On a question of Kertész

By HANNA NEUMANN (Manchester)

During a recent visit to Debrecen I learnt from A. Kertész of a way of constructing semigroups from groups. If G is a given group, written multiplicatively, define a new operation $x \circ y$ on the elements of G, setting $x \circ y = f(x, y)$, where f(x, y) is one of the following five types of function: a constant a, x, y, xay, or yax. In each case the new operation is associative; moreover the elements of G form a group G_1 under the operation $x \circ y = xay$, a group G_2 under the operation $x \circ y = yax$. G_1 is an isomorphic image of G under the mapping $x \to xa^{-1}$, similarly G_2 is an anti-isomorphic image of G under the same mapping. A. Kertész conjectured that the five functions he found are in fact the only functions defining associative operations. In this note I give a proof of Kertész' conjecture.

§ 1. Preliminaries

The function f(x, y) defined on the group G is a word in the variables x and y and constant elements of G; that is, it is a product of powers x^{a_i} , y^{β_i} , possibly separated from each other by various constants a, b, \ldots . We assume the word to be *reduced*, that is, no two adjacent letters represent elements inverse to each other in G. Words in three variables will be used as well. Our remarks naturally extend to these *mutatis mutandis*.

The number $m = \Sigma |\alpha_i|$ is called the *x-length* of f(x, y), and the number $n = \Sigma |\beta_i|$ is called the *y-length* of f(x, y).

We consider the x-length and y-length of a power of f. If k is a positive integer, cancellations will in general take place between neighbouring factors of the power f^k . To exhibit these, we write f(x, y) in the form

$$f(x, y) = r^{-1}(x, y)s(x, y)r(x, y),$$

where we may assume that the first and last letters of s are not inverse to each other, and that no cancellation takes place between r^{-1} and s, and between s and r. Then

$$f^{k}(x, y) = r^{-1}(x, y)s^{k}(x, y)r(x, y)$$

76

is reduced as written. If, therefore, m_1 and n_1 denote respectively the x-length and the y-length of s(x, y), one has for the x-length μ and the y-length ν of $f^k(x, y)$ the relations

(1.1)
$$\mu = m + (k-1)m_1$$
 and $\nu = n + (k-1)n_1$.

We extend this result to a more general situation: Let w(u, v) be a word in the variables u, v and constants; again w(u, v) is assumed reduced. If the u-length of w(u, v) is k, then

(1.2) the x-length μ and the y-length ν of w(f(x, y), v) are subject to the inegualities

$$m+(k-1)m_1 \leq \mu \leq km$$
 and $n+(k-1)n_1 \leq \nu \leq kn$.

Similar inequalities obtain, of course, when f(x, y) is substituted for v in w(u, v).

The truth of these inequalities becomes evident, if one considers first the extreme cases leading to the least and greatest possible values for μ or ν . The least value is taken (as a direct application (1.1)) when u occurs only once in w(u, v), and then in the form $u^{\pm k}$. The greatest value is taken when w(u, v) contains the power $u^{\pm 1}$ in k separate places.

Finally we note the following simple fact:

(1.3) If $x \circ y = f(x, y)$ is an associative operation, then so is x*y = f(y, x). For associativity of $x \circ y$ means

$$f(f(x, y), z) = f(x, f(y, z))$$
 for all x, y, z ;

therefore in particular also

$$f(f(z, y), x) = f(z, f(y, x))$$
 for all x, y, z ,

and this is just the relation expressing associativity of x*y.

§ 2. The Theorem

We can now formulate the theorem on associative operations on groups:

(2.1) Theorem. Let f(x, y) be a reduced word in x, y and certain constants out of the group G. If the operation $x \circ y = f(x, y)$ is associative, then

$$f(x, y) = a, x, y, xay$$
, or yax ,

where a is an arbitrary constant.

PROOF. We write as before $f(x, y) = r^{-1}(x, y)s(x, y)r(x, y)$, where m and m_1 are the x-lengths of f and s respectively, therefore $m_1 \le m$; and n and n are the y-lengths of f and s respectively, therefore $n_1 \le n$.

Consider now the expression f(f(x, y), z). Let its x-length be μ , and its z-length be ν_1 ; then (1.2) — with k=m — shows that $\mu_1 \ge m + (m-1)m_1$. Also, clearly, $\nu_1 = n$.

Next consider the x-length μ_2 and the z-length ν_2 of f(x, f(y, z)). Obviously $\mu_2 = m$; and, using the analogon to (1.2) for substitution for the second variable, one sees that $\nu_2 \ge n + (n-1)n_1$.

But the assumption that the operation $x \circ y = f(x, y)$ is associative gives us the identity f(f(x, y), z) = f(x, f(y, z)). Therefore $\mu_1 = \mu_2$ and $\nu_1 = \nu_2$, and so

$$m \ge m + (m-1)m_1$$
 and $n \ge n + (n-1)n_1$.

Using $0 \le m_1 \le m$ and $0 \le n_1 \le n$, we obtain

- (2.2) either $m_1 = 0$ or $m_1 = m = 1$, and either $n_1 = 0$ or $n_1 = n = 1$. It follows:
- (2.3) The function f(x, y) has one of the following forms:

$$r^{-1}(x, y) ar(x, y)$$
 where $a \neq 1$, $r^{-1}(y) ax^{\varepsilon} br(y)$, $r^{-1}(x) ay^{\varepsilon} br(x)$, $ax^{\varepsilon_1} by^{\varepsilon_2} c$, or $ay^{\varepsilon_3} bx^{\varepsilon_1} c$, where $\varepsilon, \varepsilon_1, \varepsilon_2$ have the values $+1$ or -1 .

Because of (1.3), we need now only consider the first, second, and fourth of these possibilities.

(i) When
$$f = r^{-1}(x, y) a r(x, y)$$
, then $f(f(x, y), z) = r^{-1}(f(x, y), z) a r(f(x, y), z)$,

and

$$f(x, f(y, z)) = r^{-1}(x, f(y, z))ar(x, f(y, z)).$$

With the same notation as before, $v_1 = n$ and $\mu_2 = m$ are again obvious. Applying (1.2) — with $m_1 = 0$ — to r(f(x, y), z) we see that r(f(x, y), z) has x-length at least m. Since the constant $a \neq 1$ prevents cancellation between r^{-1} and r, it follows that f(f(x, y), z) has x-length at least 2m; that is, in the previous notation, $\mu_1 \ge 2m$. Similarly one obtains $v_2 \ge 2n$. But again $\mu_1 = \mu_2$ and $v_1 = v_2$, because of the associativity. Therefore $m \ge 2m$ and $n \ge 2n$, and so m = n = 0. It follows that r(x, y), and therefore f(x, y), is constant.

(ii) When
$$f = r^{-1}(y)ax^{\varepsilon}br(y)$$
, then
$$f(f(x, y), z) = r^{-1}(z)a[r^{-1}(y)ax^{\varepsilon}br(y)]^{\varepsilon}br(z),$$

and

$$f(x, f(y, z)) = r^{-1}(f(y, z))ax^{\varepsilon}br(f(y, z)).$$

As $\varepsilon = \pm 1$, f(f(x, y), z) contains x^{ε^2} and no other power of x, while f(x, f(y, z)) contains precisely x^{ε} , the identity of the two expressions implies therefore $\varepsilon^2 = \varepsilon$, $\varepsilon = 1$.

Further one has again $v_1 = n$; and (1.2) shows that r(f(y, z)) has z-length at least n, so that $v_2 \ge 2n$; therefore $n \ge 2n$ holds again. Thus n = 0, which means that r(y) is constant, and so f(x, y) has the form $f(x, y) = a_1 x b_1$. Using the associativity once again, one deduces without difficulty that $a_1 = b_1 = 1$.

The remark (1.3) now shows that this case of (2.3) leads to f(x, y) = x and f(x, y) = y as the only possibilities.

(iii) When, finally, $f = ax^{\varepsilon_1}by^{\varepsilon_2}c$, then

$$f(f(x, y), z) = a[ax^{\varepsilon_1}by^{\varepsilon_2}c]^{\varepsilon_1}bz^{\varepsilon_2}c,$$

and

$$f(x, f(y, z)) = ax^{\varepsilon_1}b[ay^{\varepsilon_1}bz^{\varepsilon_2}c]^{\varepsilon_2}c.$$

Comparing the exponents of x and z in these two expressions, one gets again $\varepsilon_1 = \varepsilon_2 = 1$; and the identity of the expressions then leads to $a^2 = a$, $c^2 = c$, and therefore a = c = 1. Using (1.3) once more one obtains from this case the possibilities f(x, y) = xby and f(x, y) = ybx, and no others.

This completes the proof of the theorem.

(Received November 2, 1959.)