5

On a question of Kertész
By HANNA NEUMANN (Manchester)

During a recent visit to Debrecen I learnt from A. KERTESZ of a way
of constructing semigroups from groups. If G is a given group, written mul-
tiplicatively, define a new operation xoy on the elements of G, setting
xoy==f(x,y), where f(x,y) is one of the following five types of function:
a constant a, x, y, xay, or yax. In each case the new operation is asso-
ciative; moreover the elements of G form a group G, under the operation
xoy==xay, a group G. under the operation xoy=yax. G, is an isomor-
phic image of G under the mapping x-— xa', similarly G. is an anti-iso-
morphic image of G under the same mapping. A. KERTESZ conjectured that
the five functions he found are in fact the only functions defining associative
operations. In this note I give a proof of KERTESZ' conjecture.

§ 1. Preliminaries

The function f(x, y) defined on the group G is a word in the variables
x and y and constant elements of G; that is, it is a product of powers
x", %, possibly separated from each other by various constants a,b,... .
We assume the word to be reduced, that is, no two adjacent letters represent
elements inverse to each other in G. Words in three variables will be used
as well. Our remarks naturally extend to these mutfatis mutandis.

The number m = XY|e;| is called the x-length of f(x,y), and the number
n=2\3; is called the y-length of f(x,y).

We consider the x-length and y-length of a power of f. If k¥ is a po-
sitive integer, cancellations will in general take place between neighbouring
factors of the power f*. To exhibit these, we write f(x,y) in the form

f(x) }') — ,-—l.(x, y)s(x, y)r(xr }’),
where we may assume that the first and last letters of s are not inverse to
each other, and that no cancellation takes place between r-' and s, and be-
tween s and r. Then

FEx, ) =r='(x, )" (x, »)r(x, y)
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is reduced as written. If, therefore, m; and n, denote respectively the x-length
and the y-length of s(x, y), one has for the x-length w« and the y-length »
of f*(x,y) the relations

(1.1) u=m-+(k—1)m; and v=n+(k—1)n,.

We extend this result to a more general situation: Let w(u, v) be a
word in the variables u, v and constants; again w(u, v) is assumed reduced.
If the u-length of w(u,v) is k, then
(1.2) the x-length u and the y-length v of w(f(x,y),r) are subject to the
inegualities

m+Gk—1)ym=u=km and n+(k—1)m=v=kn.

Similar inequalities obtain, of course, when f(x,y) is substituted for »
in w(u,v).

The truth of these inequalities becomes evident, if one considers first
the extreme cases leading to the least and greatest possible values for u
or ». The least value is taken (as a direct application (1.1)) when u occurs
only once in w(u,r), and then in the form u=*. The greatest value is taken
when w(u, v) contains the power u*' in k separate places.

Finally we note the following simple fact:

(1.3) If xey=f(x,y) is an associative operation, then so is x*y = f(y, X).
For associativity of xoy means
f(f(x, ), 2)=f(x, f(y,2)) for all x,y,z;
therefore in particular also
(f(z,y), x)=f(z, f(»,x)) for all x,y,z,

and this is just the relation expressing associativity of x#y.

§ 2. The Theorem

We can now formulate the theorem on associative operations on groups:
(2.1) Theorem. Let f(x,y) be a reduced word in x, y and certain con-
stants out of the group G. If the operation xoy = f(x, y) is associative, then
fix, y)=a, x, y,xay, or yax,
where a is an arbitrary constant.

PrOOF. We write as before f(x, y)=r"(x, y)s(x, y)r(x,y), where m and
m, are the x-lengths of f and s respectively, therefore m,=m; and n and n
are the y-lengths of f and s respectively, therefore ny=n.
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Consider now the expression f(f(x,y),2). Let its x-length be u, and
its z-length be »; then (1. 2) — with k=m — shows that x4, =m +(m—1)m1
Also, clearly, »; =n.

Next consider the x-length u. and the z-length vs of f(x,f(y, 2)).
Obviously w.==m; and, using the analogon to (1.2) for substitution for the
second variable, one sees that »s=n-4 (n—1)n;.

But the assumption that the operation xoy = f(x, y) is associative gives
us the identity f(f(x, »), 2) = f(x, f(», 2)). Therefore u; = us and », = 2, and so
m=m-+(m—1)my and nz=n+(n—1)n,.

Using 0=my=m and O=nm =n, we obtain

(2.2) either mi =0 or mi=m=1, and either =0 or n=n=1.
It follows:

(2.3) The function f(x,y) has one of the following forms:

r-i(x,y)ar(x,y) where a=1, r-'(y)ax:br(y), r(x)ay:br(x),
axaby>c, or ay-bx“c, where ¢&z¢&,& have the values +1 or —1.

Because of (1.3), we need now only consider the first, second, and
fourth of these possibilities.

(i) When f=r-'(x,y)ar(x,y), then
f(f(x,9), 2) = (f(x, y), 2)ar(f(x, ), 2),

[, f(, 2)) = r-'(x, f(3, 2))ar(x, (3, 2)).

With the same notation as before, »=n and w,=m are again obvious.
Applying (1.2) — with m;=0 — to r(f(x,y),2) we see that r(f(x,y),z2)
has x-length at least m. Since the constant a=~1 prevents cancellation be-
tween ! and r, it follows that f(f(x,»),2) has x-length at least 2/m; that
is, in the previous notation, w;=2m. Similarly one obtains 7»,=2n. But
again gy =—us and »; = »s, because of the associativity. Therefore m=2m
and n=2n, and so m=n-0. It follows that r(x, y), and therefore f(x,y),
is constant.

(i) When f=r-'(y)axcbr(y), then
f(f(x, ), 2)=r'(2)a|r*(y)axcbr(y)cbr(z),

S, (3, 2))=r-1(f(3, 2))axbr(f(, 2)).

As &=+ 1, f(f(x,y),2) contains x* and no other power of x, while
f(x, f(», 2)) contains precisely x*, the identity of the two expressions implies
therefore &2=—3g¢, e=1.

and

and
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Further one has again »,=n; and (1.2) shows that r(f(y,2)) has
z-length at least n, so that ».=2n; therefore n=2n holds again. Thus
n==0, which means that r(y) is constant, and so f(x,y) has the form
f(x,y)=a;xb;. Using the associativity once again, one deduces without
difficulty that a,= b;=1.

The remark (1.3) now shows that this case of (2. 3) leads to f(x,y)=x
and f(x,y)=y as the only possibilities.

(iii) When, finally, f=ax®by*c, then

f(f(x, »), 2) =alax by c] bz,
and

f(x, f(p, 2)) = axblay* bz c]c.
Comparing the exponents of x and z in these two expressions, one gets
again & =# = 1; and the identity of the expressions then leads to a*=a,
¢*=c, and therefore a=c= 1. Using (1.3) once more one obtains from this

case the possibilities f(x,y)= xby and f(x,y)=ybx, and no others.
This completes the proof of the theorem.
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