

The next lemma is a generalization of the Steinitz Exchange Theorem.

Lemma 4. Let X, Y be £-equivalent, £-independent sets. Let XnY = K.
Then for each x in X\ K there is a y in YK such that (X\x)uy is
$-independent and £-equivalent to X.

PROOF. Let x € X\ K. Select y in Y\ K such that y€ X\ x. There
exists such an element y, for in the contrary case, by L1—L3, x£X
Y= K)UKE( X\ x)UK=X\x, so that x€ X\ x, which contradicts
the hypothesis that X is €-independent. From Lemma 2 it follows that
(X~ x)uy is £-independent. Using L4 we have x£(X\x)uy; whence we
easily have that (X\ x)Uy is £-equivalent to X.

Denote by |X| the cardinal of the set X. Then we have the following
corollary to the preceeding lemma.

Corollary. Let X, Y be L-equivalent, £-independent sets one of which
is finite. Then | X|=|Y..

2. Proper dependence relations. A dependence relation £ on A
will be said to be proper if the property of £-independence of subsets of A
is a property of finite character. Throughout the rest of this note we will
restrict the discussion to proper dependence relations. Since the empty set is
always an independent subset we have immediately by Tukey’s lemma the
following result:

Lemma 5. If £ is proper, then any £-independent subset of A is con-
tained in a maximal £-independent subset of A. Hence, in particular, A con-
tains a maximal £-independent subset.

The importance of proper dependence relations rests on the following
alternative characterization of them.

Lemma 6. £ is a proper dependence relation on A if and only if the
following property holds :

(P): for any element a in A and any subset X of A al X (if and) only
if alF, where F is a finite subset of X.

PRrROOF. Suppose (P) holds. If £ is not proper then there exists a set X
which is £-dependent and such that every finite subset of X is £-independent
Thus there exists x in X such that x€ X\ x. Property (P) then implies that
xS FCS X~ x for some finite set F, and hence FUx is a finite subset of X
which is £-dependent. This is a contradiction; and so £ must be proper.
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5

Conversely suppose that £ is proper. Let a X. Regarding £ as a dep-
endence relation on X we may apply Lemma 5 and select W as a maximal
€-independent subset of X. Then since X$ W we have a€ W, and so Wua
is a €-dependent set. Since £ is proper there exists a finite subset F of
Wua which is also £-dependent. F cannot be a subset of W because W is
£-independent. Hence a € F. Since F is £-dependent there is an element y
in F such that y€G = F\ y. If y=a, then af£G, a finite subset of X. If
ya then, noting that y€ G\ a, we deduce from L4 that a€(G\ a) U y, again
a finite subset of X. Thus we have shown that property (P) holds.

We can now extend to infinite sets the Corollary to Lemma 4.

Theorem 1. Let £ be a proper dependence relation on a set A. Let
X, Y be two S-equivalent, £-independent subsets of A. Then | X|=|Y|.

ProOOF. Since X£Y, by Lemma 6, for each x in X we may pick a de-
finite finite subset F,, say, of ¥ such that x£F,. Then the family of sets
F={F.: x€ X} covers Y. For otherwise Y€ X€ U {F.: x € X}, a proper sub-
set of ¥, which conflicts with the hypothesis that ¥ is £-independent. If
either |X| or |V is finite we know that | X| = | ¥| by the Corollary to Lemma 4.
When |X| and |Y/| are infinite the fact that & is a cover of ¥V by finite sets
implies that |&F|=|Y/|. Since x—F, is a single valued mapping of X onto &,
therefore |X|=|&|. Thus |X|=|Y/|. Similarly we obtain |¥|=|X|; and hence
| X|=1Y].

3. Dependence relations and I-functions. RADO [2] defines an
I-function on a set A to be a mapping f of the set of finite sequences
(x1,...,x,) of elements of A (including the empty sequence which we denote
by @) into the two element set consisting of the integers O, 1 satisfying the
following conditions.

I JEXi, cvea X0 s s X8) I X0y 000 X 18 B0y Dermitintion of
Xlyesay Xne
12. f(x,x)=0.

I T Xas v e B SR oo K V)
14. f(x1,...,X)=1=f(), ..., Y1) implies there exists {, 1 =f=n+1,
such that f(xi, ..., x., y)=1.
15. f(P)=1.
An /-function f on a set A determines a binary relation f* on the sub-
sets of A defined thus: Xf"Y if and only if for each x in X there is a
finite, possibly empty, sequence « of elements of ¥ such that f(«¢)=1 and
f(x, «)=0. This relation f* is, in Rado’s sense, (Cf. the remarks at the end
of this section) the dependence relation on A corresponding to the /-function f.
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The relation f* is also a dependence relation in our sense. In fact we have
the following result.

Lemma 7. If f is an [-function on A then f* is a proper dependence
relation on A.

ProOOF. We have to show that f* satisfies the conditions L1—L4 of § 1
It is clear, in view of Lemma 6, that f* will then be proper.

L1. Let X< Y and let x€ X. We have either f(x)=1 and f(x,x)=0
(where we note that x€ Y), or f(®@)=1 and f(x, @)=f(x)=0.
Thus Xf*Y.

L2. That L2 holds for f* is immediate from the definition of f*.

L3. Let Xf*Y and Yf*Z. If x€ X then there exists a sequence e,
say, of elements of Y such that f(e)==1, f(x,e¢)=0. If « is the empty
sequence then clearly xf*Z. Otherwise e¢=(J:,...,¥.) and there exist
sequences §; of elements of Z such that f(8)=1, f(y:;,8)=0 for i=1,...,n-
Let C denote the set of all elements of Z which occur in the sequences §;,
i=1,...,n, and, for each i, let y; be a sequence of elements of C which (1)
contains ; as a subsequence (2) satisfies f(y:)=1 and (3) is of maximal
length satisfying properties (1) and (2).

From the collection of y: select y of maximal length. Then f(y;, 7)=0,
i=1,...,n. For if f(yi,7)=1 then, firstly, y==v: for y; contains 8 and
f(3:,8)=0; and, secondly, if y—1y;, j=i, then f(y:;,7)=1=f(y) and
this implies, using 14 and the fact that y is of length greater than or equal
to the length of y;, that there is a term z in the sequence y such that
Sf(yi, 2)=1. Since z € C this contradicts the defining condition (3) of 7:.

We can now show further that f(x,7)=0. Let # be a subsequence of
v which is maximal with respect to the property f(«, 7)=1. Then the length
of the sequence (e, 7) is not greater than the length of 7, for otherwise
f(z,7)==1 for either z in C or z one of the elements y;; and both of these
are impossible. Hence, since f(x, «)=0 implies f(x, ¢, n)=0, it follows, if
f(x,y)=1, that f(e, n,2z)=1 where (1, z) is a subsequence (or a permutation
thereof) of y. This conflicts with the maximality of 7 subject to f(e, n)=1.
Hence we have as asserted, f(x, y)= 0, and this, together with f(y)==1, shows
that x f* Z. This completes the proof that L3 holds for f*.

L4. Let yf* X and suppose that y is not in relation f* to X\ x. Then
there exists a sequence (x,,..., x,) of elements of X such that f(x,...,x.)=1
and f(y, xi, ..., x,)=0. Further it is clear that one of the x;, x;, say, must
be x. Since f(x.,...,x,)=1 we must then have f(y, xs, ..., x.)=1 for other-
wise pfr* X \x. But f(y, xep..., Xn)=1 and f(x, y, x2,...,%s)=0 together
imply that xf* (X~ x)Uy. Thus property L4 holds for f~.
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This completes the proof of the lemma.

We now proceed in the other direction, from dependence relations to
I-functions. Let £ be a proper dependence relation on a set A. Then £ de-
termines a mapping £* of the set of finite sequences of elements of A de-
fined thus:

(D)=1;

LE 1 R v B sl Tor sl s oot
g iO, otherwise.
Here {x;,...,Xi,...,Xx.} denotes the set {x: there exists j=s=i such that
X = Xj, JE ﬂ}.

-’g.(xl: veay xn

*

3 Lemma 8. If € is a dependence relation on A then £* is an I-function
on A.

PrROOF. It is immediate that £* has properties 11, 12, 15. Property 13
follows straightforwardly from axioms L1 and L3. ‘It remains to show that
condition 14 is satisfied.

Let €(xi,...; X )==1m=€(9y, ..., Vx41). Then Xe={x,...,%x.) and
Y={yi,..., .} are E£-independent sets. By Lemma 5 there is a maximal
{-independent subset M, say, of XuY which contains X, and then, by
Theorem 1, |[M|=|Y|. Hence there is an element y;, say, in Y such that
XUy is £-independent (Lemma 1). We then have £*(x,,...,x,, y)=1. This
completes the proof of the lemma.

By a straightforward computation we can verify that for any /-function f,
(f*)*=/f and that for any dependence relation €, (£*)* = £ where ¢ is a pro-
per dependence relation determined by € and defined thus: X2V if and only
if for each element x in X there is a finite subset F. of ¥ such that x£F,.
When € is proper it is clear from Lemma 6 that € =¢. Thus the mapping
£—¢" is a (1, 1)-mapping of the set of proper dependence relations on a set A
onto the set of /-functions on A. RADO ([2], p. 84) defines a subset X of A
to be £*-independent if £*(«)=1 for all finite sequences « of distinct
elements of X. Thus, if £ is proper, X is £*-independent if and only if it is
£-independent.

This completes our verification of the assertion made earlier that proper
dependence relations and /-functions afford equivalent generalizations of the
concept of linear dependence in vector spaces.

4. Generalized vector spaces. In view of the analogy with vector
spaces it is natural to call a set A, on which is defined a dependence rela-
tion £, a generalized vector space, or, simply, a space. A subset B of A will
be called a subspace of A if x€B implies x € B. It is clear that intersection
of any set of subspaces of A is itself a subspace of A. Consequently, if C is
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any subset of A then C*=n{B: CE B, B a subspace of A} is a subspace
of A. C* will be called the subspace of A generated by C.

Lemma 9. x€ C* if and only if x£C.

PrROOF. Let B={x: x£C}. Then clearly CSB. If y£B, then, since
BE£C, we have y£C and so y€ B. Thus B is a subspace, and so C*CB.
Conversely, if x€ B then x£C< C* implies x£C*, so that, since C* is a sub-
space, x € C*. Hence B=C".

Corollary. If XLV, then X* S Y". In particular, if X< Y, then X" < Y".

This section is devoted to proving the analogue of the theorem of
BANASCHEWSKI mentioned earlier. Some preliminary lemmas will facilitate
the proof.

Lemma 10. If £ is proper then the union of any (inclusion) chain of
subspaces of A is itself a subspace of A.

Proor. Let @ be a chain of subspaces of A. Let B=U{C: C€C}.
Let x€ B. Then since £ is proper there is a finite subset F, say, of B such
that x€F. Since € is a chain and F is finite there exists C in € such that
FZC. It then follows that x € C and so x € B. ‘

Let §(A) denote the set of subspaces of A. A mapping t: S(A)—8(A)
will be said to be quasi-orthogonal®) if for X, Y in §(A) it satisfies the con-
ditions:

0l. (XuXn)'=A;

02. XnXz=0";

03. XSV implies X2 Y.

If B is a subspace of A then C is a subspace of B if and only if it
is a subspace of A contained in B. Thus $(B)={VnB: Ve §(A)}.

Consider the set & of all ordered pairs (B, ), where B is a subspace
of A and @ is a quasi-orthogonal mapping of $(B). It is easy to verify that
a partial order is defined on & by the relation = defined thus: (B, 8)=(C, y)
if BEC and (BnV)E<S(Cn V)y for all V in $(A).

Lemma 11. If £ is proper then & is an inductive set. In particular,
let € be a totally ordered subset of & and let C=U{P: (P,0)€C}. Then
there exists a quasi-orthogonal mapping y of &(C) such that (C, y) is an upper
bound for C.

Proor. By Lemma 10, we know that C is in fact, as assumed in the
statement of the lemma, a subspace of A. Define y thus:

%) Qur thanks to Dr. W. N. Everitr for suggesting this term.
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Xy=Uu{(XnP)e: (P,0) €€}, (Xe3(C)).

Then y is a quasi-orthogonal mapping of &(C). For, firstly, for any (P,0)
in & XnPS X and (XnP)oS Xy. Hence [(XnP)u(XnP)o]'S(Xu Xy)',
i.e. PS(XUuXy). Thus U{P: (P,o)€CIS(XUuXy), i.e. CE(XuXy).
Since, necessarily, (XU Xy)* € C, this proves property Ol.

Now let x€ Xn Xy. Then x€ Xn P and x € (XnP)e" for some (P, o),
(P,¢) in & Since € is totally ordered either (a) (P,¢)=(P,0) or
(b) (P,0)=(P,0). Incase (a) PP and so xc XnP'; Thus x€(XnP)n
N(XnP)o=0" In case (b) (XnP)o'S(XnP)o and so x€(XnP)n
n(XnP)e=0" Thus XnXy<S(* Since Xn Xy is a subspace we also
have 0* S X n Xy. Thus Xn Xy = 0", and this proves that 7 has property O2.

It remains to show that O3 holds. But this is clear. For if X< Y then
XnPCSYnP and so (XnP)o2(YnP)o for all (P,o) in €. Thus from the
definition of y we have Xy=2VYy; and this completes the proof that y is
quasi-orthogonal.

Hence we have shown that (C, y) € &. It is clear that (P, ¢) in € implies
that (P, 0) =(C, y). Consequently the set € has (C, y) as an upper bound in &.
This completes the proof of the lemma.

Lemma 12, Let(M, 1) € R, a € AN M, and N= (MU a)*. Define i thus:
\ (Xuua), if Xe8(Mm),

(XnM)u, if X€S(NN\SM).
Then 4 is a quasi-orthogonal mapping of §(N) and (M, u) = (N, A).

PROOF. If X € (M), then (XU X2)'= (XU (XrUa)')'2((XU Xu)' Ua) =
=(Mua)"= N. Hence (XU X4)'=N. If X€ S(N)\§(M) then there exists
y in X\ M and, since M is a subspace, y€ M. But y$ M U a, since y € (M U a)".
Hence aS Muy; whence it follows that (Muyp)*=N. It now follows that
(XUXD)'=(XuXnMu)2((XnM)u(XnM)uuy)' 2(Muy). Hence
again (XU XA4)'= N. Thus we have shown that 4 has property Ol.

To prove that 2 has property O2, note firstly that if X¢&S(M) then
(Xuua)'n M= Xu. For otherwise there exists y in M such that y€ Xuua
and y® Xu. This would imply that a€ Xu Uy S M which is contrary to hypo-
thesis. Hence when X € §(M) we have X n Xi=Xn(XpUa)' = Xn(Xuvua)'n
NM=XnXu=0". When X€ §(N)\&(M) then XnXi=Xn(XnM)u=
=((XnNM)n(XnM)u=0". Thus 4 has property O2.

Consider X<SVY. If Ye€&(M) then Xi=(Xpua)*2(Yuua)' =Ya.
If Xe8(M), YeES(NNEWM) then Xi=(Xpua)=(XnM)uua)'=2
2XnMu2(¥YnM)u=VYi. If X,YeS(N)\§(M) then X=(XnM)u=2
=2(YnM)u=Yi. Hence in all cases X< Y implies X4A=2 YA. This completes
the proof that 4 is quasi-orthogonal.

Xi=
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It remains to show that (M, u) =(N, Z). But this is clear, for MCN
and if X€8&(M) then XuS(XuvUa)'= X4 and if X€&(N)\8(M) then
(XnMu=Xa.

We can now easily prove our theorem.

Theorem 2. Let £ be a proper dependence relation on A. Then there
exists a quasi-orthogonal mapping v: §(A)—8(A).

Proor. Well-order in any manner the elements of A so that A = {xa:
e<n}. Let Xo={x5: 8<e}*, so that, in particular, X, = 0O*. There exists
a quasi-orthogonal mapping s7;: §(0*)— 8(D*) namely the mapping which
maps " onto (J*. We proceed by means of a transfinite construction.

Suppose that quasi-orthogonal mappings s;: §(Xz)—§(Xs) have already
been constructed for #<e and such that if 8<y<e then (X3, 713) = (X, 7ry).
We may then apply Lemmas 11 and 12 to construct st.: §(X.)—8(X.) as
follows.

When e« is a limit ordinal note firstly that, by Lemma 10, X.=
= U{Xp: #<e«}, and hence we may apply Lemma 11 to construct a quasi-
orthogonal mapping t.: (X)) —>8(Xa) such that (Xa, 7ta) =(Xp, 7t5) for
e>p When e« is not a limit ordinal then Xa=(Xa-1UXa-1)* and we may
apply Lemma 12 to obtain a pair (X., -ta) with the required properties.

The construction terminates at a quasi-orthogonal mapping m(=-,):
§(A)—S(A).

Bibliography

[1] H. Waitney, On the abstract properties of linear dependence, Amer. J. Math. 57 (1935),
509—533.

[2] R. Rapo, A theorem on independence relations, Quart. J. Math. Oxford Ser. 13 (1943),
83 - 89.

[3] R. Rapo, Axiomatic treatment of rank in infinite sets, Canad. J. Math. 1 (1949), 337—343.

[4] T. Lazarson, The representation problem for independence functions, /. London Math.
Soc. 33 (1958), 21—25.

[5] A. W. IncLeton, A note on independence functions and rank, J. London Math. Soc. 34
(1959), 49—56.

[6] v. B. Banascuewski, Totalgeordnete Moduln, Arch. Math. 7 (1957), 430—440.

[7] B. L. v. o. Waerpen, Moderne Algebra. I, Berlin, 1937.

[8] A. Kertész, On independent sets of elements in algebra, Acfa Sci. Math. Szeged 21
(1960), 260—269.

(Received July 22, 1959.)



